source: HiSusy/trunk/Pythia8/pythia8170/xmldoc/HiggsProcesses.xml @ 1

Last change on this file since 1 was 1, checked in by zerwas, 11 years ago

first import of structure, PYTHIA8 and DELPHES

File size: 34.9 KB
Line 
1<chapter name="Higgs Processes">
2
3<h2>Higgs Processes</h2>
4
5This page documents Higgs production within and beyond the Standard Model
6(SM and BSM for short). This includes several different processes and,
7for the BSM scenarios, a large set of parameters that would only be fixed
8within a more specific framework such as MSSM. Three choices can be made
9irrespective of the particular model:
10
11<flag name="Higgs:cubicWidth" default="off">
12The partial width of a Higgs particle to a pair of gauge bosons,
13<ei>W^+ W^-</ei> or <ei>Z^0 Z^0</ei>, depends cubically on the
14Higgs mass. When selecting the Higgs according to a Breit-Wigner,
15so that the actual mass <ei>mHat</ei> does not agree with the
16nominal <ei>m_Higgs</ei> one, an ambiguity arises which of the
17two to use <ref>Sey95</ref>. The default is to use a linear
18dependence on <ei>mHat</ei>, i.e. a width proportional to
19<ei>m_Higgs^2 * mHat</ei>, while <code>on</code> gives a
20<ei>mHat^3</ei> dependence. This does not affect the widths to
21fermions, which only depend linearly on <ei>mHat</ei>.
22This flag is used both for SM and BSM Higgses.
23</flag>
24
25<flag name="Higgs:runningLoopMass" default="on">
26The partial width of a Higgs particle to a pair of gluons or photons,
27or a <ei>gamma Z^0</ei> pair, proceeds in part through quark loops,
28mainly <ei>b</ei> and <ei>t</ei>. There is some ambiguity what kind
29of masses to use. Default is running MSbar ones, but alternatively
30fixed pole masses are allowed (as was standard in PYTHIA 6), which
31typically gives a noticeably higher cross section for these channels.
32(For a decay to a pair of fermions, such as top, the running mass is
33used for couplings and the fixed one for phase space.)
34</flag>
35
36<flag name="Higgs:clipWings" default="on">
37The Breit-Wigner shape of a Higgs is nontrivial, owing to the rapid
38width variation with the mass of a Higgs. This imples that a Higgs
39of low nominal mass may still acquire a non-negligible high-end tail.
40The validity of the calculation may be questioned in these wings.
41With this option on, the <code>Higgs:wingsFac</code> value is used to
42cut away the wings.
43</flag>
44
45<parm name="Higgs:wingsFac" default="50." min="0.">
46With <code>Higgs:clipWings</code> on, all Higgs masses which deviate
47from the nominal one by more than <code>Higgs:wingsFac</code>
48times the nominal width are forbidden. This is achieved by setting
49the <code>mMin</code> and <code>mMax</code> values of the Higgs states
50at initialization (but never so as to allow a wider range than already
51set by the user, alternatively by the default values).   
52</parm>
53
54<h3>Standard-Model Higgs, basic processes</h3>
55
56This section provides the standard set of processes that can be
57run together to provide a reasonably complete overview of possible
58production channels for a single SM Higgs.
59The main parameter is the choice of Higgs mass, which can be set in the
60normal <code>ParticleData</code> database; thereafter the properties
61within the SM are essentially fixed.
62
63<flag name="HiggsSM:all" default="off">
64Common switch for the group of Higgs production within the Standard Model.
65</flag>
66
67<flag name="HiggsSM:ffbar2H" default="off">
68Scattering <ei>f fbar -> H^0</ei>, where <ei>f</ei> sums over available
69flavours except top. Related to the mass-dependent Higgs point coupling
70to fermions, so at hadron colliders the bottom contribution will
71dominate.
72Code 901.
73</flag>
74
75<flag name="HiggsSM:gg2H" default="off">
76Scattering <ei>g g -> H^0</ei> via loop contributions primarily from
77top.
78Code 902.
79</flag>
80
81<flag name="HiggsSM:gmgm2H" default="off">
82Scattering <ei>gamma gamma -> H^0</ei> via loop contributions primarily
83from top and <ei>W</ei>.
84Code 903.
85</flag>
86
87<flag name="HiggsSM:ffbar2HZ" default="off">
88Scattering <ei>f fbar -> H^0 Z^0</ei> via <ei>s</ei>-channel <ei>Z^0</ei>
89exchange.
90Code 904.
91</flag>
92
93<flag name="HiggsSM:ffbar2HW" default="off">
94Scattering <ei>f fbar -> H^0 W^+-</ei> via <ei>s</ei>-channel <ei>W^+-</ei>
95exchange.
96Code 905.
97</flag>
98
99<flag name="HiggsSM:ff2Hff(t:ZZ)" default="off">
100Scattering <ei>f f' -> H^0 f f'</ei> via <ei>Z^0 Z^0</ei> fusion.
101Code 906.
102</flag>
103
104<flag name="HiggsSM:ff2Hff(t:WW)" default="off">
105Scattering <ei>f_1 f_2 -> H^0 f_3 f_4</ei> via <ei>W^+ W^-</ei> fusion.
106Code 907.
107</flag>
108
109<flag name="HiggsSM:gg2Httbar" default="off">
110Scattering <ei>g g -> H^0 t tbar</ei> via <ei>t tbar</ei> fusion
111(or, alternatively put, Higgs radiation off a top line).
112Warning: unfortunately this process is rather slow, owing to a
113lengthy cross-section expression and inefficient phase-space selection.
114Code 908.
115</flag>
116
117<flag name="HiggsSM:qqbar2Httbar" default="off">
118Scattering <ei>q qbar -> H^0 t tbar</ei> via <ei>t tbar</ei> fusion
119(or, alternatively put, Higgs radiation off a top line).
120Warning: unfortunately this process is rather slow, owing to a
121lengthy cross-section expression and inefficient phase-space selection.
122Code 909.
123</flag>
124
125<h3>Standard-Model Higgs, further processes</h3>
126
127A number of further production processes has been implemented, that
128are specializations of some of the above ones to the high-<ei>pT</ei> 
129region. The sets therefore could not be used simultaneously
130without unphysical doublecounting, as further explained below.
131They are not switched on by the <code>HiggsSM:all</code> flag, but
132have to be switched on for each separate process after due consideration.
133
134<p/>
135The first three processes in this section are related to the Higgs
136point coupling to fermions, and so primarily are of interest for
137<ei>b</ei> quarks. It is here useful to begin by reminding that
138a process like <ei>b bbar -> H^0</ei> implies that a <ei>b/bbar</ei> 
139is taken from each incoming hadron, leaving behind its respective
140antiparticle. The initial-state showers will then add one
141<ei>g -> b bbar</ei> branching on either side, so that effectively
142the process becomes <ei>g g -> H0 b bbar</ei>. This would be the
143same basic process as the <ei>g g -> H^0 t tbar</ei> one used for top.
144The difference is that (a) no PDF's are defined for top and
145(b) the shower approach would not be good enough to provide sensible
146kinematics for the <ei>H^0 t tbar</ei> subsystem. By contrast, owing
147to the <ei>b</ei> being much lighter than the Higgs, multiple
148gluon emissions must be resummed for <ei>b</ei>, as is done by PDF's
149and showers, in order to obtain a sensible description of the total
150production rate,  when the <ei>b</ei> quarks predominantly are produced
151at small <ei>pT</ei> values.
152
153<flag name="HiggsSM:qg2Hq" default="off">
154Scattering <ei>q g -> H^0 q</ei>. This process gives first-order
155corrections to the <ei>f fbar -> H^0</ei> one above, and should only be
156used to study  the high-<ei>pT</ei> tail, while <ei>f fbar -> H^0</ei> 
157should be used for inclusive production. Only the dominant <ei>c</ei> 
158and <ei>b</ei> contributions are included, and generated separately
159for technical reasons. Note that another first-order process would be
160<ei>q qbar -> H^0 g</ei>, which is not explicitly implemented here,
161but is obtained from showering off the lowest-order process. It does not
162contain any <ei>b</ei> at large <ei>pT</ei>, however, so is less
163interesting for many applications.
164Code 911.
165
166</flag>
167<flag name="HiggsSM:gg2Hbbbar" default="off">
168Scattering <ei>g g -> H^0 b bbar</ei>. This process is yet one order
169higher of the <ei>b bbar -> H^0</ei> and <ei>b g -> H^0 b</ei> chain,
170where now two quarks should be required above some large <ei>pT</ei>
171threshold.
172Warning: unfortunately this process is rather slow, owing to a
173lengthy cross-section expression and inefficient phase-space selection.
174Code 912.
175</flag>
176
177<flag name="HiggsSM:qqbar2Hbbbar" default="off">
178Scattering <ei>q qbar -> H^0 b bbar</ei> via an <ei>s</ei>-channel
179gluon, so closely related to the previous one, but typically less
180important owing to the smaller rate of (anti)quarks relative to
181gluons.
182Warning: unfortunately this process is rather slow, owing to a
183lengthy cross-section expression and inefficient phase-space selection.
184Code 913.
185</flag>
186
187<p/>
188The second set of processes are predominantly first-order corrections
189to the <ei>g g -> H^0</ei> process, again dominated by the top loop.
190We here only provide the kinematical expressions obtained in the
191limit that the top quark goes to infinity, but scaled to the
192finite-top-mass coupling in <ei>g g -> H^0</ei>. (Complete loop
193expressions are available e.g. in PYTHIA 6.4 but are very lengthy.)
194This provides a reasonably accurate description for "intermediate"
195<ei>pT</ei> values, but fails when the <ei>pT</ei> scale approaches
196the top mass.
197 
198<flag name="HiggsSM:gg2Hg(l:t)" default="off">
199Scattering <ei>g g -> H^0 g</ei> via loop contributions primarily
200from top.
201Code 914.
202</flag>
203 
204<flag name="HiggsSM:qg2Hq(l:t)" default="off">
205Scattering <ei>q g -> H^0 q</ei> via loop contributions primarily
206from top. Not to be confused with the <code>HiggsSM:qg2Hq</code>
207process above, with its direct fermion-to-Higgs coupling.
208Code 915.
209</flag>
210 
211<flag name="HiggsSM:qqbar2Hg(l:t)" default="off">
212Scattering <ei>q qbar -> H^0 g</ei> via an <ei>s</ei>-channel gluon
213and loop contributions primarily from top. Is strictly speaking a
214"new" process, not directly derived from <ei>g g -> H^0</ei>, and
215could therefore be included in the standard mix without doublecounting,
216but is numerically negligible.
217Code 916.
218</flag>
219
220<h3>Beyond-the-Standard-Model Higgs, introduction</h3>
221
222Further Higgs multiplets arise in a number of scenarios. We here
223concentrate on the MSSM scenario with two Higgs doublets, but with
224flexibility enough that also other two-Higgs-doublet scenarios could
225be represented by a suitable choice of parameters. Conventionally the
226Higgs states are labelled <ei>h^0, H^0, A^0</ei> and <ei>H^+-</ei>.
227If the scalar and pseudocalar states mix the resulting states are
228labelled <ei>H_1^0, H_2^0, H_3^0</ei>. In process names and parameter
229explanations both notations will be used, but for settings labels
230we have adapted the shorthand hybrid notation <code>H1</code> for
231<ei>h^0(H_1^0)</ei>, <code>H2</code> for <ei>H^0(H_2^0)</ei> and
232<code>A3</code> for <ei>A^0(H_3^0)</ei>. (Recall that the
233<code>Settings</code> database does not distinguish upper- and lowercase
234characters, so that the user has one thing less to worry about, but here
235it causes probles with <ei>h^0</ei> vs. <ei>H^0</ei>.) We leave the issue
236of mass ordering between <ei>H^0</ei> and <ei>A^0</ei> open, and thereby
237also that of <ei>H_2^0</ei> and <ei>H_3^0</ei>.
238
239<flag name="Higgs:useBSM" default="off">
240Master switch to initialize and use the two-Higgs-doublet states.
241If off, only the above SM Higgs processes can be used, with couplings
242as predicted in the SM. If on, only the below BSM Higgs processes can
243be used, with couplings that can be set freely, also found further down
244on this page.
245</flag>
246
247<h3>Beyond-the-Standard-Model Higgs, basic processes</h3>
248
249This section provides the standard set of processes that can be
250run together to provide a reasonably complete overview of possible
251production channels for a single neutral Higgs state in a two-doublet
252scenarios such as MSSM. The list of processes for neutral states closely
253mimics the one found for the SM Higgs. Some of the processes
254vanish for a pure pseudoscalar <ei>A^0</ei>, but are kept for flexiblity
255in cases of mixing with the scalar <ei>h^0</ei> and <ei>H^0</ei> states,
256or for use in the context of non-MSSM models. This should work well to
257represent e.g. that a small admixture of the "wrong" parity would allow
258a process such as <ei>q qbar -> A^0 Z^0</ei>, which otherwise is forbidden.
259However, note that the loop integrals e.g. for <ei>g g -> h^0/H^0/A^0</ei>
260are hardcoded to be for scalars for the former two particles and for a
261pseudoscalar for the latter one, so absolute rates would not be
262correctly represented in the case of large scalar/pseudoscalar mixing. 
263
264<flag name="HiggsBSM:all" default="off">
265Common switch for the group of Higgs production beyond the Standard Model,
266as listed below.
267</flag>
268
269<h4>1) <ei>h^0(H_1^0)</ei> processes</h4>
270
271<flag name="HiggsBSM:allH1" default="off">
272Common switch for the group of <ei>h^0(H_1^0)</ei> production processes.
273</flag>
274
275<flag name="HiggsBSM:ffbar2H1" default="off">
276Scattering <ei>f fbar -> h^0(H_1^0)</ei>, where <ei>f</ei> sums over available
277flavours except top.
278Code 1001.
279</flag>
280
281<flag name="HiggsBSM:gg2H1" default="off">
282Scattering <ei>g g -> h^0(H_1^0)</ei> via loop contributions primarily from
283top.
284Code 1002.
285</flag>
286
287<flag name="HiggsBSM:gmgm2H1" default="off">
288Scattering <ei>gamma gamma -> h^0(H_1^0)</ei> via loop contributions
289primarily from top and <ei>W</ei>.
290Code 1003.
291</flag>
292
293<flag name="HiggsBSM:ffbar2H1Z" default="off">
294Scattering <ei>f fbar -> h^0(H_1^0) Z^0</ei> via <ei>s</ei>-channel
295<ei>Z^0</ei> exchange.
296Code 1004.
297</flag>
298
299<flag name="HiggsBSM:ffbar2H1W" default="off">
300Scattering <ei>f fbar -> h^0(H_1^0) W^+-</ei> via <ei>s</ei>-channel
301<ei>W^+-</ei> exchange.
302Code 1005.
303</flag>
304
305<flag name="HiggsBSM:ff2H1ff(t:ZZ)" default="off">
306Scattering <ei>f f' -> h^0(H_1^0) f f'</ei> via <ei>Z^0 Z^0</ei> fusion.
307Code 1006.
308</flag>
309
310<flag name="HiggsBSM:ff2H1ff(t:WW)" default="off">
311Scattering <ei>f_1 f_2 -> h^0(H_1^0) f_3 f_4</ei> via <ei>W^+ W^-</ei> 
312fusion.
313Code 1007.
314</flag>
315
316<flag name="HiggsBSM:gg2H1ttbar" default="off">
317Scattering <ei>g g -> h^0(H_1^0) t tbar</ei> via <ei>t tbar</ei> fusion
318(or, alternatively put, Higgs radiation off a top line).
319Warning: unfortunately this process is rather slow, owing to a
320lengthy cross-section expression and inefficient phase-space selection.
321Code 1008.
322</flag>
323
324<flag name="HiggsBSM:qqbar2H1ttbar" default="off">
325Scattering <ei>q qbar -> h^0(H_1^0) t tbar</ei> via <ei>t tbar</ei> fusion
326(or, alternatively put, Higgs radiation off a top line).
327Warning: unfortunately this process is rather slow, owing to a
328lengthy cross-section expression and inefficient phase-space selection.
329Code 1009.
330
331
332<h4>2) <ei>H^0(H_2^0)</ei> processes</h4>
333
334<flag name="HiggsBSM:allH2" default="off">
335Common switch for the group of <ei>H^0(H_2^0)</ei> production processes.
336</flag>
337
338<flag name="HiggsBSM:ffbar2H2" default="off">
339Scattering <ei>f fbar -> H^0(H_2^0)</ei>, where <ei>f</ei> sums over available
340flavours except top.
341Code 1021.
342</flag>
343
344<flag name="HiggsBSM:gg2H2" default="off">
345Scattering <ei>g g -> H^0(H_2^0)</ei> via loop contributions primarily from
346top.
347Code 1022.
348</flag>
349
350<flag name="HiggsBSM:gmgm2H2" default="off">
351Scattering <ei>gamma gamma -> H^0(H_2^0)</ei> via loop contributions primarily
352from top and <ei>W</ei>.
353Code 1023.
354</flag>
355
356<flag name="HiggsBSM:ffbar2H2Z" default="off">
357Scattering <ei>f fbar -> H^0(H_2^0) Z^0</ei> via <ei>s</ei>-channel
358<ei>Z^0</ei> exchange.
359Code 1024.
360</flag>
361
362<flag name="HiggsBSM:ffbar2H2W" default="off">
363Scattering <ei>f fbar -> H^0(H_2^0) W^+-</ei> via <ei>s</ei>-channel
364<ei>W^+-</ei> exchange.
365Code 1025.
366</flag>
367
368<flag name="HiggsBSM:ff2H2ff(t:ZZ)" default="off">
369Scattering <ei>f f' -> H^0(H_2^0) f f'</ei> via <ei>Z^0 Z^0</ei> fusion.
370Code 1026.
371</flag>
372
373<flag name="HiggsBSM:ff2H2ff(t:WW)" default="off">
374Scattering <ei>f_1 f_2 -> H^0(H_2^0) f_3 f_4</ei> via <ei>W^+ W^-</ei> fusion.
375Code 1027.
376</flag>
377
378<flag name="HiggsBSM:gg2H2ttbar" default="off">
379Scattering <ei>g g -> H^0(H_2^0) t tbar</ei> via <ei>t tbar</ei> fusion
380(or, alternatively put, Higgs radiation off a top line).
381Warning: unfortunately this process is rather slow, owing to a
382lengthy cross-section expression and inefficient phase-space selection.
383Code 1028.
384</flag>
385
386<flag name="HiggsBSM:qqbar2H2ttbar" default="off">
387Scattering <ei>q qbar -> H^0(H_2^0) t tbar</ei> via <ei>t tbar</ei> fusion
388(or, alternatively put, Higgs radiation off a top line).
389Warning: unfortunately this process is rather slow, owing to a
390lengthy cross-section expression and inefficient phase-space selection.
391Code 1029.
392
393<h4>3) <ei>A^0(H_3^0)</ei> processes</h4>
394
395<flag name="HiggsBSM:allA3" default="off">
396Common switch for the group of <ei>A^0(H_3^0)</ei> production processes.
397</flag>
398
399<flag name="HiggsBSM:ffbar2A3" default="off">
400Scattering <ei>f fbar -> A^0(H_3^0)</ei>, where <ei>f</ei> sums over available
401flavours except top.
402Code 1041.
403</flag>
404
405<flag name="HiggsBSM:gg2A3" default="off">
406Scattering <ei>g g -> A^0(A_3^0)</ei> via loop contributions primarily from
407top.
408Code 1042.
409</flag>
410
411<flag name="HiggsBSM:gmgm2A3" default="off">
412Scattering <ei>gamma gamma -> A^0(A_3^0)</ei> via loop contributions primarily
413from top and <ei>W</ei>.
414Code 1043.
415</flag>
416
417<flag name="HiggsBSM:ffbar2A3Z" default="off">
418Scattering <ei>f fbar -> A^0(A_3^0) Z^0</ei> via <ei>s</ei>-channel
419<ei>Z^0</ei> exchange.
420Code 1044.
421</flag>
422
423<flag name="HiggsBSM:ffbar2A3W" default="off">
424Scattering <ei>f fbar -> A^0(A_3^0) W^+-</ei> via <ei>s</ei>-channel
425<ei>W^+-</ei> exchange.
426Code 1045.
427</flag>
428
429<flag name="HiggsBSM:ff2A3ff(t:ZZ)" default="off">
430Scattering <ei>f f' -> A^0(A_3^0) f f'</ei> via <ei>Z^0 Z^0</ei> fusion.
431Code 1046.
432</flag>
433
434<flag name="HiggsBSM:ff2A3ff(t:WW)" default="off">
435Scattering <ei>f_1 f_2 -> A^0(A_3^0) f_3 f_4</ei> via <ei>W^+ W^-</ei> fusion.
436Code 1047.
437</flag>
438
439<flag name="HiggsBSM:gg2A3ttbar" default="off">
440Scattering <ei>g g -> A^0(A_3^0) t tbar</ei> via <ei>t tbar</ei> fusion
441(or, alternatively put, Higgs radiation off a top line).
442Warning: unfortunately this process is rather slow, owing to a
443lengthy cross-section expression and inefficient phase-space selection.
444Code 1048.
445</flag>
446
447<flag name="HiggsBSM:qqbar2A3ttbar" default="off">
448Scattering <ei>q qbar -> A^0(A_3^0) t tbar</ei> via <ei>t tbar</ei> fusion
449(or, alternatively put, Higgs radiation off a top line).
450Warning: unfortunately this process is rather slow, owing to a
451lengthy cross-section expression and inefficient phase-space selection.
452Code 1049.
453
454<h4>4) <ei>H+-</ei> processes</h4>
455
456<flag name="HiggsBSM:allH+-" default="off">
457Common switch for the group of <ei>H^+-</ei> production processes.
458</flag>
459
460<flag name="HiggsBSM:ffbar2H+-" default="off">
461Scattering <ei>f fbar' -> H^+-</ei>, where <ei>f, fbar'</ei> sums over
462available incoming flavours. Since couplings are assumed
463generation-diagonal, in practice this means <ei>c sbar -> H^+</ei>
464and <ei>s cbar -> H^-</ei>.
465Code 1061.
466</flag>
467
468<flag name="HiggsBSM:bg2H+-t" default="off">
469Scattering <ei>b g -> H^+ tbar</ei>. At hadron colliders this is the
470dominant process for single-charged-Higgs production.
471Code 1062.
472</flag>
473
474<h4>5) Higgs-pair processes</h4>
475
476<flag name="HiggsBSM:allHpair" default="off">
477Common switch for the group of Higgs pair-production processes.
478</flag>
479
480<flag name="HiggsBSM:ffbar2A3H1" default="off">
481Scattering <ei>f fbar -> A^0(H_3) h^0(H_1)</ei>.
482Code 1081.
483</flag>
484
485<flag name="HiggsBSM:ffbar2A3H2" default="off">
486Scattering <ei>f fbar -> A^0(H_3) H^0(H_2)</ei>.
487Code 1082.
488</flag>
489
490<flag name="HiggsBSM:ffbar2H+-H1" default="off">
491Scattering <ei>f fbar -> H^+- h^0(H_1)</ei>.
492Code 1083.
493</flag>
494
495<flag name="HiggsBSM:ffbar2H+-H2" default="off">
496Scattering <ei>f fbar -> H^+- H^0(H_2)</ei>.
497Code 1084.
498</flag>
499
500<flag name="HiggsBSM:ffbar2H+H-" default="off">
501Scattering <ei>f fbar -> H+ H-</ei>.
502Code 1085.
503</flag>
504
505<h3>Beyond-the-Standard-Model Higgs, further processes</h3>
506
507This section mimics the above section on "Standard-Model Higgs,
508further processes", i.e. it contains higher-order corrections
509to the processes already listed. The two sets therefore could not
510be used simultaneously without unphysical doublecounting.
511They are not controlled by any group flag, but have to be switched
512on for each separate process after due consideration. We refer to
513the standard-model description for a set of further comments on
514the processes.
515
516<h4>1) <ei>h^0(H_1^0)</ei> processes</h4> 
517
518<flag name="HiggsBSM:qg2H1q" default="off">
519Scattering <ei>q g -> h^0 q</ei>. This process gives first-order
520corrections to the <ei>f fbar -> h^0</ei> one above, and should only be
521used to study  the high-<ei>pT</ei> tail, while <ei>f fbar -> h^0</ei> 
522should be used for inclusive production. Only the dominant <ei>c</ei> 
523and <ei>b</ei> contributions are included, and generated separately
524for technical reasons. Note that another first-order process would be
525<ei>q qbar -> h^0 g</ei>, which is not explicitly implemented here,
526but is obtained from showering off the lowest-order process. It does not
527contain any <ei>b</ei> at large <ei>pT</ei>, however, so is less
528interesting for many applications.
529Code 1011.
530</flag>
531
532<flag name="HiggsBSM:gg2H1bbbar" default="off">
533Scattering <ei>g g -> h^0 b bbar</ei>. This process is yet one order
534higher of the <ei>b bbar -> h^0</ei> and <ei>b g -> h^0 b</ei> chain,
535where now two quarks should be required above some large <ei>pT</ei>
536threshold.
537Warning: unfortunately this process is rather slow, owing to a
538lengthy cross-section expression and inefficient phase-space selection.
539Code 1012.
540</flag>
541
542<flag name="HiggsBSM:qqbar2H1bbbar" default="off">
543Scattering <ei>q qbar -> h^0 b bbar</ei> via an <ei>s</ei>-channel
544gluon, so closely related to the previous one, but typically less
545important owing to the smaller rate of (anti)quarks relative to
546gluons.
547Warning: unfortunately this process is rather slow, owing to a
548lengthy cross-section expression and inefficient phase-space selection.
549Code 1013.
550</flag>
551 
552<flag name="HiggsBSM:gg2H1g(l:t)" default="off">
553Scattering <ei>g g -> h^0 g</ei> via loop contributions primarily
554from top.
555Code 1014.
556</flag>
557 
558<flag name="HiggsBSM:qg2H1q(l:t)" default="off">
559Scattering <ei>q g -> h^0 q</ei> via loop contributions primarily
560from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
561process above, with its direct fermion-to-Higgs coupling.
562Code 1015.
563</flag>
564 
565<flag name="HiggsBSM:qqbar2H1g(l:t)" default="off">
566Scattering <ei>q qbar -> h^0 g</ei> via an <ei>s</ei>-channel gluon
567and loop contributions primarily from top. Is strictly speaking a
568"new" process, not directly derived from <ei>g g -> h^0</ei>, and
569could therefore be included in the standard mix without doublecounting,
570but is numerically negligible.
571Code 1016.
572</flag>
573
574<h4>2) <ei>H^0(H_2^0)</ei> processes</h4>
575
576<flag name="HiggsBSM:qg2H2q" default="off">
577Scattering <ei>q g -> H^0 q</ei>. This process gives first-order
578corrections to the <ei>f fbar -> H^0</ei> one above, and should only be
579used to study  the high-<ei>pT</ei> tail, while <ei>f fbar -> H^0</ei> 
580should be used for inclusive production. Only the dominant <ei>c</ei> 
581and <ei>b</ei> contributions are included, and generated separately
582for technical reasons. Note that another first-order process would be
583<ei>q qbar -> H^0 g</ei>, which is not explicitly implemented here,
584but is obtained from showering off the lowest-order process. It does not
585contain any <ei>b</ei> at large <ei>pT</ei>, however, so is less
586interesting for many applications.
587Code 1031.
588</flag>
589
590<flag name="HiggsBSM:gg2H2bbbar" default="off">
591Scattering <ei>g g -> H^0 b bbar</ei>. This process is yet one order
592higher of the <ei>b bbar -> H^0</ei> and <ei>b g -> H^0 b</ei> chain,
593where now two quarks should be required above some large <ei>pT</ei>
594threshold.
595Warning: unfortunately this process is rather slow, owing to a
596lengthy cross-section expression and inefficient phase-space selection.
597Code 1032.
598</flag>
599
600<flag name="HiggsBSM:qqbar2H2bbbar" default="off">
601Scattering <ei>q qbar -> H^0 b bbar</ei> via an <ei>s</ei>-channel
602gluon, so closely related to the previous one, but typically less
603important owing to the smaller rate of (anti)quarks relative to
604gluons.
605Warning: unfortunately this process is rather slow, owing to a
606lengthy cross-section expression and inefficient phase-space selection.
607Code 1033.
608</flag>
609 
610<flag name="HiggsBSM:gg2H2g(l:t)" default="off">
611Scattering <ei>g g -> H^0 g</ei> via loop contributions primarily
612from top.
613Code 1034.
614</flag>
615 
616<flag name="HiggsBSM:qg2H2q(l:t)" default="off">
617Scattering <ei>q g -> H^0 q</ei> via loop contributions primarily
618from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
619process above, with its direct fermion-to-Higgs coupling.
620Code 1035.
621</flag>
622 
623<flag name="HiggsBSM:qqbar2H2g(l:t)" default="off">
624Scattering <ei>q qbar -> H^0 g</ei> via an <ei>s</ei>-channel gluon
625and loop contributions primarily from top. Is strictly speaking a
626"new" process, not directly derived from <ei>g g -> H^0</ei>, and
627could therefore be included in the standard mix without doublecounting,
628but is numerically negligible.
629Code 1036.
630</flag>
631
632<h4>3) <ei>A^0(H_3^0)</ei> processes</h4>
633
634<flag name="HiggsBSM:qg2A3q" default="off">
635Scattering <ei>q g -> A^0 q</ei>. This process gives first-order
636corrections to the <ei>f fbar -> A^0</ei> one above, and should only be
637used to study  the high-<ei>pT</ei> tail, while <ei>f fbar -> A^0</ei> 
638should be used for inclusive production. Only the dominant <ei>c</ei> 
639and <ei>b</ei> contributions are included, and generated separately
640for technical reasons. Note that another first-order process would be
641<ei>q qbar -> A^0 g</ei>, which is not explicitly implemented here,
642but is obtained from showering off the lowest-order process. It does not
643contain any <ei>b</ei> at large <ei>pT</ei>, however, so is less
644interesting for many applications.
645Code 1051.
646</flag>
647
648<flag name="HiggsBSM:gg2A3bbbar" default="off">
649Scattering <ei>g g -> A^0 b bbar</ei>. This process is yet one order
650higher of the <ei>b bbar -> A^0</ei> and <ei>b g -> A^0 b</ei> chain,
651where now two quarks should be required above some large <ei>pT</ei>
652threshold.
653Warning: unfortunately this process is rather slow, owing to a
654lengthy cross-section expression and inefficient phase-space selection.
655Code 1052.
656</flag>
657
658<flag name="HiggsBSM:qqbar2A3bbbar" default="off">
659Scattering <ei>q qbar -> A^0 b bbar</ei> via an <ei>s</ei>-channel
660gluon, so closely related to the previous one, but typically less
661important owing to the smaller rate of (anti)quarks relative to
662gluons.
663Warning: unfortunately this process is rather slow, owing to a
664lengthy cross-section expression and inefficient phase-space selection.
665Code 1053.
666</flag>
667 
668<flag name="HiggsBSM:gg2A3g(l:t)" default="off">
669Scattering <ei>g g -> A^0 g</ei> via loop contributions primarily
670from top.
671Code 1054.
672</flag>
673 
674<flag name="HiggsBSM:qg2A3q(l:t)" default="off">
675Scattering <ei>q g -> A^0 q</ei> via loop contributions primarily
676from top. Not to be confused with the <code>HiggsBSM:qg2H1q</code>
677process above, with its direct fermion-to-Higgs coupling.
678Code 1055.
679</flag>
680 
681<flag name="HiggsBSM:qqbar2A3g(l:t)" default="off">
682Scattering <ei>q qbar -> A^0 g</ei> via an <ei>s</ei>-channel gluon
683and loop contributions primarily from top. Is strictly speaking a
684"new" process, not directly derived from <ei>g g -> A^0</ei>, and
685could therefore be included in the standard mix without doublecounting,
686but is numerically negligible.
687Code 1056.
688</flag>
689
690<h3>Parameters for Beyond-the-Standard-Model Higgs production and decay</h3>
691
692This section offers a big flexibility to set couplings of the various
693Higgs states to fermions and gauge bosons, and also to each other.
694The intention is that, for scenarios like MSSM, you should use standard
695input from the <aloc href="SUSYLesHouchesAccord">SUSY Les Houches
696Accord</aloc>, rather than having to set it all yourself. In other cases,
697however, the freedom is there for you to use. Kindly note that some
698of the internal calculations of partial widths from the parameters provided
699do not include mixing between the scalar and pseudoscalar states.
700
701<p/>
702Masses would be set in the <code>ParticleData</code> database,
703while couplings are set below. When possible, the couplings of the Higgs
704states are normalized to the corresponding coupling within the SM.
705When not, their values within the MSSM are indicated, from which
706it should be straightforward to understand what to use instead.
707The exception is some couplings that vanish also in the MSSM, where the
708normalization has been defined in close analogy with nonvanishing ones.
709Some parameter names are asymmetric but crossing can always be used,
710i.e. the coupling for <ei>A^0 -> H^0 Z^0</ei> obviously is also valid
711for <ei>H^0 -> A^0 Z^0</ei> and <ei>Z^0 -> H^0 A^0</ei>.
712Note that couplings usually appear quadratically in matrix elements.
713
714<parm name="HiggsH1:coup2d" default="1.">
715The <ei>h^0(H_1^0)</ei> coupling to down-type quarks.
716</parm>
717
718<parm name="HiggsH1:coup2u" default="1.">
719The <ei>h^0(H_1^0)</ei> coupling to up-type quarks.
720</parm>
721
722<parm name="HiggsH1:coup2l" default="1.">
723The <ei>h^0(H_1^0)</ei> coupling to (charged) leptons.
724</parm>
725
726<parm name="HiggsH1:coup2Z" default="1.">
727The <ei>h^0(H_1^0)</ei> coupling to <ei>Z^0</ei>.
728</parm>
729
730<parm name="HiggsH1:coup2W" default="1.">
731The <ei>h^0(H_1^0)</ei> coupling to <ei>W^+-</ei>.
732</parm>
733
734<parm name="HiggsH1:coup2Hchg" default="0.">
735The <ei>h^0(H_1^0)</ei> coupling to <ei>H^+-</ei> (in loops).
736Is <ei>sin(beta - alpha) + cos(2 beta) sin(beta + alpha) /
737(2 cos^2theta_W)</ei> in the MSSM.
738</parm>
739
740<parm name="HiggsH2:coup2d" default="1.">
741The <ei>H^0(H_2^0)</ei> coupling to down-type quarks.
742</parm>
743
744<parm name="HiggsH2:coup2u" default="1.">
745The <ei>H^0(H_2^0)</ei> coupling to up-type quarks.
746</parm>
747
748<parm name="HiggsH2:coup2l" default="1.">
749The <ei>H^0(H_2^0)</ei> coupling to (charged) leptons.
750</parm>
751
752<parm name="HiggsH2:coup2Z" default="1.">
753The <ei>H^0(H_2^0)</ei> coupling to <ei>Z^0</ei>.
754</parm>
755
756<parm name="HiggsH2:coup2W" default="1.">
757The <ei>H^0(H_2^0)</ei> coupling to <ei>W^+-</ei>.
758</parm>
759
760<parm name="HiggsH2:coup2Hchg" default="0.">
761The <ei>H^0(H_2^0)</ei> coupling to <ei>H^+-</ei> (in loops).
762Is <ei>cos(beta - alpha) + cos(2 beta) cos(beta + alpha) /
763(2 cos^2theta_W)</ei> in the MSSM.
764</parm>
765
766<parm name="HiggsH2:coup2H1H1" default="1.">
767The <ei>H^0(H_2^0)</ei> coupling to a <ei>h^0(H_1^0)</ei> pair.
768Is <ei>cos(2 alpha) cos(beta + alpha) - 2 sin(2 alpha)
769sin(beta + alpha)</ei> in the MSSM.
770</parm>
771
772<parm name="HiggsH2:coup2A3A3" default="1.">
773The <ei>H^0(H_2^0)</ei> coupling to an <ei>A^0(H_3^0)</ei> pair.
774Is <ei>cos(2 beta) cos(beta + alpha)</ei> in the MSSM.
775</parm>
776
777<parm name="HiggsH2:coup2H1Z" default="0.">
778The <ei>H^0(H_2^0)</ei> coupling to a <ei>h^0(H_1^0) Z^0</ei> pair.
779Vanishes in the MSSM.
780</parm>
781
782<parm name="HiggsH2:coup2A3H1" default="0.">
783The <ei>H^0(H_2^0)</ei> coupling to an <ei>A^0(H_3^0) h^0(H_1^0)</ei> pair.
784Vanishes in the MSSM.
785</parm>
786
787<parm name="HiggsH2:coup2HchgW" default="0.">
788The <ei>H^0(H_2^0)</ei> coupling to a <ei>H^+- W-+</ei> pair.
789Is <ei>sin(beta - alpha)</ei> in the MSSM.
790</parm>
791
792<parm name="HiggsA3:coup2d" default="1.">
793The <ei>A^0(H_3^0)</ei> coupling to down-type quarks.
794</parm>
795
796<parm name="HiggsA3:coup2u" default="1.">
797The <ei>A^0(H_3^0)</ei> coupling to up-type quarks.
798</parm>
799
800<parm name="HiggsA3:coup2l" default="1.">
801The <ei>A^0(H_3^0)</ei> coupling to (charged) leptons.
802</parm>
803
804<parm name="HiggsA3:coup2H1Z" default="1.">
805The <ei>A^0(H_3^0)</ei> coupling to a <ei>h^0(H_1^0) Z^0</ei> pair.
806Is <ei>cos(beta - alpha)</ei> in the MSSM.
807</parm>
808
809<parm name="HiggsA3:coup2H2Z" default="1.">
810The <ei>A^0(H_3^0)</ei> coupling to a <ei>H^0(H_2^0) Z^0</ei> pair.
811Is <ei>sin(beta - alpha)</ei> in the MSSM.
812</parm>
813
814<parm name="HiggsA3:coup2Z" default="0.">
815The <ei>A^0(H_3^0)</ei> coupling to <ei>Z^0</ei>.
816Vanishes in the MSSM.
817</parm>
818
819<parm name="HiggsA3:coup2W" default="0.">
820The <ei>A^0(H_3^0)</ei> coupling to <ei>W^+-</ei>.
821Vanishes in the MSSM.
822</parm>
823
824<parm name="HiggsA3:coup2H1H1" default="0.">
825The <ei>A^0(H_3^0)</ei> coupling to a <ei>h^0(H_1^0)</ei> pair.
826Vanishes in the MSSM.
827</parm>
828
829<parm name="HiggsA3:coup2Hchg" default="0.">
830The <ei>A^0(H_3^0)</ei> coupling to <ei>H^+-</ei>.
831Vanishes in the MSSM.
832</parm>
833
834<parm name="HiggsA3:coup2HchgW" default="1.">
835The <ei>A^0(H_3^0)</ei> coupling to a <ei>H^+- W-+</ei> pair.
836Is 1 in the MSSM.
837</parm>
838
839<parm name="HiggsHchg:tanBeta" default="5.">
840The <ei>tan(beta)</ei> value, which leads to an enhancement of the
841<ei>H^+-</ei> coupling to down-type fermions and suppression to
842up-type ones. The same angle also appears in many other places,
843but this particular parameter is only used for the charged-Higgs case.
844</parm>
845
846<parm name="HiggsHchg:coup2H1W" default="1.">
847The <ei>H^+-</ei> coupling to a <ei>h^0(H_1^0) W^+-</ei> pair.
848Is <ei>cos(beta - alpha)</ei> in the MSSM.
849</parm>
850
851<parm name="HiggsHchg:coup2H2W" default="0.">
852The <ei>H^+-</ei> coupling to a <ei>H^0(H_2^0) W^+-</ei> pair.
853Is <ei>sin(beta - alpha)</ei> in the MSSM.
854</parm>
855
856<p/>
857Another set of parameters are not used in the production stage but
858exclusively for the description of angular distributions in decays.
859
860<modepick name="HiggsH1:parity" default="1" min="0" max="3">
861possibility to modify angular decay correlations in the decay of a
862<ei>h^0(H_1)</ei> decay <ei>Z^0 Z^0</ei> or <ei>W^+ W^-</ei> to four
863fermions. Currently it does not affect the partial width of the
864channels, which is only based on the above parameters.
865<option value="0">isotropic decays.</option>
866<option value="1">assuming the <ei>h^0(H_1)</ei> is a pure scalar
867(CP-even), as in the MSSM.</option>
868<option value="2">assuming the <ei>h^0(H_1)</ei> is a pure pseudoscalar
869(CP-odd).</option>
870<option value="3">assuming the <ei>h^0(H_1)</ei> is a mixture of the two,
871including the CP-violating interference term. The parameter
872<ei>eta</ei>, see below, sets the strength of the CP-odd admixture,
873with the interference term being proportional to <ei>eta</ei>
874and the CP-odd one to <ei>eta^2</ei>.</option>
875</modepick>
876
877<parm name="HiggsH1:etaParity" default="0.">
878The <ei>eta</ei> value of CP-violation in the
879<code>HiggsSM:parity = 3</code> option.
880</parm>
881
882<modepick name="HiggsH2:parity" default="1" min="0" max="3">
883possibility to modify angular decay correlations in the decay of a
884<ei>H^0(H_2)</ei> decay <ei>Z^0 Z^0</ei> or <ei>W^+ W^-</ei> to four
885fermions. Currently it does not affect the partial width of the
886channels, which is only based on the above parameters.
887<option value="0">isotropic decays.</option>
888<option value="1">assuming the <ei>H^0(H_2)</ei> is a pure scalar
889(CP-even), as in the MSSM.</option>
890<option value="2">assuming the <ei>H^0(H_2)</ei> is a pure pseudoscalar
891(CP-odd).</option>
892<option value="3">assuming the <ei>H^0(H_2)</ei> is a mixture of the two,
893including the CP-violating interference term. The parameter
894<ei>eta</ei>, see below, sets the strength of the CP-odd admixture,
895with the interference term being proportional to <ei>eta</ei>
896and the CP-odd one to <ei>eta^2</ei>.</option>
897</modepick>
898
899<parm name="HiggsH2:etaParity" default="0.">
900The <ei>eta</ei> value of CP-violation in the
901<code>HiggsSM:parity = 3</code> option.
902</parm>
903
904<modepick name="HiggsA3:parity" default="2" min="0" max="3">
905possibility to modify angular decay correlations in the decay of a
906<ei>A^0(H_3)</ei> decay <ei>Z^0 Z^0</ei> or <ei>W^+ W^-</ei> to four
907fermions. Currently it does not affect the partial width of the
908channels, which is only based on the above parameters.
909<option value="0">isotropic decays.</option>
910<option value="1">assuming the <ei>A^0(H_3)</ei> is a pure scalar
911(CP-even).</option>
912<option value="2">assuming the <ei>A^0(H_3)</ei> is a pure pseudoscalar
913(CP-odd), as in the MSSM.</option>
914<option value="3">assuming the <ei>A^0(H_3)</ei> is a mixture of the two,
915including the CP-violating interference term. The parameter
916<ei>eta</ei>, see below, sets the strength of the CP-odd admixture,
917with the interference term being proportional to <ei>eta</ei>
918and the CP-odd one to <ei>eta^2</ei>.</option>
919</modepick>
920
921<parm name="HiggsA3:etaParity" default="0.">
922The <ei>eta</ei> value of CP-violation in the
923<code>HiggsSM:parity = 3</code> option.
924</parm>
925
926</chapter>
927
928<!-- Copyright (C) 2012 Torbjorn Sjostrand -->
929
Note: See TracBrowser for help on using the repository browser.