| Rev | Line |  | 
|---|
| [388] | 1 | \relax | 
|---|
|  | 2 | \@writefile{toc}{\contentsline {section}{\numberline {1}Motivations}{1}} | 
|---|
|  | 3 | \@writefile{toc}{\contentsline {section}{\numberline {2}A toy MC}{1}} | 
|---|
|  | 4 | \@writefile{toc}{\contentsline {subsection}{\numberline {2.1}Dark current generation}{2}} | 
|---|
|  | 5 | \newlabel{eq:singleProba}{{1}{2}} | 
|---|
|  | 6 | \newlabel{eq:poissonLimit}{{2}{2}} | 
|---|
|  | 7 | \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces  {\it  left panel}: exponential generation of $\delta t$ with $1/\tau = 1$\nobreakspace  {}MHz dark current noise; {\it  right panel}: number of PMTs fired among 50 PMTs, per $\Delta t = 100$\nobreakspace  {}ns windows. One expects a Poisson distribution with a mean of $N\Delta t/\tau = 5$ as it is shown. }}{2}} | 
|---|
|  | 8 | \newlabel{fig:PMTPoisson}{{1}{2}} | 
|---|
|  | 9 | \newlabel{eq:BinomialProb}{{3}{2}} | 
|---|
|  | 10 | \@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Trigger simulation}{2}} | 
|---|
|  | 11 | \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces  {\it  left panel}: Digital sum of the time evolution of $N=81,000$ PMTs with a dark current of $6$\nobreakspace  {}kHz, computed for a time sliding window of $425$\nobreakspace  {}ns every $5$\nobreakspace  {}ns; {\it  right panel}: zoom around the location of a trigger threshold at $250$ PMTs. }}{3}} | 
|---|
|  | 12 | \newlabel{fig:DigitalSum}{{2}{3}} | 
|---|
|  | 13 | \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces  Mean number of PMTs ($m$)fired among $N=81,000$ PMTs on a time sliding window of $\Delta t=425$\nobreakspace  {}ns corresponding to the dark current (DC) rate ($f$) per PMT (this is $N\Delta t * f$). Then, setting a threshold to $m+3\sqrt  m$, one reads the trigger rate (see text for the definition of a trigger).}}{4}} | 
|---|
|  | 14 | \newlabel{tab:TriggerRate}{{1}{4}} | 
|---|
       
      
  Note:
 See   
TracBrowser
 for help on using the repository browser.