1 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
2 | \documentclass[12pt,a4paper]{article}
|
---|
3 |
|
---|
4 | %-- used packages ------------------------------------------------------
|
---|
5 |
|
---|
6 | %%%JEC 3/2/06 does not compile at LAL \usepackage{cite}
|
---|
7 | %\usepackage[T1]{fontenc}
|
---|
8 | %\usepackage[latin1]{inputenc}
|
---|
9 | \usepackage{graphicx}
|
---|
10 | \usepackage{epsfig}
|
---|
11 | \usepackage{amssymb}
|
---|
12 | \usepackage{amsmath}
|
---|
13 | \usepackage{latexsym}
|
---|
14 |
|
---|
15 | \setlength{\textheight}{23cm}
|
---|
16 | \setlength{\textwidth}{16cm}
|
---|
17 | \setlength{\topmargin}{0cm}
|
---|
18 | \setlength{\oddsidemargin}{0cm}
|
---|
19 | \setlength{\evensidemargin}{0cm}
|
---|
20 | \setlength{\marginparwidth}{0pt}
|
---|
21 |
|
---|
22 | \def\beq{\begin{equation}}
|
---|
23 | \def\eeq{\end{equation}}
|
---|
24 | \def\bea{\begin{eqnarray}}
|
---|
25 | \def\eea{\end{eqnarray}}
|
---|
26 |
|
---|
27 |
|
---|
28 |
|
---|
29 | \begin{document}
|
---|
30 |
|
---|
31 | \title{Dark Current induced trigger in MEMPHYS\thanks{Preliminary}}
|
---|
32 | \author{J.E Campagne - LAL - Orsay}
|
---|
33 | \date{\today}
|
---|
34 | \maketitle
|
---|
35 |
|
---|
36 | \begin{abstract}
|
---|
37 | Blabla
|
---|
38 | \end{abstract}
|
---|
39 |
|
---|
40 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
41 | \section{Motivations}
|
---|
42 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
43 | On 5th of July, J.~Bouchez had demonstrated the need to investigate deeper than expected the dark current induced trigger for a MEMPHYS tank. As a matter of fact, a 3~MeV reactor neutrino produce around 15~p.e, so basically 15 PMTs on a Cerenkov cone are hit, while in the same time at 2~kHz dark current noise per PMT in a 400~ns time window one can expect around 160 PMT hit randomly distributed. Although, it may be not a problem (not yet proved) to recover the PMTs of the signal, the main concern is the trigger. J.~Bouchez has made a preliminary numerical analysis to show that the question is relevant.
|
---|
44 | A long this line, I have investigated a toy MC and analytical analysis.
|
---|
45 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
46 | \section{A toy MC}
|
---|
47 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
48 | The toy MC consists simply of the generation of dark current random noise on each PMT baseline, then it simulates a digital sum of all the PMT baselines, and applies a threshold on a total number of PMT hit during a sliding window. This toy MC can be adapted according to:
|
---|
49 | \begin{verbatim}
|
---|
50 | NumberOfPMT = 81,000 for MEMPHYS
|
---|
51 | DarkCurrentRate = 6.0*kHz more likely for 12"
|
---|
52 | TriggerSlidingGate = 425.0*ns for MEMPHYS
|
---|
53 | PulseWidth = 5.0*ns this is the time quantum (a pulse width equivalent)
|
---|
54 | TimeDurationOfExp = 6000.0*micros (+TriggerSlidingGate)
|
---|
55 | as a total time for investigation
|
---|
56 | CountThreshold = number of PMTs at least to be fired in a TriggerSlidingGate to
|
---|
57 | produce a Trigger
|
---|
58 | \end{verbatim}
|
---|
59 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
60 | \subsection{Dark current generation}
|
---|
61 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
62 | According to the fact that dark current is a random noise, if ones make the assumption that there is no correlation between two noise hit (at least on the scale of \verb|TriggerSlidingGate|), then the time interval between two hit $\delta t$ follow an exponential probability with parameter $\tau = 1/\verb|DarkCurrentRate|$. So, the probability to get 1 hit in the time window $[t_0,t_0+\Delta t]$ reads:
|
---|
63 | \bea
|
---|
64 | P(1;[t_0,t_0+\Delta t]) & = & \int_{t_0}^{t_0+\Delta t} e^{(t-t_0)/\tau} \frac{dt}{\tau} \nonumber \\
|
---|
65 | & = & 1 - e^{-\Delta t/\tau} = \frac{\Delta t}{\tau} - \frac{1}{2} \left( \frac{\Delta t}{\tau}\right)^2 \dots
|
---|
66 | \label{eq:singleProba}
|
---|
67 | \eea
|
---|
68 | and is independent of $t_0$.
|
---|
69 |
|
---|
70 | If one piles up $N$ PMTs and if $\Delta t/\tau \rightarrow 0$, then it is well known that the probability to get $n$ PMTs hit in a time window of $\Delta t$ tends to a Poisson distribution:
|
---|
71 | \beq
|
---|
72 | P(n|N;[t,t+\Delta t]) \stackrel{\Delta t/\tau \rightarrow 0}{\longrightarrow}\mathrm{Poisson}(n;N\Delta t/\tau)
|
---|
73 | \label{eq:poissonLimit}
|
---|
74 | \eeq
|
---|
75 | One can see these properties reproduced by the toy MC on Fig.~\ref{fig:PMTPoisson} for some parameters values used on purpose.
|
---|
76 | \begin{figure}[htb]
|
---|
77 | \begin{minipage}[c]{0.44\textwidth}
|
---|
78 | \includegraphics[width=\textwidth]{deltaT.eps}
|
---|
79 | \end{minipage}
|
---|
80 | \begin{minipage}[c]{0.05\textwidth}
|
---|
81 | \end{minipage}
|
---|
82 | \begin{minipage}[c]{0.44\textwidth}
|
---|
83 | \includegraphics[width=\textwidth]{NumberPMTs.eps}
|
---|
84 | \end{minipage}
|
---|
85 | \caption{\label{fig:PMTPoisson} {\it left panel}: exponential generation of $\delta t$ with $1/\tau = 1$~MHz dark current noise; {\it right panel}: number of PMTs fired among 50 PMTs, per $\Delta t = 100$~ns windows. One expects a Poisson distribution with a mean of $N\Delta t/\tau = 5$ as it is shown.
|
---|
86 | }
|
---|
87 | \end{figure}
|
---|
88 |
|
---|
89 | In fact, as it is mentioned, the Poisson distribution is an asymptotic distribution. The real probability to get exactly $n$ PMTs fired among a collection of $N$ PMTs in a $\Delta t$ time window, with the hypothesis that each PMT dark current rate has a $1/\tau$ frequency, reads (using Eq.~\ref{eq:singleProba}):
|
---|
90 | \bea
|
---|
91 | P(n|N;[t,t+\Delta t]) & = & C_N^n P(1;[t,t+\Delta t])^n \left(1-P(1;[t,t+\Delta t])\right)^{N-n} \nonumber \\
|
---|
92 | & = &\mathrm{Binomial}(n,N;P(1,[t,t+\Delta t]))
|
---|
93 | \label{eq:BinomialProb}
|
---|
94 | \eea
|
---|
95 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
96 | \subsection{Trigger simulation}
|
---|
97 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
98 | One may wish to know the occurrence of "how many times per second, $n_{Th}$ PMTs are fired among $N$ PMTs?". In fact, J.~Bouchez noticed that this question is not complete as one may trigger only if the number of PMTs fired in a $\Delta t$ sliding windows just exceeds $n_{Th}$. That is to say, one should consider the stepping function of the number of PMTs fired in the sliding window $\Delta t$ examined at $t$, noted $n(t)$, and consider as "trigger" the passage $n(t)=n_{Th} \rightarrow n(t+dt)=n_{Th}+1$ in an infinitesimal time duration $dt$. In fact, looking at Fig.~\ref{fig:DigitalSum}, where is displayed the digital sum of $N=81,000$ PMts with 6~kHz dark current noise rate in sliding window of $425$~ns (computed every $dt=5$~ns), one notices that it is true that the threshold\footnote{mean number of PMTS is 206 and the threshold is set 3 sigma above} at $250$ is reached by steps, but one may also specify that if there is a trigger at $t_1$, before to re-trigger the $n(t>t_1)$ function may pass through a sequence $n(t)=n_{Th}+1 \rightarrow n(t+dt)=n_{Th}$.
|
---|
99 | \begin{figure}[htb]
|
---|
100 | \begin{minipage}[c]{0.44\textwidth}
|
---|
101 | \includegraphics[width=\textwidth]{SumBaseline.eps}
|
---|
102 | \end{minipage}
|
---|
103 | \begin{minipage}[c]{0.05\textwidth}
|
---|
104 | \end{minipage}
|
---|
105 | \begin{minipage}[c]{0.44\textwidth}
|
---|
106 | \includegraphics[width=\textwidth]{SumBaselineZoom.eps}
|
---|
107 | \end{minipage}
|
---|
108 | \caption{\label{fig:DigitalSum} {\it left panel}: Digital sum of the time evolution of $N=81,000$ PMTs with a dark current of $6$~kHz, computed for a time sliding window of $425$~ns every $5$~ns; {\it right panel}: zoom around the location of a trigger threshold at $250$ PMTs.
|
---|
109 | }
|
---|
110 | \end{figure}
|
---|
111 |
|
---|
112 | So in practice, one considers as a trigger the passage $n(t)=n_{Th} \rightarrow n(t+dt)=n_{Th}+1$ and groups together the following $n(t)$ values contiguous in time for which $n(t)>=n_{Th}$. Using this definition, one gets the results for one MEMPHYS tank (Tab.\ref{tab:TriggerRate}): $N=81,000$ PMTs, a sliding window of $425$~ns which corresponds to the maximum time of flight of \v{C}erenkov light in the $\phi: 65~\mathrm{m} \times H:65~\mathrm{m}$ cylinder water volume ($v = 22,6~\mathrm{cm/ns}$).
|
---|
113 | \begin{table}
|
---|
114 | \begin{center}
|
---|
115 | \begin{tabular}{cccc}\hline\hline
|
---|
116 | DC per PMT (kHz) & Mean of PMTs fired & Threshold (at 3$\sigma$) & Trigger (kHz) & Th (kHz)\\
|
---|
117 | 1 & 34 & 52 & 412 & 57\\
|
---|
118 | 2 & 69 & 93 & 378 & 64.9\\
|
---|
119 | 3 & 103 & 133 & 198 & 2.8 10^3\\
|
---|
120 | 4 & 138 & 172 & 378 & 7.1\\
|
---|
121 | 5 & 172 & 211 & 268 & 3.1\\
|
---|
122 | 6 & 206 & 249 & 416 & 1.5\\ \hline
|
---|
123 | DC per PMT (kHz) & Mean of PMTs fired & Threshold & Trigger \& rel. err (kHz) \\
|
---|
124 | 1 & 34 & 40 (1$\sigma$) & 30 811 (0.7\%) & 1475.5 \\
|
---|
125 | 1 & 34 & 46 (2$\sigma$) & 4580 (2\%) & 363.4\\
|
---|
126 | 1 & 34 & 52 (3$\sigma$) & 412 (7\%) & 41.2 \\
|
---|
127 | 1 & 34 & 57 (4$\sigma$) & 28 (12\%) & 3.9\\
|
---|
128 | \hline\hline
|
---|
129 | \end{tabular}
|
---|
130 | \caption{\label{tab:TriggerRate} Mean number of PMTs ($m$)fired among $N=81,000$ PMTs on a time sliding window of $\Delta t=425$~ns corresponding to the dark current (DC) rate ($f$) per PMT (this is $N\Delta t * f$). Then, setting a threshold to $m+3\sqrt m$, one reads the trigger rate (see text for the definition of a trigger). The relative errors is also reported as it is not negligeable.}
|
---|
131 | \end{center}
|
---|
132 | \end{table}
|
---|
133 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
134 | \subsection{Analytical formula}
|
---|
135 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
---|
136 |
|
---|
137 |
|
---|
138 | \end{document}
|
---|