| [385] | 1 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 2 | \NeedsTeXFormat{LaTeX2e}
 | 
|---|
 | 3 | \documentclass[12pt,a4paper]{article}
 | 
|---|
 | 4 | 
 | 
|---|
 | 5 | %-- used packages ------------------------------------------------------
 | 
|---|
 | 6 | 
 | 
|---|
 | 7 | %\usepackage{cite}
 | 
|---|
 | 8 | \usepackage{graphicx}
 | 
|---|
 | 9 | \usepackage{epsfig}
 | 
|---|
 | 10 | \usepackage{amssymb}
 | 
|---|
 | 11 | \usepackage{amsmath}
 | 
|---|
 | 12 | \usepackage{latexsym}
 | 
|---|
 | 13 | 
 | 
|---|
 | 14 | 
 | 
|---|
 | 15 | %-- page parameters -------------------------------------------------
 | 
|---|
 | 16 | 
 | 
|---|
 | 17 | \jot = 1.5ex
 | 
|---|
 | 18 | \parskip 5pt plus 1pt
 | 
|---|
 | 19 | %\parindent 0pt
 | 
|---|
 | 20 | \evensidemargin -0.1in   \oddsidemargin  -0.1in
 | 
|---|
 | 21 | \textwidth  6.5in       \textheight 9.4in
 | 
|---|
 | 22 | \topmargin -.8cm        \headsep    1.0cm
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | %-- command (re)definitions -----------------------------------------
 | 
|---|
 | 25 | 
 | 
|---|
 | 26 | \newcommand{\capdef}{}
 | 
|---|
 | 27 | %\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
 | 
|---|
 | 28 | %       \caption[#1]{{\itshape #2}}}
 | 
|---|
 | 29 | \newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
 | 
|---|
 | 30 |        \caption[#1]{{\footnotesize #2}}}
 | 
|---|
 | 31 | \makeatletter
 | 
|---|
 | 32 | \renewcommand{\fnum@table}{\textbf{\tablename~\thetable}}
 | 
|---|
 | 33 | \renewcommand{\fnum@figure}{\textbf{\figurename~\thefigure}}
 | 
|---|
 | 34 | \makeatother
 | 
|---|
 | 35 | \def\ltap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$<$}\ }
 | 
|---|
 | 36 | \def\gtap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$>$}\ }
 | 
|---|
 | 37 | 
 | 
|---|
 | 38 | \newcounter{myenumi}
 | 
|---|
 | 39 | \newcommand{\myitem}{\refstepcounter{myenumi}\item}
 | 
|---|
 | 40 | \renewcommand{\themyenumi}{\roman{myenumi}}
 | 
|---|
 | 41 | \newenvironment{mylist}{%
 | 
|---|
 | 42 |         \setcounter{myenumi}{0}
 | 
|---|
 | 43 |         \begin{list}{\textit{\themyenumi)}}{%
 | 
|---|
 | 44 |         \setlength{\topsep}{0.2\baselineskip}%
 | 
|---|
 | 45 |         \setlength{\partopsep}{-\topsep}%
 | 
|---|
 | 46 |         \setlength{\itemsep}{\topsep}%
 | 
|---|
 | 47 |         \setlength{\parsep}{0\baselineskip}%
 | 
|---|
 | 48 |         \setlength{\leftmargin}{0em}%
 | 
|---|
 | 49 |         \setlength{\listparindent}{\parindent}%
 | 
|---|
 | 50 |         \setlength{\itemindent}{2.5em}%
 | 
|---|
 | 51 |         \setlength{\labelwidth}{1.5em}%
 | 
|---|
 | 52 |         \setlength{\labelsep}{0.75em}}}%
 | 
|---|
 | 53 | {\end{list}}
 | 
|---|
 | 54 | 
 | 
|---|
 | 55 | \newlength{\myem}
 | 
|---|
 | 56 | \settowidth{\myem}{m}
 | 
|---|
 | 57 | \newcommand{\sep}[1]{#1}
 | 
|---|
 | 58 | \newcounter{mysubequation}[equation]
 | 
|---|
 | 59 | \renewcommand{\themysubequation}{\alph{mysubequation}}
 | 
|---|
 | 60 | \newcommand{\mytag}{\stepcounter{mysubequation}%
 | 
|---|
 | 61 | \tag{\theequation\protect\sep{\themysubequation}}}
 | 
|---|
 | 62 | \newcommand{\globallabel}[1]{\refstepcounter{equation}\label{#1}}
 | 
|---|
 | 63 | 
 | 
|---|
 | 64 | \makeatletter
 | 
|---|
 | 65 | \renewcommand{\section}{\@startsection{section}{1}{0em}{-\baselineskip}%
 | 
|---|
 | 66 | {\baselineskip}{\normalfont\large\bfseries}}
 | 
|---|
 | 67 | \renewcommand{\subsection}%
 | 
|---|
 | 68 | {\@startsection{subsection}{2}{0em}{-0.7\baselineskip}%
 | 
|---|
 | 69 | {0.7\baselineskip}{\normalfont\bfseries}}
 | 
|---|
 | 70 | \makeatother
 | 
|---|
 | 71 | 
 | 
|---|
 | 72 | 
 | 
|---|
 | 73 | %%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 74 | % definitions
 | 
|---|
 | 75 | %%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 76 | \newcommand{\centre}[2]{\multispan{#1}{\hfill #2\hfill}}
 | 
|---|
 | 77 | \newcommand{\etal}{\textit{et al.}}
 | 
|---|
 | 78 | \newcommand{\stheta}{\ensuremath{\sin^22\theta_{13}}}
 | 
|---|
 | 79 | \newcommand{\BB}{$\beta$B}
 | 
|---|
 | 80 | \newcommand{\sigdm}{\ensuremath{{\rm sign}(\Delta m^2_{31})}}
 | 
|---|
 | 81 | \newcommand{\delCP}{\ensuremath{\delta_{\rm CP}}}
 | 
|---|
 | 82 | \newcommand{\thetatt}{\ensuremath{\theta_{23}}}
 | 
|---|
 | 83 | 
 | 
|---|
 | 84 | \def\nubar{$\overline{\nu}\ $}
 | 
|---|
 | 85 | \def\nue{\ensuremath{\nu_{e}}}
 | 
|---|
 | 86 | \def\nubare{\ensuremath{\overline{\nu}_{e}}}
 | 
|---|
 | 87 | \def\nubarecc{$\overline{\nu}_{e}^{CC}\ $}
 | 
|---|
 | 88 | \def\numu{\ensuremath{\nu_{\mu}\ }}
 | 
|---|
 | 89 | \def\nubarmu{\ensuremath{\overline{\nu}_{\mu}}}
 | 
|---|
 | 90 | \def\nubarmucc{$\overline{\nu}_{\mu}^{CC}\ $}
 | 
|---|
 | 91 | \def\nutau{\ensuremath{\nu_{\tau}\ }}
 | 
|---|
 | 92 | \def\nubartau{\ensuremath{\overline{\nu}_{\tau}}}
 | 
|---|
 | 93 | \newcommand{\nuenumu}{\ensuremath{\nue \rightarrow \numu\,}}
 | 
|---|
 | 94 | \newcommand{\numunutau}{\ensuremath{\numu \rightarrow \nutau\,}}
 | 
|---|
 | 95 | \newcommand{\nuenutau}{\ensuremath{\nue \rightarrow \nutau}}
 | 
|---|
 | 96 | \newcommand{\nubarenubarmu}{\ensuremath{\overline{\nu}_e \rightarrow \overline{\nu}_\mu\,}}
 | 
|---|
 | 97 | \newcommand{\nubarmunubare}{\ensuremath{\overline{\nu}_\mu \rightarrow \overline{\nu}_e\,}}
 | 
|---|
 | 98 | \newcommand{\dmot}{\ensuremath{\Delta m^2_{12}\,}}
 | 
|---|
 | 99 | 
 | 
|---|
 | 100 | \newcommand{\He}{\ensuremath{^6{\mathrm{He}}}}
 | 
|---|
 | 101 | \newcommand{\Ne}{\ensuremath{^{18}{\mathrm{Ne}}}}
 | 
|---|
 | 102 | \def\Li{^6{\mathrm{Li}}}
 | 
|---|
 | 103 | \def\anue{\overline{{\mathrm\nu}}_{\mathrm e}}
 | 
|---|
 | 104 | \def\anumu{\overline{{\mathrm\nu}}_{\mathrm \mu}}
 | 
|---|
 | 105 | \newcommand{\thetaot}{\ensuremath{\theta_{13}}\,}
 | 
|---|
 | 106 | \newcommand{\numunue}{\ensuremath{\nu_\mu \rightarrow \nu_e}}
 | 
|---|
 | 107 | \newcommand{\nueovernumu}{\ensuremath{\nue/\numu}}
 | 
|---|
 | 108 | 
 | 
|---|
 | 109 | \newcommand{\Efin}{E^\text{fin}}
 | 
|---|
 | 110 | \newcommand{\Emin}{E_\text{min}}
 | 
|---|
 | 111 | 
 | 
|---|
 | 112 | 
 | 
|---|
 | 113 | \begin{document}
 | 
|---|
 | 114 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 115 | %%%%                     Title-page                              %%%%
 | 
|---|
 | 116 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 117 | 
 | 
|---|
 | 118 | %\begin{titlepage}
 | 
|---|
 | 119 | 
 | 
|---|
 | 120 | % the footnote symbols are only redefined for the title page !
 | 
|---|
 | 121 | \renewcommand{\thefootnote}{\alph{footnote}}
 | 
|---|
 | 122 | 
 | 
|---|
 | 123 | \begin{flushright}
 | 
|---|
 | 124 | LAL-06-35\\
 | 
|---|
 | 125 | IC/2006/011\\
 | 
|---|
 | 126 | SISSA 16/2006/EP\\
 | 
|---|
 | 127 | \end{flushright}
 | 
|---|
 | 128 | 
 | 
|---|
 | 129 | \vspace*{1cm}
 | 
|---|
 | 130 | 
 | 
|---|
 | 131 | \renewcommand{\thefootnote}{\fnsymbol{footnote}}
 | 
|---|
 | 132 | \setcounter{footnote}{-1}
 | 
|---|
 | 133 | 
 | 
|---|
 | 134 | {\begin{center} 
 | 
|---|
 | 135 | {\Large\textbf{
 | 
|---|
 | 136 | Physics potential of the CERN--MEMPHYS\\[2mm] 
 | 
|---|
 | 137 | neutrino oscillation project}
 | 
|---|
 | 138 | }
 | 
|---|
 | 139 | \end{center}}
 | 
|---|
 | 140 | 
 | 
|---|
 | 141 | \vspace*{.8cm}
 | 
|---|
 | 142 | 
 | 
|---|
 | 143 | \begin{center} {\bf
 | 
|---|
 | 144 | J.-E.\ Campagne$^a$, 
 | 
|---|
 | 145 | M.\ Maltoni$^b$,
 | 
|---|
 | 146 | M.\ Mezzetto$^c$, and 
 | 
|---|
 | 147 | T.\ Schwetz$^d$}
 | 
|---|
 | 148 | \end{center}
 | 
|---|
 | 149 | 
 | 
|---|
 | 150 | {\it
 | 
|---|
 | 151 | \begin{center}
 | 
|---|
 | 152 |   $^a$Laboratoire de l'Acc\'el\'erateur Lin\'eaire, 
 | 
|---|
 | 153 |   IN2P3-CNRS and Universit\'e PARIS-SUD 11\\
 | 
|---|
 | 154 |   Centre Scientifique d'Orsay-B\^at.\ 200-B.P.\ 34, 
 | 
|---|
 | 155 |   91898 Orsay Cedex, France\\[2mm]
 | 
|---|
 | 156 | %  
 | 
|---|
 | 157 |   $^b$International Centre for Theoretical Physics, 
 | 
|---|
 | 158 |   Strada Costiera 11, 31014 Trieste, Italy\\[2mm]
 | 
|---|
 | 159 | %  
 | 
|---|
 | 160 |   $^c$Istituto Nazionale Fisica Nucleare, Sezione di Padova,
 | 
|---|
 | 161 |   Via Marzolo 8, 35100 Padova, Italy\\[2mm]
 | 
|---|
 | 162 | %
 | 
|---|
 | 163 |   $^d$Scuola Internazionale Superiore di Studi Avanzati, 
 | 
|---|
 | 164 |   Via Beirut 2--4, 34014 Trieste, Italy
 | 
|---|
 | 165 | \end{center}}
 | 
|---|
 | 166 | 
 | 
|---|
 | 167 | \vspace*{0.5cm}
 | 
|---|
 | 168 | 
 | 
|---|
 | 169 | 
 | 
|---|
 | 170 | \begin{abstract}
 | 
|---|
 | 171 | We consider the physics potential of CERN based neutrino oscillation
 | 
|---|
 | 172 | experiments consisting of a Beta Beam (\BB) and a Super Beam (SPL)
 | 
|---|
 | 173 | sending neutrinos to MEMPHYS, a 440~kt water \v{C}erenkov detector at
 | 
|---|
 | 174 | Fr\'ejus, at a distance of 130~km from CERN. The $\theta_{13}$
 | 
|---|
 | 175 | discovery reach and the sensitivity to CP violation are investigated,
 | 
|---|
 | 176 | including a detailed discussion of parameter degeneracies and
 | 
|---|
 | 177 | systematical errors. For SPL sensitivities similar to the ones of the
 | 
|---|
 | 178 | phase~II of the T2K experiment (T2HK) are obtained, whereas the \BB\
 | 
|---|
 | 179 | may reach significantly better sensitivities, depending on the
 | 
|---|
 | 180 | achieved number of total ion decays.  The results for the
 | 
|---|
 | 181 | CERN--MEMPHYS experiments are less affected by systematical
 | 
|---|
 | 182 | uncertainties than T2HK.
 | 
|---|
 | 183 | %
 | 
|---|
 | 184 | We point out that by a combination of data from \BB\ and SPL a
 | 
|---|
 | 185 | measurement with antineutrinos is not necessary and hence the same
 | 
|---|
 | 186 | physics results can be obtained within about half of the measurement time
 | 
|---|
 | 187 | compared to one single experiment.
 | 
|---|
 | 188 | %
 | 
|---|
 | 189 | Furthermore, it is shown how including data from atmospheric neutrinos in
 | 
|---|
 | 190 | the MEMPHYS detector allows to resolve parameter degeneracies and, in
 | 
|---|
 | 191 | particular, provides sensitivity to the neutrino mass hierarchy and
 | 
|---|
 | 192 | the octant of $\theta_{23}$.
 | 
|---|
 | 193 | %\pacs{14.60.Pq, 14.60.Lm}
 | 
|---|
 | 194 | \end{abstract}
 | 
|---|
 | 195 | 
 | 
|---|
 | 196 | \renewcommand{\thefootnote}{\arabic{footnote}}
 | 
|---|
 | 197 | \setcounter{footnote}{0}
 | 
|---|
 | 198 | 
 | 
|---|
 | 199 | \newpage
 | 
|---|
 | 200 | %\tableofcontents
 | 
|---|
 | 201 | 
 | 
|---|
 | 202 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 203 | \section{Introduction}
 | 
|---|
 | 204 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 205 | 
 | 
|---|
 | 206 | In recent years strong evidence for neutrino oscillations has been
 | 
|---|
 | 207 | obtained in solar~\cite{solar},
 | 
|---|
 | 208 | atmospheric~\cite{Fukuda:1998mi,Ashie:2005ik},
 | 
|---|
 | 209 | reactor~\cite{Araki:2004mb}, and accelerator~\cite{Aliu:2004sq}
 | 
|---|
 | 210 | neutrino experiments. The very near future of long-baseline (LBL)
 | 
|---|
 | 211 | neutrino experiments is devoted to the study of the oscillation
 | 
|---|
 | 212 | mechanism in the range of $\Delta m^2_{31} \approx 2.4\times10^{-3} \:
 | 
|---|
 | 213 | \mathrm{eV}^2$ indicated by atmospheric neutrinos using conventional
 | 
|---|
 | 214 | $\nu_\mu$ beams.  Similar as in the K2K experiment in
 | 
|---|
 | 215 | Japan~\cite{Aliu:2004sq}, the presently running MINOS experiment in
 | 
|---|
 | 216 | the USA~\cite{MINOS} uses a low energy beam to measure $\Delta
 | 
|---|
 | 217 | m^2_{31}$ by observing the $\nu_\mu\rightarrow\nu_\mu$ disappearance
 | 
|---|
 | 218 | probability, while the OPERA~\cite{OPERA} experiment will be able to
 | 
|---|
 | 219 | detect $\nu_\tau$ appearance within the high energy CERN--Gran Sasso
 | 
|---|
 | 220 | beam~\cite{CNGS}.
 | 
|---|
 | 221 | %
 | 
|---|
 | 222 | If we do not consider the LSND anomaly~\cite{LSND} that will be
 | 
|---|
 | 223 | further studied soon by the MiniBooNE experiment~\cite{MINIBOONE}, all
 | 
|---|
 | 224 | data can be accommodated within the three flavor scenario (see
 | 
|---|
 | 225 | Refs.~\cite{FOGLILISI05,Maltoni:2004ei} for recent global analyses),
 | 
|---|
 | 226 | and neutrino oscillations are described by two neutrino mass-squared
 | 
|---|
 | 227 | differences ($\Delta m^2_{21}$ and $\Delta m^2_{31}$) and the $3\times
 | 
|---|
 | 228 | 3$ unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing
 | 
|---|
 | 229 | matrix~\cite{PMNS} with three angles
 | 
|---|
 | 230 | ($\theta_{12}$,$\theta_{13}$,$\theta_{23}$) and one Dirac CP phase
 | 
|---|
 | 231 | $\delCP$.
 | 
|---|
 | 232 | 
 | 
|---|
 | 233 | Future tasks of neutrino physics are an improved sensitivity to the
 | 
|---|
 | 234 | last unknown mixing angle, $\theta_{13}$, to explore the CP violation
 | 
|---|
 | 235 | mechanism in the leptonic sector, and to determine the sign of $\Delta
 | 
|---|
 | 236 | m^2_{31}$ which describes the type of the neutrino mass hierarchy
 | 
|---|
 | 237 | (normal, $\Delta m^2_{31} > 0$ or inverted, $\Delta m^2_{31} < 0$).
 | 
|---|
 | 238 | %
 | 
|---|
 | 239 | The present upper bound on $\theta_{13}$ is dominated by the
 | 
|---|
 | 240 | constraint from the Chooz reactor experiment~\cite{CHOOZ}. A global
 | 
|---|
 | 241 | analysis of all data yields $\sin^22\theta_{13}<0.082$ at
 | 
|---|
 | 242 | 90\%~CL~\cite{Maltoni:2004ei}. A main purpose of upcoming reactor and
 | 
|---|
 | 243 | accelerator experiments is to improve this bound or to reveal a finite
 | 
|---|
 | 244 | value of $\theta_{13}$. In reactor experiments, one uses $\bar{\nu}_e$
 | 
|---|
 | 245 | in disappearance mode and the sensitivity is increased with respect to
 | 
|---|
 | 246 | present experiments by the use of a near detector close to the
 | 
|---|
 | 247 | reactor~\cite{Wpaper}. In accelerator experiments, the first
 | 
|---|
 | 248 | generation of so-called Super Beams with sub-mega watt proton drivers
 | 
|---|
 | 249 | such as T2K (phase-I)~\cite{T2K} and NO$\nu$A~\cite{Ayres:2004js}, the
 | 
|---|
 | 250 | appearance channel $\nu_\mu\to\nu_e$ is explored. This next generation
 | 
|---|
 | 251 | of reactor and Super Beam experiments will reach sensitivities of the
 | 
|---|
 | 252 | order of $\sin^22\theta_{13} \lesssim 0.01$ ($90\%$~CL) within a time
 | 
|---|
 | 253 | scale of several years~\cite{Huber:2003pm}.
 | 
|---|
 | 254 | %
 | 
|---|
 | 255 | Beyond this medium term program, there are several projects on how to
 | 
|---|
 | 256 | enter the high precision age in neutrino oscillations and to attack
 | 
|---|
 | 257 | the ultimate goals like the discovery of leptonic CP violation or the
 | 
|---|
 | 258 | determination of the neutrino mass hierarchy. In accelerator
 | 
|---|
 | 259 | experiments, one can extend the Super Beam concept by moving to
 | 
|---|
 | 260 | multi-mega watt proton drivers~\cite{T2K,Albrow:2005kw,SPL,BNLHS} or
 | 
|---|
 | 261 | apply novel technologies, such as neutrino beams from decaying ions
 | 
|---|
 | 262 | (so-called Beta Beams)~\cite{zucchelli,Albright:2004iw} or from
 | 
|---|
 | 263 | decaying muons (so-called Neutrino
 | 
|---|
 | 264 | Factories)~\cite{Albright:2004iw,Blondel:2004ae}.
 | 
|---|
 | 265 | 
 | 
|---|
 | 266 | In this work we focus on possible future neutrino oscillation
 | 
|---|
 | 267 | facilities hosted at CERN, namely a multi-mega watt Super Beam
 | 
|---|
 | 268 | experiment based on a Super Proton Linac (SPL)~\cite{Campagne:2004wt}
 | 
|---|
 | 269 | and a $\gamma = 100$ Beta Beam
 | 
|---|
 | 270 | (\BB)~\cite{Mezzetto:2003ub}. These experiments will search for
 | 
|---|
 | 271 | $\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
 | 
|---|
 | 272 | \stackrel{\scriptscriptstyle(-)}{\nu}_e$ and
 | 
|---|
 | 273 | $\stackrel{\scriptscriptstyle (-)}{\nu}_e \to
 | 
|---|
 | 274 | \stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ appearance, respectively,
 | 
|---|
 | 275 | by sending the neutrinos to a mega ton scale water \v{C}erenkov
 | 
|---|
 | 276 | detector (MEMPHYS)~\cite{memphys}, located at a distance of 130~km from
 | 
|---|
 | 277 | CERN under the Fr\'ejus mountain. Similar detectors are under
 | 
|---|
 | 278 | consideration also in the US (UNO~\cite{UNO}) and in Japan
 | 
|---|
 | 279 | (Hyper-K~\cite{T2K,Nakamura:2003hk}).
 | 
|---|
 | 280 | %
 | 
|---|
 | 281 | We perform a detailed analysis of the SPL and \BB\ physics
 | 
|---|
 | 282 | potential, discussing the discovery reach for $\theta_{13}$ and
 | 
|---|
 | 283 | leptonic CP violation. In addition we consider the possibility to
 | 
|---|
 | 284 | resolve parameter degeneracies in the LBL data by using the
 | 
|---|
 | 285 | atmospheric neutrinos available in the mega ton
 | 
|---|
 | 286 | detector~\cite{Huber:2005ep}. This leads to a sensitivity to the
 | 
|---|
 | 287 | neutrino mass hierarchy of the CERN--MEMPHYS experiments, despite the
 | 
|---|
 | 288 | rather short baseline.
 | 
|---|
 | 289 | %
 | 
|---|
 | 290 | The physics performances of \BB\ and SPL are compared to the ones
 | 
|---|
 | 291 | obtainable at the second phase of the T2K experiment in Japan, which
 | 
|---|
 | 292 | is based on an upgraded version of the original T2K beam and the
 | 
|---|
 | 293 | Hyper-K detector (T2HK)~\cite{T2K}.
 | 
|---|
 | 294 | 
 | 
|---|
 | 295 | The outline of the paper is as follows.  In Sec.~\ref{sec:analysis} we
 | 
|---|
 | 296 | summarize the main characteristics of the \BB, SPL, and T2HK
 | 
|---|
 | 297 | experiments and give general details of the physics analysis methods,
 | 
|---|
 | 298 | whereas in Sec.~\ref{sec:experiments} we describe in some detail the
 | 
|---|
 | 299 | MEMPHYS detector, the \BB, the SPL Super Beam, and our atmospheric
 | 
|---|
 | 300 | neutrino analysis. In Sec.~\ref{sec:degeneracies} we review the
 | 
|---|
 | 301 | problem of parameter degeneracies and discuss its implications for the
 | 
|---|
 | 302 | experiments under consideration. In Sec.~\ref{sec:sensitivities} we
 | 
|---|
 | 303 | present the sensitivities to the ``atmospheric parameters''
 | 
|---|
 | 304 | $\theta_{23}$ and $\Delta m^2_{31}$, the $\theta_{13}$ discovery
 | 
|---|
 | 305 | potential, and the sensitivity to CP violation. We also investigate in
 | 
|---|
 | 306 | some detail the impact of systematical errors. In
 | 
|---|
 | 307 | Sec.~\ref{sec:synergies} we discuss synergies which are offered by the
 | 
|---|
 | 308 | CERN--MEMPHYS facilities.  We point out advantages of the case when
 | 
|---|
 | 309 | \BB\ and SPL are available simultaneously, and we consider the use of
 | 
|---|
 | 310 | atmospheric neutrino data in MEMPHYS in combination with the LBL
 | 
|---|
 | 311 | experiments. Our results are summarized in Sec.~\ref{sec:conclusions}.
 | 
|---|
 | 312 | 
 | 
|---|
 | 313 | 
 | 
|---|
 | 314 | 
 | 
|---|
 | 315 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 316 | \section{Experiments overview and analysis methods}
 | 
|---|
 | 317 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 318 | \label{sec:analysis}
 | 
|---|
 | 319 | 
 | 
|---|
 | 320 | In this section we give the most important experimental parameters
 | 
|---|
 | 321 | which we adopt for the simulation of the CERN--MEMPHYS experiments
 | 
|---|
 | 322 | \BB\ and SPL, as well as for the T2HK experiment in Japan. These
 | 
|---|
 | 323 | parameters are summarized in Tab.~\ref{tab:setups}. For all
 | 
|---|
 | 324 | experiments the detector mass is 440~kt, and the running time is 10
 | 
|---|
 | 325 | years, with a division in neutrino and antineutrino running time in
 | 
|---|
 | 326 | such a way that roughly an equal number of events is obtained. We
 | 
|---|
 | 327 | always use the total available information from appearance as well as
 | 
|---|
 | 328 | disappearance channels including the energy spectrum. For all three
 | 
|---|
 | 329 | experiments we adopt rather optimistic values for the systematical
 | 
|---|
 | 330 | uncertainties of 2\% as default values, but we also consider the case
 | 
|---|
 | 331 | when systematics are increased to 5\%. These errors are uncorrelated
 | 
|---|
 | 332 | between the various signal channels (neutrinos and antineutrinos), and
 | 
|---|
 | 333 | between signals and backgrounds.
 | 
|---|
 | 334 | 
 | 
|---|
 | 335 | \begin{table}
 | 
|---|
 | 336 |   \centering
 | 
|---|
 | 337 |   \begin{tabular}{lcc@{\qquad\qquad}c}
 | 
|---|
 | 338 |   \hline\noalign{\smallskip}
 | 
|---|
 | 339 |        & \BB & SPL & T2HK \\
 | 
|---|
 | 340 |   \noalign{\smallskip}\hline\noalign{\smallskip}
 | 
|---|
 | 341 |   Detector mass & 440~kt & 440~kt & 440~kt\\
 | 
|---|
 | 342 |   Baseline      & 130 km & 130 km & 295 km \\
 | 
|---|
 | 343 |   Running time ($\nu + \bar\nu$) 
 | 
|---|
 | 344 |                 & 5 + 5 yr & 2 + 8 yr & 2 + 8 yr \\
 | 
|---|
 | 345 |   Beam intensity  & $5.8\,(2.2) \cdot 10^{18}$ He (Ne) dcys/yr & 4 MW & 4 MW\\
 | 
|---|
 | 346 |   Systematics on signal  & 2\% & 2\% & 2\%\\
 | 
|---|
 | 347 |   Systematics on backgr. & 2\% & 2\% & 2\%\\
 | 
|---|
 | 348 |   \noalign{\smallskip}\hline
 | 
|---|
 | 349 |   \end{tabular}
 | 
|---|
 | 350 |   \mycaption{Summary of default parameters used for the simulation of the
 | 
|---|
 | 351 |   \BB, SPL, and T2HK experiments.\label{tab:setups}}
 | 
|---|
 | 352 | \end{table}
 | 
|---|
 | 353 | 
 | 
|---|
 | 354 | A more detailed description of the CERN--MEMPHYS experiments is given
 | 
|---|
 | 355 | in Sec.~\ref{sec:experiments}. For the T2HK simulation we use the
 | 
|---|
 | 356 | setup provided by GLoBES~\cite{Globes} based on
 | 
|---|
 | 357 | Ref.~\cite{Huber:2002mx}, which follows closely the LOI~\cite{T2K}. In
 | 
|---|
 | 358 | order to allow a fair comparison we introduce the following changes
 | 
|---|
 | 359 | with respect to the configuration used in Ref.~\cite{Huber:2002mx}:
 | 
|---|
 | 360 | The fiducial mass is set to 440~kt, the systematical errors on the
 | 
|---|
 | 361 | background and on the $\nu_e$ and $\bar\nu_e$ appearance signals is
 | 
|---|
 | 362 | set to 2\%, and we use a total running time of 10 years, divided into
 | 
|---|
 | 363 | 2 years of data taking with neutrinos and 8 years with
 | 
|---|
 | 364 | antineutrinos. We include an additional background from the
 | 
|---|
 | 365 | $\bar\nu_\mu \to \bar\nu_e$ ($\nu_\mu \to \nu_e$) channel in the
 | 
|---|
 | 366 | neutrino (antineutrino) mode. Furthermore, we use
 | 
|---|
 | 367 | the same CC detection cross section as for the \BB/SPL
 | 
|---|
 | 368 | analysis~\cite{Nuance}. For more details see
 | 
|---|
 | 369 | Refs.~\cite{T2K,Huber:2002mx}.
 | 
|---|
 | 370 | 
 | 
|---|
 | 371 | \begin{table}
 | 
|---|
 | 372 |   \centering
 | 
|---|
 | 373 |   \begin{tabular}{lcccccc}
 | 
|---|
 | 374 |   \hline\noalign{\smallskip}
 | 
|---|
 | 375 |        & \centre{2}{\BB} & \centre{2}{SPL} & \centre{2}{T2HK} \\
 | 
|---|
 | 376 |   \noalign{\smallskip}\hline\noalign{\smallskip}
 | 
|---|
 | 377 |   & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$\\
 | 
|---|
 | 378 |   \noalign{\smallskip}\hline\noalign{\smallskip}
 | 
|---|
 | 379 | %
 | 
|---|
 | 380 |   appearance $\nu$ & & & & & & \\
 | 
|---|
 | 381 |   background       & \centre{2}{143} &\centre{2}{622} &\centre{2}{898}\\
 | 
|---|
 | 382 |   $\stheta=0$      & \centre{2}{28}  &\centre{2}{51}  &\centre{2}{83}  \\
 | 
|---|
 | 383 |   $\stheta=10^{-3}$&    76  &   88   &   105  &   14  &   178 &    17  \\ 
 | 
|---|
 | 384 |   $\stheta=10^{-2}$&   326  &  365   &   423  &  137  &   746 &   238  \\
 | 
|---|
 | 385 | %  
 | 
|---|
 | 386 |   \noalign{\smallskip}\hline\noalign{\smallskip}
 | 
|---|
 | 387 | %
 | 
|---|
 | 388 |   appearance $\bar\nu$ & & & & & & \\
 | 
|---|
 | 389 |   background       & \centre{2}{157} &\centre{2}{640} &\centre{2}{1510}\\
 | 
|---|
 | 390 |   $\stheta=0$      & \centre{2}{31}  &\centre{2}{57}  &\centre{2}{93}  \\
 | 
|---|
 | 391 |   $\stheta=10^{-3}$&    83  &   12   &   102  &  146  &   192 &   269  \\ 
 | 
|---|
 | 392 |   $\stheta=10^{-2}$&   351  &  126   &   376  &  516  &   762 &  1007  \\
 | 
|---|
 | 393 | %  
 | 
|---|
 | 394 |   \noalign{\smallskip}\hline\noalign{\smallskip}
 | 
|---|
 | 395 | %
 | 
|---|
 | 396 |   disapp. $\nu$ &\centre{2}{100315}&\centre{2}{21653}&\centre{2}{24949}\\
 | 
|---|
 | 397 |   background    & \centre{2}{6}   &\centre{2}{1}    &\centre{2}{444}\\
 | 
|---|
 | 398 |   disapp. $\bar\nu$&\centre{2}{84125}&\centre{2}{18321}&\centre{2}{34650}\\
 | 
|---|
 | 399 |   background       &\centre{2}{5}    &\centre{2}{1}    &\centre{2}{725}\\
 | 
|---|
 | 400 |   \noalign{\smallskip}\hline
 | 
|---|
 | 401 | %  
 | 
|---|
 | 402 |   \end{tabular}
 | 
|---|
 | 403 |   \mycaption{Number of events for appearance and disappearance signals
 | 
|---|
 | 404 |   and backgrounds for the \BB, SPL, and T2HK experiments as
 | 
|---|
 | 405 |   defined in Tab.~\ref{tab:setups}. For the appearance signals the
 | 
|---|
 | 406 |   event numbers are given for several values of $\stheta$ and $\delCP
 | 
|---|
 | 407 |   = 0$ and $\pi/2$. The background as well as the disappearance event
 | 
|---|
 | 408 |   numbers correspond to $\theta_{13}=0$. For the other oscillation
 | 
|---|
 | 409 |   parameters the values of Eq.~(\ref{eq:default-params}) are
 | 
|---|
 | 410 |   used.\label{tab:events}}
 | 
|---|
 | 411 | \end{table}
 | 
|---|
 | 412 | 
 | 
|---|
 | 413 | In Tab.~\ref{tab:events} we give the number of signal and background
 | 
|---|
 | 414 | events for the experiment setups as defined in Tab.~\ref{tab:setups}.
 | 
|---|
 | 415 | For the appearance channels ($\stackrel{\scriptscriptstyle (-)}{\nu}_e
 | 
|---|
 | 416 | \to \stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ for the \BB\ and
 | 
|---|
 | 417 | $\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
 | 
|---|
 | 418 | \stackrel{\scriptscriptstyle(-)}{\nu}_e$ for SPL and T2HK) we give the
 | 
|---|
 | 419 | signal events for various values of $\theta_{13}$ and $\delCP$. The
 | 
|---|
 | 420 | ``signal'' events for $\theta_{13} = 0$ are appearance events induced by
 | 
|---|
 | 421 | the oscillations with $\Delta m^2_{21}$. The value $\stheta = 10^{-3}$
 | 
|---|
 | 422 | corresponds roughly to the sensitivity limit for the considered
 | 
|---|
 | 423 | experiments, whereas $\stheta = 10^{-2}$ gives a good sensitivity
 | 
|---|
 | 424 | to CP violation. This can be appreciated by comparing the values of
 | 
|---|
 | 425 | $\nu$ and $\bar\nu$ appearance events for $\delCP = 0$ and $\pi/2$. In
 | 
|---|
 | 426 | the table the background to the appearance signal is given for
 | 
|---|
 | 427 | $\theta_{13} = 0$. Note that in general the number of background
 | 
|---|
 | 428 | events depends also on the oscillation parameters, since also the
 | 
|---|
 | 429 | background neutrinos in the beam oscillate. This effect is
 | 
|---|
 | 430 | consistently taken into account in the analysis, however, for the
 | 
|---|
 | 431 | parameter values in the table the change in the background events due
 | 
|---|
 | 432 | to oscillations is only of the order of a few events.
 | 
|---|
 | 433 | 
 | 
|---|
 | 434 | The physics analysis is performed with the GLoBES open source
 | 
|---|
 | 435 | software~\cite{Globes}, which provides a convenient tool to simulate
 | 
|---|
 | 436 | long-baseline experiments and compare different facilities in a
 | 
|---|
 | 437 | unified framework. The experiment definition (AEDL) files for the \BB\
 | 
|---|
 | 438 | and SPL simulation with GLoBES are available at Ref.~\cite{ISSpage}.
 | 
|---|
 | 439 | In the analysis parameter degeneracies and correlations are fully
 | 
|---|
 | 440 | taken into account and in general all oscillation parameters are
 | 
|---|
 | 441 | varied in the fit.
 | 
|---|
 | 442 | %
 | 
|---|
 | 443 | To simulate the ``data'' we adopt the following
 | 
|---|
 | 444 | set of ``true values'' for the oscillation parameters:
 | 
|---|
 | 445 | %
 | 
|---|
 | 446 | \begin{equation}\label{eq:default-params}
 | 
|---|
 | 447 | \begin{array}{l@{\qquad}l}
 | 
|---|
 | 448 |   \Delta m^2_{31} = +2.4 \times 10^{-3}~\mathrm{eV}^2\,, & 
 | 
|---|
 | 449 |   \sin^2\theta_{23} = 0.5\,,\\ 
 | 
|---|
 | 450 |   \Delta m^2_{21} = 7.9 \times 10^{-5}~\mathrm{eV}^2 \,,&
 | 
|---|
 | 451 |   \sin^2\theta_{12} = 0.3 \,,
 | 
|---|
 | 452 | \end{array}
 | 
|---|
 | 453 | \end{equation} 
 | 
|---|
 | 454 | %
 | 
|---|
 | 455 | and we include a prior knowledge of these values with an accuracy of
 | 
|---|
 | 456 | 10\% for $\theta_{12}$, $\theta_{23}$, $\Delta m^2_{31}$, and 4\% for
 | 
|---|
 | 457 | $\Delta m^2_{21}$ at 1$\sigma$. These values and accuracies are
 | 
|---|
 | 458 | motivated by recent global fits to neutrino oscillation
 | 
|---|
 | 459 | data~\cite{FOGLILISI05,Maltoni:2004ei}, and they are always used
 | 
|---|
 | 460 | except where explicitly stated otherwise.
 | 
|---|
 | 461 | 
 | 
|---|
 | 462 | 
 | 
|---|
 | 463 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 464 | \section{The CERN--MEMPHYS experiments}
 | 
|---|
 | 465 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 466 | \label{sec:experiments}
 | 
|---|
 | 467 | 
 | 
|---|
 | 468 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 469 | \subsection{The MEMPHYS detector}
 | 
|---|
 | 470 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 471 | 
 | 
|---|
 | 472 | MEMPHYS (MEgaton Mass PHYSics)~\cite{memphys} is a mega ton class
 | 
|---|
 | 473 | water \v{C}erenkov detector in the straight extrapolation of
 | 
|---|
 | 474 | Super-Kamiokande, located at Fr\'ejus, at a distance of 130~km from
 | 
|---|
 | 475 | CERN. It is an alternative design of the UNO~\cite{UNO} and
 | 
|---|
 | 476 | Hyper-Kamiokande~\cite{Nakamura:2003hk} detectors and shares the same
 | 
|---|
 | 477 | physics case, both from the non-accelerator domain (nucleon decay,
 | 
|---|
 | 478 | super nova neutrino detection, solar neutrinos, atmospheric neutrinos)
 | 
|---|
 | 479 | and from the accelerator domain which is the subject of this paper. A
 | 
|---|
 | 480 | recent civil engineering pre-study to envisage the possibly of large
 | 
|---|
 | 481 | cavity excavation located under the Fr\'ejus mountain (4800~m.e.w.)
 | 
|---|
 | 482 | near the present Modane underground laboratory has been undertaken.
 | 
|---|
 | 483 | The main result of this pre-study is that MEMPHYS may be built with
 | 
|---|
 | 484 | present techniques as a modular detector consisting of several shafts,
 | 
|---|
 | 485 | each with 65~m in diameter, 65~m in height for the total water
 | 
|---|
 | 486 | containment. A schematic view of the layout is shown in
 | 
|---|
 | 487 | Fig.~\ref{fig:MEMPHYS}. For the present study we have chosen a
 | 
|---|
 | 488 | fiducial mass of 440~kt which means 3 shafts and an inner detector of
 | 
|---|
 | 489 | 57~m in diameter and 57~m in height.  Each inner detector may be
 | 
|---|
 | 490 | equipped with photo detectors (81000 per shaft) with a 30\%
 | 
|---|
 | 491 | geometrical coverage and the same photo-statistics as Super-Kamiokande
 | 
|---|
 | 492 | (with a 40\% coverage). In principle up to 5 shafts are possible,
 | 
|---|
 | 493 | corresponding to a fiducial mass of 730~kt.
 | 
|---|
 | 494 | %
 | 
|---|
 | 495 | The Fr\'ejus site offers a natural protection against cosmic rays by a
 | 
|---|
 | 496 | factor $10^6$. If not mentioned otherwise, the event selection and
 | 
|---|
 | 497 | particle identification are the Super-Kamiokande algorithms results.
 | 
|---|
 | 498 | 
 | 
|---|
 | 499 | \begin{figure}
 | 
|---|
 | 500 | \centering
 | 
|---|
 | 501 | \includegraphics[width=0.65\textwidth]{./fig1.eps}
 | 
|---|
 | 502 | \mycaption{\label{fig:MEMPHYS}Sketch of the MEMPHYS detector under the
 | 
|---|
 | 503 | Fr\'ejus mountain.}     
 | 
|---|
 | 504 | \end{figure}
 | 
|---|
 | 505 | 
 | 
|---|
 | 506 | 
 | 
|---|
 | 507 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 508 | \subsection{The $\gamma = 100\times100$ baseline Beta Beam}
 | 
|---|
 | 509 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 510 | 
 | 
|---|
 | 511 | The concept of a Beta Beam (\BB) has been introduced by P.~Zucchelli
 | 
|---|
 | 512 | in Ref.~\cite{zucchelli}. Neutrinos are produced by the decay of
 | 
|---|
 | 513 | radioactive isotopes which are stored in a decay ring. An important
 | 
|---|
 | 514 | parameter is the relativistic gamma factor of the ions, which
 | 
|---|
 | 515 | determines the energy of the emitted neutrinos. \BB\ performances have
 | 
|---|
 | 516 | been computed previously for $\gamma(\He)= 66$~\cite{Mezzetto:2003ub},
 | 
|---|
 | 517 | 100~\cite{MyNufact04,Donini:2004hu,JJHigh2}, 150~\cite{JJHigh2},
 | 
|---|
 | 518 | 200~\cite{LindnerBB}, 350~\cite{JJHigh2},
 | 
|---|
 | 519 | 500~\cite{JJHigh1,LindnerBB}, 1000~\cite{LindnerBB},
 | 
|---|
 | 520 | 2000~\cite{JJHigh1}, 2488~\cite{Terranova}. Reviews can be found in
 | 
|---|
 | 521 | Ref.~\cite{BB-Reviews}, the physics potential of a very low gamma \BB\
 | 
|---|
 | 522 | has been studied in Ref.~\cite{Volpe}. Performances of a \BB\ with
 | 
|---|
 | 523 | $\gamma > 150$ are extremely promising, however, they are neither
 | 
|---|
 | 524 | based on an existing accelerator complex nor on detailed calculations
 | 
|---|
 | 525 | of the ion decay rates. For a CERN based \BB, fluxes have been
 | 
|---|
 | 526 | estimated in Ref.~\cite{Lindroos} and a design study is in progress
 | 
|---|
 | 527 | for the facility \cite{Eurisol}. In this work we assume an integrated
 | 
|---|
 | 528 | flux of neutrinos in 10 years corresponding to $2.9\cdot 10^{19}$
 | 
|---|
 | 529 | useful \He\ decays and $1.1 \cdot 10^{19}$ useful \Ne\ decays. These
 | 
|---|
 | 530 | fluxes have been assumed in all the physics papers quoted above, and
 | 
|---|
 | 531 | they are two times higher than the baseline fluxes computed in
 | 
|---|
 | 532 | Ref.~\cite{Lindroos}. These latter fluxes suffer for the known
 | 
|---|
 | 533 | limitations of the PS and SPS synchrotrons at CERN, ways to improve
 | 
|---|
 | 534 | them have been delineated in Ref.~\cite{Lindroos-Optimization}.
 | 
|---|
 | 535 | 
 | 
|---|
 | 536 | The infrastructure available at CERN as well as the MEMPHYS
 | 
|---|
 | 537 | location at a distance of 130~km suggest a $\gamma$-factor of about
 | 
|---|
 | 538 | $100$. Such a value implies a mean neutrino energy of 400~MeV, which
 | 
|---|
 | 539 | leads to the oscillation maximum at about 200~km for $\Delta m^2_{31}
 | 
|---|
 | 540 | = 2.4\times 10^{-3}$~eV$^2$.  We have checked that the performance at
 | 
|---|
 | 541 | the somewhat shorter baseline of 130~km is rather similar to the one
 | 
|---|
 | 542 | at the oscillation maximum. Moreover, the purpose of this paper is to
 | 
|---|
 | 543 | estimate the physics potential for a realistic set-up and not to study
 | 
|---|
 | 544 | the optimization of the \BB\ regardless of any logistic consideration
 | 
|---|
 | 545 | (see, e.g., Refs.~\cite{LindnerBB,JJHigh2} for such optimization
 | 
|---|
 | 546 | studies).
 | 
|---|
 | 547 | 
 | 
|---|
 | 548 | The signal events from the $\nu_e \to \nu_\mu$ neutrino and
 | 
|---|
 | 549 | antineutrino appearance channels in the \BB\ are \numu charged current
 | 
|---|
 | 550 | (CC) events. The Nuance v3r503 Monte Carlo code~\cite{Nuance} is used
 | 
|---|
 | 551 | to generate signal events. The selection for these events is based on
 | 
|---|
 | 552 | standard Super-Kamiokande particle identification algorithms.  The
 | 
|---|
 | 553 | muon identification is reinforced by asking for the detection of the
 | 
|---|
 | 554 | Michel decay electron. 
 | 
|---|
 | 555 | %
 | 
|---|
 | 556 | The neutrino energy is reconstructed by smearing momentum and
 | 
|---|
 | 557 | direction of the charged lepton with the Super-Kamiokande resolution
 | 
|---|
 | 558 | functions, and applying quasi-elastic (QE) kinematics assuming the
 | 
|---|
 | 559 | known incoming neutrino direction. Energy reconstruction in the \BB\
 | 
|---|
 | 560 | energy range is remarkably powerful, and the contamination of non-QE
 | 
|---|
 | 561 | events very small, as shown in Fig.~\ref{fig:QE-Energy}.
 | 
|---|
 | 562 | %
 | 
|---|
 | 563 | As pointed out in Ref.~\cite{JJHigh2}, it is necessary to use a
 | 
|---|
 | 564 | migration matrix for the neutrino energy reconstruction to properly
 | 
|---|
 | 565 | handle Fermi motion smearing and the non-QE event contamination.  We
 | 
|---|
 | 566 | use 100~MeV bins for the reconstructed energy and 40~MeV bins for the
 | 
|---|
 | 567 | true neutrino energy.  Four migration matrices (for
 | 
|---|
 | 568 | $\nu_e,\bar\nu_e,\nu_\mu,\bar\nu_\mu$) are applied to signal events as
 | 
|---|
 | 569 | well as backgrounds. As suggested from Fig.~\ref{fig:QE-Energy} the 
 | 
|---|
 | 570 | results using migration matrices are very similar to a Gaussian
 | 
|---|
 | 571 | energy resolution.
 | 
|---|
 | 572 | 
 | 
|---|
 | 573 | \begin{figure}[!t]
 | 
|---|
 | 574 |   \centering
 | 
|---|
 | 575 |   \includegraphics[width=0.65\textwidth]{./fig2.eps}
 | 
|---|
 | 576 |   \mycaption{\label{fig:QE-Energy} Energy resolution for \nue\
 | 
|---|
 | 577 |   interactions in the 200--300~MeV energy range. The quantity
 | 
|---|
 | 578 |   displayed is the difference between the reconstructed and the true
 | 
|---|
 | 579 |   neutrino energy.}
 | 
|---|
 | 580 | \end{figure}
 | 
|---|
 | 581 | 
 | 
|---|
 | 582 | Backgrounds from charged pions and atmospheric neutrinos are computed
 | 
|---|
 | 583 | with the identical analysis chain as signal events.
 | 
|---|
 | 584 | Charged pions generated in NC events (or in NC-like events where the
 | 
|---|
 | 585 | leading electron goes undetected) are the main source of background for
 | 
|---|
 | 586 | the experiment. To compute this background inclusive NC and CC events
 | 
|---|
 | 587 | have been generated with the \BB\ spectrum. Events have been selected
 | 
|---|
 | 588 | where the only visible track is a charged pion above the \v{C}erenkov
 | 
|---|
 | 589 | threshold. Particle identification efficiencies have been applied to
 | 
|---|
 | 590 | those particles. The probability for a pion to survive in water until
 | 
|---|
 | 591 | its decay has been computed with Geant~3.21 and cross-checked with a
 | 
|---|
 | 592 | Fluka~2003 simulation. This probability is different for positive and
 | 
|---|
 | 593 | negative pions, the latter having a higher probability to be absorbed
 | 
|---|
 | 594 | before decaying. The surviving events are background, and the
 | 
|---|
 | 595 | reconstructed neutrino energy is computed misidentifying these pions
 | 
|---|
 | 596 | as muons. Event rates are reported in Tab.~\ref{tab:sigbck}. From
 | 
|---|
 | 597 | these numbers it becomes evident that requiring the detection of the
 | 
|---|
 | 598 | Michel electron provides an efficient cut to eliminate the pion
 | 
|---|
 | 599 | background.
 | 
|---|
 | 600 | %
 | 
|---|
 | 601 | These background rates are significantly smaller than quoted in
 | 
|---|
 | 602 | Ref.~\cite{MyNufact04}, where pion decays were computed with the
 | 
|---|
 | 603 | same probabilities as for muons and they are slightly different
 | 
|---|
 | 604 | from those quoted in Ref.~\cite{ MezzettoNuFact05}, where an
 | 
|---|
 | 605 | older version of Nuance had been used.
 | 
|---|
 | 606 | %
 | 
|---|
 | 607 | The numbers of Tab.~\ref{tab:sigbck} have been cross-checked by
 | 
|---|
 | 608 | comparing the Nuance and Neugen~\cite{Neugen} event
 | 
|---|
 | 609 | generators, finding a fair agreement in background rates and energy shape.
 | 
|---|
 | 610 | 
 | 
|---|
 | 611 | \begin{table}[t]
 | 
|---|
 | 612 |      \centering
 | 
|---|
 | 613 |      \begin{tabular}{l@{\qquad}rrr@{\qquad}rrr}
 | 
|---|
 | 614 |      \hline\noalign{\smallskip}
 | 
|---|
 | 615 |        & \multicolumn{3}{ c }{\Ne} & \multicolumn{3}{c}{\He} \\
 | 
|---|
 | 616 |      \hline\noalign{\smallskip}
 | 
|---|
 | 617 |        & \numu CC & $\pi^+$ & $\pi^-$ & \nubarmu CC & $\pi^+$ & $\pi^-$ \\
 | 
|---|
 | 618 |      \hline\noalign{\smallskip}
 | 
|---|
 | 619 |       Generated ev.\ & 115367   &  557   &  341 & 101899 &  674   &  400 \\
 | 
|---|
 | 620 |       Particle ID    &  95717   &  204   &  100 & 85285  &  240   &  118 \\
 | 
|---|
 | 621 |       Decay          &  61347   &  107   &    8 & 69242  &  120   &    8 \\
 | 
|---|
 | 622 | \hline\noalign{\smallskip}
 | 
|---|
 | 623 |     \end{tabular}
 | 
|---|
 | 624 |     \mycaption{\label{tab:sigbck} Events for the \BB\ in a 4400~kt~yr
 | 
|---|
 | 625 |     exposure.  \numu(\nubarmu) CC events are computed assuming full
 | 
|---|
 | 626 |     oscillations ($P_{\nu_e\to\nu_\mu} = 1$), and pion backgrounds are
 | 
|---|
 | 627 |     computed from \nue(\nubare) CC+NC events. In the rows we give the
 | 
|---|
 | 628 |     number events generated within the fiducial volume (``Generated
 | 
|---|
 | 629 |     ev.''), after muon particle identification (``Particle ID''), and
 | 
|---|
 | 630 |     after applying a further identification requiring the detection of
 | 
|---|
 | 631 |     the Michel electron (``Decay''). }
 | 
|---|
 | 632 | \end{table}
 | 
|---|
 | 633 | 
 | 
|---|
 | 634 | Also atmospheric neutrinos can constitute an important source of
 | 
|---|
 | 635 | background~\cite{zucchelli,JJHigh2,JJHigh1,MezzettoNuFact05}. This
 | 
|---|
 | 636 | background can be suppressed only by keeping a very short duty cycle
 | 
|---|
 | 637 | ($2.2 \cdot 10^{-3}$ is the target value for the \BB\ design study),
 | 
|---|
 | 638 | and this in turn is one of the most challenging bounds on the design
 | 
|---|
 | 639 | of the Beta Beam complex. Following Ref.~\cite{MezzettoNuFact05} we
 | 
|---|
 | 640 | include the atmospheric neutrino background based on a Monte Carlo
 | 
|---|
 | 641 | simulation using Nuance. Events are reconstructed as if they were
 | 
|---|
 | 642 | signal neutrino events. We estimate that 5 events/year would survive
 | 
|---|
 | 643 | the analysis chain in a full solar year (the \BB\ should run for about
 | 
|---|
 | 644 | 1/3 of this period) and include these events as backgrounds in the
 | 
|---|
 | 645 | analysis. Under these circumstances, the present value of the \BB\
 | 
|---|
 | 646 | duty cycle seems to be an overkill, it could be reduced by a factor 5
 | 
|---|
 | 647 | at least, see also Ref.~\cite{MezzettoNuFact05} for a discussion of
 | 
|---|
 | 648 | the effect of a higher duty cycle.
 | 
|---|
 | 649 | 
 | 
|---|
 | 650 | 
 | 
|---|
 | 651 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 652 | \subsection{The $3.5$-GeV SPL Super Beam}
 | 
|---|
 | 653 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 654 | 
 | 
|---|
 | 655 | 
 | 
|---|
 | 656 | In the recent Conceptual Design Report 2 (CDR2) the foreseen Super
 | 
|---|
 | 657 | Proton Linac (SPL)~\cite{SPL} will provide the protons for the muon
 | 
|---|
 | 658 | production in the context of a Neutrino Factory, and at a first stage
 | 
|---|
 | 659 | will feed protons to a fixed target experiment to produce an intense
 | 
|---|
 | 660 | conventional neutrino beam (``Super Beam''). The parameters of the
 | 
|---|
 | 661 | beam line take into account the optimization~\cite{Campagne:2004wt} of
 | 
|---|
 | 662 | the beam energy as well as the secondary particle focusing and decay
 | 
|---|
 | 663 | to search for $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu
 | 
|---|
 | 664 | \rightarrow \bar{\nu}_e$ appearance as well as $\nu_\mu$,
 | 
|---|
 | 665 | $\bar\nu_\mu$ disappearance in a mega ton scale water \v{C}erenkov
 | 
|---|
 | 666 | detector. In particular, a full simulation of the beam line from the
 | 
|---|
 | 667 | proton on target interaction up to the secondary particle decay tunnel
 | 
|---|
 | 668 | has been performed. The proton on a liquid mercury target (30~cm long,
 | 
|---|
 | 669 | $7.5$~mm radius, 13.546 density) has been simulated with
 | 
|---|
 | 670 | FLUKA~2002.4~\cite{FLUKA} while the horn focusing system and the decay
 | 
|---|
 | 671 | tunnel simulation has been preformed with
 | 
|---|
 | 672 | GEANT~3.21~\cite{GEANT}.\footnote{Although there are differences
 | 
|---|
 | 673 | between the predicted pion and kaon productions as a function of
 | 
|---|
 | 674 | proton kinetic energy with FLUKA~2002.4 and 2005.6, the results are
 | 
|---|
 | 675 | consistent for the relevant energy of 3.5~GeV. We emphasize that the
 | 
|---|
 | 676 | pion and the kaon production cross-sections are waiting for
 | 
|---|
 | 677 | experimental confirmation~\cite{HARP-MINERVA} and a new optimization
 | 
|---|
 | 678 | would be required if their is a disagreement with the present
 | 
|---|
 | 679 | knowledge.}
 | 
|---|
 | 680 | 
 | 
|---|
 | 681 | \begin{figure}[!t]
 | 
|---|
 | 682 |   \centering 
 | 
|---|
 | 683 |   \includegraphics[width=0.65\textwidth]{./fig3.eps}
 | 
|---|
 | 684 |   \mycaption{\label{fig:fluxSPLContrib} Neutrino fluxes, at $130$~km
 | 
|---|
 | 685 |   from the target with the horns focusing the positive particles
 | 
|---|
 | 686 |   (top panel) or the negative particles (bottom panel). The fluxes are
 | 
|---|
 | 687 |   computed for a SPL proton beam of $3.5$~GeV (4~MW), a decay tunnel
 | 
|---|
 | 688 |   with a length of $40$~m and a radius of $2$~m.}
 | 
|---|
 | 689 | \end{figure}
 | 
|---|
 | 690 | 
 | 
|---|
 | 691 | Since the optimization requirements for a Neutrino Factory are rather
 | 
|---|
 | 692 | different than for a Super Beam the new SPL configuration has a
 | 
|---|
 | 693 | significant impact on the physics performance (see
 | 
|---|
 | 694 | Ref.~\cite{Campagne:2004wt} for a detailed discussion).  The SPL
 | 
|---|
 | 695 | fluxes of the four neutrino species ($\nu_\mu$, $\nu_e$,
 | 
|---|
 | 696 | $\bar{\nu}_\mu$, $\bar{\nu}_e$) for the positive ($\nu_\mu$ beam) and
 | 
|---|
 | 697 | the negative focusing ($\bar{\nu}_\mu$ beam) are show in
 | 
|---|
 | 698 | Fig.~\ref{fig:fluxSPLContrib}.  The total number of $\nu_\mu$
 | 
|---|
 | 699 | ($\bar{\nu}_\mu$) in positive (negative) focusing is about
 | 
|---|
 | 700 | $1.18\,(0.97) \times 10^{12}\:\mathrm{m}^{-2}\mathrm{y}^{-1}$ with an
 | 
|---|
 | 701 | average energy of $300$~MeV. The $\nu_e$ ($\bar{\nu}_e$) contamination
 | 
|---|
 | 702 | in the $\nu_\mu$ ($\bar\nu_\mu$) beam is around $0.7\%$
 | 
|---|
 | 703 | ($6.0\%$). Following Ref.~\cite{Mezzetto:2003mm}, the $\pi^o$
 | 
|---|
 | 704 | background is reduced using a tighter PID cut compared to standard
 | 
|---|
 | 705 | Super-Kamiokande analysis. The Michel electron is required for the
 | 
|---|
 | 706 | $\mu$ identification.
 | 
|---|
 | 707 | %
 | 
|---|
 | 708 | For the $\nu_\mu \rightarrow \nu_e$ channel the background consists
 | 
|---|
 | 709 | roughly of 90\% $\nu_e \rightarrow \nu_e$ CC interactions, 6\% $\pi^o$
 | 
|---|
 | 710 | from NC interactions, 3\% miss identified muons from $\nu_\mu
 | 
|---|
 | 711 | \rightarrow \nu_\mu$ CC, and 1\% $\bar{\nu}_e \rightarrow \bar{\nu}_e$
 | 
|---|
 | 712 | CC interactions. For the $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
 | 
|---|
 | 713 | channel the contributions to the background are 45\% $\bar{\nu}_e
 | 
|---|
 | 714 | \rightarrow \bar{\nu}_e$ CC interactions, 35\% $\nu_e \rightarrow
 | 
|---|
 | 715 | \nu_e$ CC interactions, 18\% $\pi^o$ from NC interactions and 2\% miss
 | 
|---|
 | 716 | identified muons from $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ CC.
 | 
|---|
 | 717 | In addition we include the events from the contamination of 
 | 
|---|
 | 718 | ``wrong sign'' muon-neutrinos due to $\bar\nu_\mu \to \bar\nu_e$
 | 
|---|
 | 719 | ($\nu_\mu \to \nu_e$) oscillations in the neutrino (antineutrino)
 | 
|---|
 | 720 | mode. 
 | 
|---|
 | 721 | %
 | 
|---|
 | 722 | We have checked that with the envisaged duty cycle of $2.4\times
 | 
|---|
 | 723 | 10^{-4}$ the background from atmospheric neutrinos is negligible for
 | 
|---|
 | 724 | the SPL.
 | 
|---|
 | 725 | 
 | 
|---|
 | 726 | \begin{figure}[!t]
 | 
|---|
 | 727 |   \centering
 | 
|---|
 | 728 |   \includegraphics[width=0.5\textwidth]{./fig4.eps}
 | 
|---|
 | 729 | %
 | 
|---|
 | 730 |   \mycaption{\label{fig:fluxComparison} 
 | 
|---|
 | 731 |   Comparison of the fluxes from SPL and \BB.}
 | 
|---|
 | 732 | \end{figure}
 | 
|---|
 | 733 | 
 | 
|---|
 | 734 | Considering the signal over square-root of background
 | 
|---|
 | 735 | ratio, the $3.5$~GeV beam energy is more favorable than the original
 | 
|---|
 | 736 | $2.2$~GeV option. Compared to the fluxes used in
 | 
|---|
 | 737 | Refs.~\cite{Mezzetto:2003mm,Donini:2004hu} the gain is at least a
 | 
|---|
 | 738 | factor $2.5$ and this justifies to reconsider in detail the physics
 | 
|---|
 | 739 | potential of the SPL Super Beam.
 | 
|---|
 | 740 | %
 | 
|---|
 | 741 | Both the appearance and the disappearance channels are used. For the
 | 
|---|
 | 742 | spectral analysis we use 10 bins of 100~MeV in the interval $0 < E_\nu
 | 
|---|
 | 743 | < 1$~GeV, applying the same migration matrices as for the \BB\ to take
 | 
|---|
 | 744 | into account properly the neutrino energy reconstruction. As ultimate
 | 
|---|
 | 745 | goal suggested in Ref.~\cite{T2K} a 2\% systematical error is used as
 | 
|---|
 | 746 | default both for signal and background, this would be achieved by a
 | 
|---|
 | 747 | special care of the design of the close position. However, we discuss
 | 
|---|
 | 748 | also how a 5\% systematical error affects the sensitivities.
 | 
|---|
 | 749 | %
 | 
|---|
 | 750 | Using neutrino cross-sections on water from Ref.~\cite{Nuance}, the
 | 
|---|
 | 751 | number of expected $\nu_\mu$ charged current is about $98$ per
 | 
|---|
 | 752 | kt~yr. In Fig.~\ref{fig:fluxComparison} we compare the fluxes from the
 | 
|---|
 | 753 | SPL to the one from the \BB.
 | 
|---|
 | 754 | 
 | 
|---|
 | 755 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 756 | \subsection{The atmospheric neutrino analysis}
 | 
|---|
 | 757 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 758 | \label{sec:atm-details}
 | 
|---|
 | 759 | 
 | 
|---|
 | 760 | The simulation of atmospheric neutrino data in MEMPHYS is based on the
 | 
|---|
 | 761 | analysis presented in Ref.~\cite{Huber:2005ep}, with the following
 | 
|---|
 | 762 | differences:
 | 
|---|
 | 763 | %
 | 
|---|
 | 764 | \begin{itemize}
 | 
|---|
 | 765 |   \item We replace the neutrino fluxes at Kamioka with those at Gran
 | 
|---|
 | 766 |     Sasso. We use the Honda calculations~\cite{Honda:2004yz}, which
 | 
|---|
 | 767 |     unfortunately are not yet available for the Fr\'ejus
 | 
|---|
 | 768 |     site. However, since the fluxes increase with the geomagnetic
 | 
|---|
 | 769 |     latitude and Fr\'ejus is northern than Gran Sasso, our choice is
 | 
|---|
 | 770 |     conservative.
 | 
|---|
 | 771 |     
 | 
|---|
 | 772 |   \item We take into account the specific geometry of the MEMPHYS
 | 
|---|
 | 773 |     detector. This is particularly important to properly separate
 | 
|---|
 | 774 |     fully contained from partially contained events, as well as
 | 
|---|
 | 775 |     stopping muon from through-going muon events.
 | 
|---|
 | 776 |     
 | 
|---|
 | 777 |   \item We divide our total data sample into 420 different bins:
 | 
|---|
 | 778 |     fully contained single-ring events, further subdivided according
 | 
|---|
 | 779 |     to flavor ($e$-like or $\mu$-like), lepton momentum (8 bins:
 | 
|---|
 | 780 |     0.1--0.3, 0.3--0.5, 0.5--1, 1--2, 2--3, 3--5, 5--8,
 | 
|---|
 | 781 |     8--$\infty$~GeV) and lepton direction (20 bins in zenith angle);
 | 
|---|
 | 782 | %
 | 
|---|
 | 783 |     fully contained multi-ring events, further subdivided according to
 | 
|---|
 | 784 |     flavor ($e$-like or $\mu$-like), reconstructed neutrino energy (3
 | 
|---|
 | 785 |     bins: 0--1.33, 1.33--5, 5--$\infty$~GeV) and lepton direction (10
 | 
|---|
 | 786 |     bins in zenith angle);
 | 
|---|
 | 787 | %       
 | 
|---|
 | 788 |     partially contained $\mu$-like events, divided into 20 zenith bins;
 | 
|---|
 | 789 | %       
 | 
|---|
 | 790 |     up-going muons, divided into stopping and through-going events, and in
 | 
|---|
 | 791 |     10 zenith bins each.
 | 
|---|
 | 792 | 
 | 
|---|
 | 793 |     \item We include in our calculations the neutral-current
 | 
|---|
 | 794 |       contamination of each bin. To this extent we assume that the
 | 
|---|
 | 795 |       ratio between neural-current and \emph{unoscillated}
 | 
|---|
 | 796 |       charged-current events in MEMPHYS is the same as in
 | 
|---|
 | 797 |       Super-Kamiokande, and we take this ratio from
 | 
|---|
 | 798 |       Ref.~\cite{Ashie:2005ik}.
 | 
|---|
 | 799 |       
 | 
|---|
 | 800 |     \item We consider also multi-ring events, which we define
 | 
|---|
 | 801 |       as fully contained charged-current events which are \emph{not}
 | 
|---|
 | 802 |       tagged as single-ring. Again, we assume that the survival
 | 
|---|
 | 803 |       efficiency and the NC contamination are the same as for
 | 
|---|
 | 804 |       Super-Kamiokande~\cite{Ashie:2005ik}.
 | 
|---|
 | 805 | \end{itemize}
 | 
|---|
 | 806 | 
 | 
|---|
 | 807 | The expected number of contained events is given by:
 | 
|---|
 | 808 | %
 | 
|---|
 | 809 | \begin{multline} \label{eq:contained}
 | 
|---|
 | 810 |     N_b(\vec\omega) = N_b^\text{NC} +
 | 
|---|
 | 811 |     n_\text{tgt} T \sum_{\alpha,\beta,\pm}
 | 
|---|
 | 812 |     \int_0^\infty dh \int_{-1}^{+1} dc_\nu
 | 
|---|
 | 813 |     \int_{\Emin}^\infty dE_\nu \int_{\Emin}^{E_\nu} dE_l
 | 
|---|
 | 814 |     \int_{-1}^{+1} dc_a \int_0^{2\pi} d\varphi_a
 | 
|---|
 | 815 |     \\
 | 
|---|
 | 816 |     \frac{d^3 \Phi_\alpha^\pm}{dE_\nu \, dc_\nu \, dh}(E_\nu, c_\nu, h)
 | 
|---|
 | 817 |     \, P_{\alpha\to\beta}^\pm(E_\nu, c_\nu, h \,|\, \vec\omega)
 | 
|---|
 | 818 |     \, \frac{d^2\sigma_\beta^\pm}{dE_l \, dc_a}(E_\nu, E_l, c_a)
 | 
|---|
 | 819 |     \, \varepsilon_\beta^b(E_l, c_l(c_\nu, c_a, \varphi_a))
 | 
|---|
 | 820 |     \,,
 | 
|---|
 | 821 | \end{multline}
 | 
|---|
 | 822 | %
 | 
|---|
 | 823 | where $P_{\alpha\to\beta}^+$ ($P_{\alpha\to\beta}^-$) is the
 | 
|---|
 | 824 | $\nu_\alpha \to \nu_\beta$ ($\bar{\nu}_\alpha \to \bar{\nu}_\beta$)
 | 
|---|
 | 825 | conversion probability for given values of the neutrino energy
 | 
|---|
 | 826 | $E_\nu$, the cosine $c_\nu$ of the angle between the incoming neutrino
 | 
|---|
 | 827 | and the vertical direction, the production altitude $h$, and the
 | 
|---|
 | 828 | neutrino oscillation parameters $\vec\omega$. We calculate the
 | 
|---|
 | 829 | conversion probability numerically in the general three-flavor
 | 
|---|
 | 830 | framework taking into account matter effects from a realistic Earth
 | 
|---|
 | 831 | density profile. Further, $N_b^\text{NC}$ is the neutral-current
 | 
|---|
 | 832 | background for the bin $b$, $n_\text{tgt}$ is the number of targets,
 | 
|---|
 | 833 | $T$ is the experiment running time, $\Phi_\alpha^+$ ($\Phi_\alpha^-$)
 | 
|---|
 | 834 | is the flux of atmospheric neutrinos (antineutrinos) of type $\alpha$,
 | 
|---|
 | 835 | and $\sigma_\beta^+$ ($\sigma_\beta^-$) is the charged-current
 | 
|---|
 | 836 | neutrino- (antineutrino-) nucleon interaction cross section.
 | 
|---|
 | 837 | %
 | 
|---|
 | 838 | The variable $E_l$ is the energy of the final lepton of type $\beta$,
 | 
|---|
 | 839 | while $c_a$ and $\varphi_a$ parametrize the opening angle between the
 | 
|---|
 | 840 | incoming neutrino and the final lepton directions as determined by the
 | 
|---|
 | 841 | kinematics of the neutrino interaction.
 | 
|---|
 | 842 | %
 | 
|---|
 | 843 | Finally, $\varepsilon_\beta^b$ gives the probability that a charged
 | 
|---|
 | 844 | lepton of type $\beta$, energy $E_l$ and direction $c_l$ contributes
 | 
|---|
 | 845 | to the bin $b$.
 | 
|---|
 | 846 | 
 | 
|---|
 | 847 | Up-going muon events are calculated as follows:
 | 
|---|
 | 848 | %
 | 
|---|
 | 849 | \begin{multline} \label{eq:upgoing}
 | 
|---|
 | 850 |     N_b(\vec\omega) = \rho_\text{rock} T \sum_{\alpha,\pm} 
 | 
|---|
 | 851 |     \int_0^\infty dh \int_{-1}^{+1} dc_\nu
 | 
|---|
 | 852 |     \int_{\Emin}^\infty dE_\nu 
 | 
|---|
 | 853 |     \int_{\Emin}^{E_\nu} dE^0_\mu \int_{\Emin}^{E^0_\mu} d\Efin_\mu
 | 
|---|
 | 854 |     \int_{-1}^{+1} dc_a \int_0^{2\pi} d\varphi_a
 | 
|---|
 | 855 |     \\
 | 
|---|
 | 856 |     \frac{d^3 \Phi_\alpha^\pm}{dE_\nu \, dc_\nu \, dh}(E_\nu, c_\nu, h)
 | 
|---|
 | 857 |     \, P_{\alpha\to\mu}^\pm(E_\nu, c_\nu, h \,|\, \vec\omega)
 | 
|---|
 | 858 |     \, \frac{d^2\sigma_\mu^\pm}{dE^0_\mu \, dc_a}(E_\nu, dE^0_\mu, c_a)
 | 
|---|
 | 859 |     \\
 | 
|---|
 | 860 |     \times R_\text{rock}(E^0_\mu,\Efin_\mu)
 | 
|---|
 | 861 |     \, \mathcal{A}_\text{eff}^b(\Efin_\mu,
 | 
|---|
 | 862 |     c_l(c_\nu, c_a, \varphi_a)) \,,
 | 
|---|
 | 863 | \end{multline}
 | 
|---|
 | 864 | %
 | 
|---|
 | 865 | where $\rho_\text{rock}$ is the density of targets in standard rock,
 | 
|---|
 | 866 | $R_\text{rock}$ is the effective muon range~\cite{Lipari:1991ut} for a
 | 
|---|
 | 867 | muon which is produced with energy $E^0_\mu$ and reaches the detector
 | 
|---|
 | 868 | with energy $\Efin_\mu$, and $\mathcal{A}_\text{eff}^b$ is the
 | 
|---|
 | 869 | effective area for the bin $b$. The other variables and physical
 | 
|---|
 | 870 | quantities are the same as for contained events.
 | 
|---|
 | 871 | 
 | 
|---|
 | 872 | The statistical analysis is based on the pull method, as described in
 | 
|---|
 | 873 | Ref.~\cite{Gonzalez-Garcia:2004wg}. In our analysis we include three
 | 
|---|
 | 874 | different kind of experimental uncertainties:
 | 
|---|
 | 875 | %
 | 
|---|
 | 876 | Flux uncertainties: total normalization (20\%), tilt factor (5\%),
 | 
|---|
 | 877 | zenith angle (5\%), $\nu/\bar\nu$ ratio (5\%), and $\mu/e$ ratio
 | 
|---|
 | 878 | (5\%);
 | 
|---|
 | 879 | %    
 | 
|---|
 | 880 | cross-section uncertainties: total normalization (15\%) and $\mu/e$
 | 
|---|
 | 881 | ratio (1\%) for each type of charged-current interaction
 | 
|---|
 | 882 | (quasi-elastic, one-pion production, and deep-inelastic scattering),
 | 
|---|
 | 883 | and total normalization (15\%) for the neutral-current contributions;
 | 
|---|
 | 884 | %    
 | 
|---|
 | 885 | systematic uncertainties: same as in previous analyses, details are
 | 
|---|
 | 886 | given in the Appendix of Ref.~\cite{Gonzalez-Garcia:2004wg}. In
 | 
|---|
 | 887 | addition, we assume independent normalization uncertainties (20\%) for
 | 
|---|
 | 888 | $e$-like and $\mu$-like multi-ring events.
 | 
|---|
 | 889 | %
 | 
|---|
 | 890 | Since we are dividing our data sample into a large number of bins, it
 | 
|---|
 | 891 | is important to use Poisson statistics as some of the bins contain
 | 
|---|
 | 892 | only a few number of events. We therefore write our $\chi^2$ as:
 | 
|---|
 | 893 | %
 | 
|---|
 | 894 | \begin{equation} \label{eq:poisson}
 | 
|---|
 | 895 |     \chi^2(\vec\omega) = \min_{\vec\xi} \left[ 2 \sum_b \left(
 | 
|---|
 | 896 |     N_b^\text{th}(\vec\omega,\, \vec\xi)
 | 
|---|
 | 897 |     - N_b^\text{ex} + N_b^\text{ex} \ln\frac{N_b^\text{ex}}
 | 
|---|
 | 898 |     {N_b^\text{th}(\vec\omega,\, \vec\xi)} \right) 
 | 
|---|
 | 899 |     + \sum_n \xi_n^2 \right] \,,
 | 
|---|
 | 900 | \end{equation}
 | 
|---|
 | 901 | %
 | 
|---|
 | 902 | where the number of events for a given value of the pulls $\vec\xi$ is
 | 
|---|
 | 903 | given by:
 | 
|---|
 | 904 | %
 | 
|---|
 | 905 | \begin{equation} \label{eq:theopulls}
 | 
|---|
 | 906 |     N_b^\text{th}(\vec\omega,\, \vec\xi) = N_b^\text{th}(\vec\omega) \,
 | 
|---|
 | 907 |     \exp\left( \sum_n \pi_b^n(\vec\omega)\, \xi_n \right) \,.
 | 
|---|
 | 908 | \end{equation}
 | 
|---|
 | 909 | %
 | 
|---|
 | 910 | The use of an exponential dependence on the pulls in
 | 
|---|
 | 911 | Eq.~\eqref{eq:theopulls}, rather than the usual linear dependence,
 | 
|---|
 | 912 | ensures that the theoretical predictions remain positive for
 | 
|---|
 | 913 | \emph{any} value of the pulls, thus avoiding numerical inconsistencies
 | 
|---|
 | 914 | during the pull minimization procedure.
 | 
|---|
 | 915 | 
 | 
|---|
 | 916 |  
 | 
|---|
 | 917 | 
 | 
|---|
 | 918 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 919 | \section{Degeneracies}
 | 
|---|
 | 920 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 921 | \label{sec:degeneracies}
 | 
|---|
 | 922 | 
 | 
|---|
 | 923 | 
 | 
|---|
 | 924 | A characteristic feature in the analysis of future LBL experiments is
 | 
|---|
 | 925 | the presence of {\it parameter degeneracies}.  Due to the inherent
 | 
|---|
 | 926 | three-flavor structure of the oscillation probabilities, for a given
 | 
|---|
 | 927 | experiment in general several disconnected regions in the
 | 
|---|
 | 928 | multi-dimensional space of oscillation parameters will be
 | 
|---|
 | 929 | present. Traditionally these degeneracies are referred to in the
 | 
|---|
 | 930 | following way:
 | 
|---|
 | 931 | %
 | 
|---|
 | 932 | \begin{itemize}
 | 
|---|
 | 933 | \item
 | 
|---|
 | 934 | The {\it intrinsic} or
 | 
|---|
 | 935 | ($\delCP,\theta_{13}$)-degeneracy~\cite{Burguet-Castell:2001ez}:
 | 
|---|
 | 936 | For a measurement based on the $\nu_\mu \to \nu_e$ oscillation probability for
 | 
|---|
 | 937 | neutrinos and antineutrinos two disconnected solutions appear in the
 | 
|---|
 | 938 | ($\delCP,\theta_{13}$) plane.
 | 
|---|
 | 939 | \item
 | 
|---|
 | 940 | The {\it hierarchy} or sign($\Delta
 | 
|---|
 | 941 | m^2_{31}$)-degeneracy~\cite{Minakata:2001qm}: The two solutions
 | 
|---|
 | 942 | corresponding to the two signs of $\Delta m^2_{31}$ appear in general
 | 
|---|
 | 943 | at different values of $\delCP$ and $\theta_{13}$.
 | 
|---|
 | 944 | \item
 | 
|---|
 | 945 | The {\it octant} or $\theta_{23}$-degeneracy~\cite{Fogli:1996pv}:
 | 
|---|
 | 946 | Since LBL experiments are sensitive mainly to $\sin^22\theta_{23}$ it
 | 
|---|
 | 947 | is difficult to distinguish the two octants $\theta_{23} < \pi/4$ and
 | 
|---|
 | 948 | $\theta_{23} > \pi/4$.  Again, the solutions corresponding to
 | 
|---|
 | 949 | $\theta_{23}$ and $\pi/2 - \theta_{23}$ appear in general at different
 | 
|---|
 | 950 | values of $\delCP$ and $\theta_{13}$.
 | 
|---|
 | 951 | \end{itemize}
 | 
|---|
 | 952 | %
 | 
|---|
 | 953 | This leads to an eight-fold ambiguity in $\theta_{13}$ and
 | 
|---|
 | 954 | $\delCP$~\cite{Barger:2001yr}, and hence degeneracies provide a
 | 
|---|
 | 955 | serious limitation for the determination of $\theta_{13}$, $\delCP$,
 | 
|---|
 | 956 | and the sign of $\Delta m^2_{31}$. Recent discussions of degeneracies
 | 
|---|
 | 957 | can be found for example in
 | 
|---|
 | 958 | Refs.~\cite{Huber:2002mx,Huber:2005ep,Yasuda:2004gu,Ishitsuka:2005qi};
 | 
|---|
 | 959 | degeneracies in the context of CERN--Fr\'ejus \BB\ and SPL have been
 | 
|---|
 | 960 | considered previously in Ref.~\cite{Donini:2004hu}.
 | 
|---|
 | 961 | %
 | 
|---|
 | 962 | In Fig.~\ref{fig:degeneracies} we illustrate the effect of
 | 
|---|
 | 963 | degeneracies for the \BB, SPL, and T2HK experiments. Assuming the
 | 
|---|
 | 964 | true parameter values $\delta_\mathrm{CP} = -0.85 \pi$,
 | 
|---|
 | 965 | $\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$ we show the
 | 
|---|
 | 966 | allowed regions in the plane of $\stheta$ and $\delCP$ taking into
 | 
|---|
 | 967 | account the solutions with the wrong hierarchy and the wrong octant of
 | 
|---|
 | 968 | $\theta_{23}$.
 | 
|---|
 | 969 | 
 | 
|---|
 | 970 | \begin{figure}[!t]
 | 
|---|
 | 971 | \centering
 | 
|---|
 | 972 | \includegraphics[width=0.95\textwidth]{./fig5.eps}
 | 
|---|
 | 973 | %
 | 
|---|
 | 974 |   \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
 | 
|---|
 | 975 |   $\delta_\mathrm{CP}$ for LBL data alone (contour lines) and LBL+ATM
 | 
|---|
 | 976 |   data combined (colored regions). $\mathrm{H^{tr/wr} (O^{tr/wr})}$
 | 
|---|
 | 977 |   refers to solutions with the true/wrong mass hierarchy (octant of
 | 
|---|
 | 978 |   $\theta_{23}$). The true parameter values are $\delta_\mathrm{CP} =
 | 
|---|
 | 979 |   -0.85 \pi$, $\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$,
 | 
|---|
 | 980 |   and the values from Eq.~(\ref{eq:default-params}) for the other
 | 
|---|
 | 981 |   parameters.}
 | 
|---|
 | 982 | \label{fig:degeneracies}
 | 
|---|
 | 983 | \end{figure}
 | 
|---|
 | 984 | 
 | 
|---|
 | 985 | 
 | 
|---|
 | 986 | \begin{figure}[!t]
 | 
|---|
 | 987 | \centering
 | 
|---|
 | 988 | \includegraphics[width=0.9\textwidth]{./fig6.eps}
 | 
|---|
 | 989 | %
 | 
|---|
 | 990 |   \mycaption{Resolving degeneracies in SPL by successively using the
 | 
|---|
 | 991 |   appearance rate measurement, disappearance channel rate and
 | 
|---|
 | 992 |   spectrum, spectral information in the appearance channel, and
 | 
|---|
 | 993 |   atmospheric neutrinos.  Allowed regions in $\sin^22\theta_{13}$ and
 | 
|---|
 | 994 |   $\delta_\mathrm{CP}$ are shown at 95\%~CL, and $\mathrm{H^{tr/wr}
 | 
|---|
 | 995 |   (O^{tr/wr})}$ refers to solutions with the true/wrong mass hierarchy
 | 
|---|
 | 996 |   (octant of $\theta_{23}$). The true parameter values are
 | 
|---|
 | 997 |   $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} = 0.03$,
 | 
|---|
 | 998 |   $\sin^2\theta_{23} = 0.6$, and the values from
 | 
|---|
 | 999 |   Eq.~(\ref{eq:default-params}) for the other parameters.}
 | 
|---|
 | 1000 | \label{fig:degeneracies_SPL}
 | 
|---|
 | 1001 | \end{figure}
 | 
|---|
 | 1002 | 
 | 
|---|
 | 1003 | As visible in Fig.~\ref{fig:degeneracies} for the
 | 
|---|
 | 1004 | Super Beam experiments SPL and T2HK there is only a four-fold
 | 
|---|
 | 1005 | degeneracy related to sign($\Delta m^2_{31}$) and the octant of
 | 
|---|
 | 1006 | $\theta_{23}$, whereas the intrinsic degeneracy can be resolved. 
 | 
|---|
 | 1007 | %
 | 
|---|
 | 1008 | Several pieces of information contribute to this effect, as we
 | 
|---|
 | 1009 | illustrate at the example of SPL in Fig.~\ref{fig:degeneracies_SPL}.
 | 
|---|
 | 1010 | The dashed curves in the left panel of this figure show the allowed
 | 
|---|
 | 1011 | regions for only the appearance measurement (for neutrinos and
 | 
|---|
 | 1012 | antineutrinos) without spectral information, i.e., just a counting
 | 
|---|
 | 1013 | experiment. In this case the eight-fold degeneracy is present in its
 | 
|---|
 | 1014 | full beauty, and one finds two solutions (corresponding to the
 | 
|---|
 | 1015 | intrinsic degeneracy) for each choice of sign($\Delta m^2_{31}$) and
 | 
|---|
 | 1016 | the octant of $\theta_{23}$. Moreover, the allowed regions are
 | 
|---|
 | 1017 | relatively large. For the thin solid curves the information from the
 | 
|---|
 | 1018 | disappearance rate is added. The main effect is to decrease the size
 | 
|---|
 | 1019 | of the allowed regions in $\stheta$. This is especially pronounced for
 | 
|---|
 | 1020 | the solutions involving the wrong octant of $\theta_{23}$, since these
 | 
|---|
 | 1021 | solutions are strongly affected by an uncertainty in $\theta_{23}$
 | 
|---|
 | 1022 | which gets reduced by the disappearance information. Using in addition
 | 
|---|
 | 1023 | to the disappearance rate also the spectrum again decreases the size
 | 
|---|
 | 1024 | of the allowed regions, however, still all eight solutions are present
 | 
|---|
 | 1025 | (compare dashed curves in the right panel).
 | 
|---|
 | 1026 | %
 | 
|---|
 | 1027 | The most relevant effect comes from the inclusion of spectral
 | 
|---|
 | 1028 | information in the appearance channel, as visible from the comparison
 | 
|---|
 | 1029 | of the dashed and thick-solid curves in the right panel of
 | 
|---|
 | 1030 | Fig.~\ref{fig:degeneracies_SPL}. The intrinsic degeneracy gets
 | 
|---|
 | 1031 | resolved and only four solutions corresponding to the sign and octant
 | 
|---|
 | 1032 | degeneracies are left.\footnote{The inclusion of spectral information
 | 
|---|
 | 1033 | might be the source of possible differences to previous studies, see
 | 
|---|
 | 1034 | e.g.\ Ref.~\cite{Donini:2004hu}.} Note that the thick curves in the
 | 
|---|
 | 1035 | right panel of Fig.~\ref{fig:degeneracies_SPL} correspond to the
 | 
|---|
 | 1036 | regions show in Fig.~\ref{fig:degeneracies} for the SPL.
 | 
|---|
 | 1037 | %
 | 
|---|
 | 1038 | Finally, by the inclusion of information from atmospheric neutrinos
 | 
|---|
 | 1039 | all degeneracies can be resolved in this example, and the true
 | 
|---|
 | 1040 | solution is identified at 95\%~CL (see Sec.~\ref{sec:atmospherics} and
 | 
|---|
 | 1041 | Ref.~\cite{Huber:2005ep} for further discussions of atmospheric
 | 
|---|
 | 1042 | neutrinos).
 | 
|---|
 | 1043 | 
 | 
|---|
 | 1044 | Concerning the \BB\ one observes from Fig.~\ref{fig:degeneracies} that
 | 
|---|
 | 1045 | in this case the ($\delCP,\theta_{13}$)-degeneracy cannot be resolved
 | 
|---|
 | 1046 | and one has to deal with eight distinct solutions. One reason for this
 | 
|---|
 | 1047 | is the absence of precise information on $|\Delta m^2_{31}|$ and
 | 
|---|
 | 1048 | $\sin^22\theta_{23}$ which is provided by the $\nu_\mu$ disappearance
 | 
|---|
 | 1049 | in Super Beam experiments but is not available from the \BB. If
 | 
|---|
 | 1050 | external information on these parameters at the level of 3\% is
 | 
|---|
 | 1051 | included the allowed regions in Fig.~\ref{fig:degeneracies} are
 | 
|---|
 | 1052 | significantly reduced. However, still all eight solutions are present,
 | 
|---|
 | 1053 | which indicates that for the \BB\ spectral information is not
 | 
|---|
 | 1054 | efficient enough to resolve the ($\delCP,\theta_{13}$)-degeneracy, and
 | 
|---|
 | 1055 | in this case only the inclusion of atmospheric neutrino data allows a
 | 
|---|
 | 1056 | nearly complete resolution of the degeneracies.
 | 
|---|
 | 1057 | 
 | 
|---|
 | 1058 | An important observation from Fig.~\ref{fig:degeneracies} is that
 | 
|---|
 | 1059 | degeneracies have only a very small impact on the CP violation
 | 
|---|
 | 1060 | discovery, in the sense that if the true solution is CP violating also
 | 
|---|
 | 1061 | the fake solutions are located at CP violating values of
 | 
|---|
 | 1062 | $\delCP$. Indeed, since for the relatively short baselines in the
 | 
|---|
 | 1063 | experiments under consideration matter effects are very small, the
 | 
|---|
 | 1064 | sign($\Delta m^2_{31}$)-degenerate solution is located within good
 | 
|---|
 | 1065 | approximation at $\delCP' \approx \pi -
 | 
|---|
 | 1066 | \delCP$~\cite{Minakata:2001qm}. Therefore, although degeneracies
 | 
|---|
 | 1067 | strongly affect the determination of $\theta_{13}$ and $\delCP$ they
 | 
|---|
 | 1068 | have only a small impact on the CP violation discovery potential.
 | 
|---|
 | 1069 | Furthermore, as clear from Fig.~\ref{fig:degeneracies} the sign($\Delta
 | 
|---|
 | 1070 | m^2_{31}$) degeneracy has practically no effect on the $\theta_{13}$
 | 
|---|
 | 1071 | measurement, whereas the octant degeneracy has very little impact on
 | 
|---|
 | 1072 | the determination of $\delCP$.
 | 
|---|
 | 1073 | 
 | 
|---|
 | 1074 | \begin{figure}[!t]
 | 
|---|
 | 1075 | \centering
 | 
|---|
 | 1076 | \includegraphics[width=0.9\textwidth]{./fig7.eps}
 | 
|---|
 | 1077 | %
 | 
|---|
 | 1078 |   \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
 | 
|---|
 | 1079 |   $\delta_\mathrm{CP}$ for 5~years data (neutrinos only) from \BB,
 | 
|---|
 | 1080 |   SPL, and the combination. $\mathrm{H^{tr/wr} (O^{tr/wr})}$ refers to
 | 
|---|
 | 1081 |   solutions with the true/wrong mass hierarchy (octant of
 | 
|---|
 | 1082 |   $\theta_{23}$). For the colored regions in the left panel also
 | 
|---|
 | 1083 |   5~years of atmospheric data are included; the solution with the
 | 
|---|
 | 1084 |   wrong hierarchy has $\Delta\chi^2 = 4$. The true parameter
 | 
|---|
 | 1085 |   values are $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} =
 | 
|---|
 | 1086 |   0.03$, $\sin^2\theta_{23} = 0.6$, and the values from
 | 
|---|
 | 1087 |   Eq.~(\ref{eq:default-params}) for the other parameters. For the \BB\
 | 
|---|
 | 1088 |   only analysis (middle panel) an external accuracy of 2\% (3\%) for
 | 
|---|
 | 1089 |   $|\Delta m^2_{31}|$ ($\theta_{23}$) has been assumed, whereas for
 | 
|---|
 | 1090 |   the left and right panel the default value of 10\% has been used.}
 | 
|---|
 | 1091 | \label{fig:degeneracies_5yrs}
 | 
|---|
 | 1092 | \end{figure}
 | 
|---|
 | 1093 | 
 | 
|---|
 | 1094 | Fig.~\ref{fig:degeneracies} shows also that the fake solutions occur
 | 
|---|
 | 1095 | at similar locations in the ($\stheta$, $\delCP$) plane for \BB\ and
 | 
|---|
 | 1096 | SPL. Therefore, as noted in Ref.~\cite{Donini:2004hu}, in this sense
 | 
|---|
 | 1097 | the two experiments are not complementary, and the combination of
 | 
|---|
 | 1098 | 10~years of \BB\ and SPL data is not very effective in resolving
 | 
|---|
 | 1099 | degeneracies. This is obvious since the baseline is the same and the
 | 
|---|
 | 1100 | neutrino energies are similar.
 | 
|---|
 | 1101 | %
 | 
|---|
 | 1102 | Note however, that the \BB\ looks for $\nu_e\to\nu_\mu$ appearance,
 | 
|---|
 | 1103 | whereas in SPL the T-conjugate channel $\nu_\mu\to\nu_e$ is observed.
 | 
|---|
 | 1104 | Assuming CPT invariance the relation $P_{\nu_\alpha\to\nu_\beta} =
 | 
|---|
 | 1105 | P_{\bar\nu_\beta\to\bar\nu_\alpha}$ holds, which implies that the
 | 
|---|
 | 1106 | antineutrino measurement can be replaced by a measurement in the
 | 
|---|
 | 1107 | T-conjugate channel.  Hence, if \BB\ and SPL experiments are available
 | 
|---|
 | 1108 | simultaneously the full information can be obtained just from neutrino
 | 
|---|
 | 1109 | data, and in principle the (time consuming) antineutrino measurement 
 | 
|---|
 | 1110 | is not necessary. As shown in Fig.~\ref{fig:degeneracies_5yrs} the
 | 
|---|
 | 1111 | combination of 5~yrs neutrino data from the \BB\ with 5~yrs of
 | 
|---|
 | 1112 | neutrino data from SPL leads to a result very close to the 10~yrs
 | 
|---|
 | 1113 | neutrino+antineutrino data from one experiment alone. Hence, if \BB\
 | 
|---|
 | 1114 | and SPL experiments are available simultaneously the data taking
 | 
|---|
 | 1115 | period is reduced approximately by a factor of 2 with respect to a
 | 
|---|
 | 1116 | single experiment. This synergy is discussed later in
 | 
|---|
 | 1117 | Sec.~\ref{sec:synergies-beams} in the context of the $\theta_{13}$ and
 | 
|---|
 | 1118 | CP violation discovery potentials.
 | 
|---|
 | 1119 | 
 | 
|---|
 | 1120 | 
 | 
|---|
 | 1121 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1122 | \section{Physics potential}
 | 
|---|
 | 1123 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1124 | \label{sec:sensitivities}
 | 
|---|
 | 1125 | 
 | 
|---|
 | 1126 | \subsection{Sensitivity to the atmospheric parameters}
 | 
|---|
 | 1127 | \label{sec:atm}
 | 
|---|
 | 1128 | 
 | 
|---|
 | 1129 | The $\nu_\mu$ disappearance channel available in the Super Beam
 | 
|---|
 | 1130 | experiments SPL and T2HK allows a precise determination of the
 | 
|---|
 | 1131 | atmospheric parameters $|\Delta m^2_{31}|$ and $\sin^22\theta_{23}$,
 | 
|---|
 | 1132 | see, e.g., Refs.~\cite{Antusch:2004yx,Minakata:2004pg,Donini:2005db}
 | 
|---|
 | 1133 | for recent analyses). Fig.~\ref{fig:atm-params} illustrates the
 | 
|---|
 | 1134 | improvement on these parameters by Super Beam experiments with respect
 | 
|---|
 | 1135 | to the present knowledge from SK atmospheric and K2K data. We show the
 | 
|---|
 | 1136 | allowed regions at 99\%~CL for T2K-I, SPL, and T2HK, where in all
 | 
|---|
 | 1137 | three cases 5~years of neutrino data are assumed. T2K-I corresponds to
 | 
|---|
 | 1138 | the phase~I of the T2K experiment with a beam power of 0.77~MW and the
 | 
|---|
 | 1139 | Super-Kamiokande detector as target~\cite{T2K}. In Tab.~\ref{tab:atm-params} we
 | 
|---|
 | 1140 | give the corresponding relative accuracies at 3$\sigma$ for $|\Delta
 | 
|---|
 | 1141 | m^2_{31}|$ and $\sin^2\theta_{23}$.
 | 
|---|
 | 1142 | 
 | 
|---|
 | 1143 | \begin{figure}[!t]
 | 
|---|
 | 1144 | \centering
 | 
|---|
 | 1145 |   \includegraphics[width=0.55\textwidth]{./fig8.eps}
 | 
|---|
 | 1146 |   \mycaption{\label{fig:atm-params} Allowed regions of $\Delta
 | 
|---|
 | 1147 |   m^2_{31}$ and $\sin^2\theta_{23}$ at 99\%~CL (2 d.o.f.)  after 5~yrs
 | 
|---|
 | 1148 |   of neutrino data taking for SPL, T2K phase~I, T2HK, and the
 | 
|---|
 | 1149 |   combination of SPL with 5~yrs of atmospheric neutrino data in the
 | 
|---|
 | 1150 |   MEMPHYS detector. For the true parameter values we use $\Delta
 | 
|---|
 | 1151 |   m^2_{31} = 2.2\, (2.6) \times 10^{-3}~\mathrm{eV}^2$ and
 | 
|---|
 | 1152 |   $\sin^2\theta_{23} = 0.5 \, (0.37)$ for the test point 1 (2), and
 | 
|---|
 | 1153 |   $\theta_{13} = 0$ and the solar parameters as given in
 | 
|---|
 | 1154 |   Eq.~(\ref{eq:default-params}). The shaded region corresponds to the
 | 
|---|
 | 1155 |   99\%~CL region from present SK and K2K data~\cite{Maltoni:2004ei}.}
 | 
|---|
 | 1156 | \end{figure}
 | 
|---|
 | 1157 | 
 | 
|---|
 | 1158 | 
 | 
|---|
 | 1159 | \begin{table}[!t]
 | 
|---|
 | 1160 |   \centering
 | 
|---|
 | 1161 |   \begin{tabular}{lcrrr}
 | 
|---|
 | 1162 |   \hline\noalign{\smallskip}
 | 
|---|
 | 1163 |     & True values  & T2K-I & SPL & T2HK \\
 | 
|---|
 | 1164 |   \noalign{\smallskip}\hline\noalign{\smallskip}
 | 
|---|
 | 1165 |   $\Delta m^2_{31}$   & $2.2\cdot 10^{-3}$ eV$^2$ & 4.7\% & 3.2\% & 1.1\% \\
 | 
|---|
 | 1166 |   $\sin^2\theta_{23}$ & $0.5$                     & 20\%  & 20\%  & 6\%   \\
 | 
|---|
 | 1167 |   \noalign{\smallskip}\hline\noalign{\smallskip}
 | 
|---|
 | 1168 |   $\Delta m^2_{31}$   & $2.6\cdot 10^{-3}$ eV$^2$ & 4.4\% & 2.5\% & 0.7\% \\
 | 
|---|
 | 1169 |   $\sin^2\theta_{23}$ & $0.37$                    & 8.9\% & 3.1\% & 0.8\% \\
 | 
|---|
 | 1170 |   \noalign{\smallskip}\hline
 | 
|---|
 | 1171 |   \end{tabular}
 | 
|---|
 | 1172 |   \mycaption{Accuracies at $3\sigma$ on the atmospheric parameters
 | 
|---|
 | 1173 |   $|\Delta m^2_{31}|$ and $\sin^2\theta_{23}$ for 5 years of neutrino
 | 
|---|
 | 1174 |   data from T2K-I, SPL, and T2HK for the two test points shown in
 | 
|---|
 | 1175 |   Fig.~\ref{fig:atm-params} ($\theta^\mathrm{true}_{13} = 0$). The
 | 
|---|
 | 1176 |   accuracy for a parameter $x$ is defined as $(x^\mathrm{upper} -
 | 
|---|
 | 1177 |   x^\mathrm{lower})/(2 x^\mathrm{true})$, where $x^\mathrm{upper}$
 | 
|---|
 | 1178 |   ($x^\mathrm{lower}$) is the upper (lower) bound at 3$\sigma$ for
 | 
|---|
 | 1179 |   1~d.o.f.\ obtained by projecting the contour $\Delta \chi^2 = 9$
 | 
|---|
 | 1180 |   onto the $x$-axis. For the accuracies for test point~2 the octant
 | 
|---|
 | 1181 |   degenerate solution is neglected.\label{tab:atm-params}}
 | 
|---|
 | 1182 | \end{table}
 | 
|---|
 | 1183 | 
 | 
|---|
 | 1184 | From the figure and the table it becomes evident that the T2K setups
 | 
|---|
 | 1185 | are very good in measuring the atmospheric parameters, and only a
 | 
|---|
 | 1186 | modest improvement is possible with SPL with respect to T2K phase~I.
 | 
|---|
 | 1187 | T2HK provides an excellent sensitivity for these parameters, and for
 | 
|---|
 | 1188 | the example of the test point~2 sub-percent accuracies are obtained at
 | 
|---|
 | 1189 | 3$\sigma$. The disadvantage of SPL with respect to T2HK is the
 | 
|---|
 | 1190 | limited spectral information. Because of the lower beam energy
 | 
|---|
 | 1191 | nuclear Fermi motion is a severe limitation for energy reconstruction
 | 
|---|
 | 1192 | in SPL, whereas in T2K the somewhat higher energy allows an efficient
 | 
|---|
 | 1193 | use of spectral information of quasi-elastic events. Indeed, due to
 | 
|---|
 | 1194 | the large number of events in the disappearance channel (cf.\
 | 
|---|
 | 1195 | Tab.~\ref{tab:events}) the measurement is completely dominated by the
 | 
|---|
 | 1196 | spectrum, and even increasing the normalization uncertainty up to
 | 
|---|
 | 1197 | 100\% has very little impact on the allowed regions. The effect of
 | 
|---|
 | 1198 | spectral information on the disappearance measurement is
 | 
|---|
 | 1199 | discussed in some detail in Ref.~\cite{Donini:2005db}.
 | 
|---|
 | 1200 | 
 | 
|---|
 | 1201 | For the test point~1, with maximal mixing for $\theta_{23}$, rather
 | 
|---|
 | 1202 | poor accuracies of $\sim20\%$ for T2K-I and SPL, and $6\%$ for T2HK
 | 
|---|
 | 1203 | are obtained for $\sin^2\theta_{23}$. The reason is that in the
 | 
|---|
 | 1204 | disappearance channel $\sin^22\theta_{23}$ is measured with high
 | 
|---|
 | 1205 | precision, which translates to rather large errors for
 | 
|---|
 | 1206 | $\sin^2\theta_{23}$ if $\theta_{23} = \pi/4$~\cite{Minakata:2004pg}.
 | 
|---|
 | 1207 | %
 | 
|---|
 | 1208 | For the same reason it is difficult to resolve the octant degeneracy,
 | 
|---|
 | 1209 | and for the test point~2, with a non-maximal value of
 | 
|---|
 | 1210 | $\sin^2\theta_{23} = 0.37$, for all three LBL experiments the
 | 
|---|
 | 1211 | degenerate solution is present around $\sin^2\theta_{23} = 0.63$.
 | 
|---|
 | 1212 | %
 | 
|---|
 | 1213 | As pointed out in Refs.~\cite{Peres:2003wd,Gonzalez-Garcia:2004cu}
 | 
|---|
 | 1214 | atmospheric neutrino data may allow to distinguish between the two
 | 
|---|
 | 1215 | octants of $\theta_{23}$. If 5~years of atmospheric neutrino data in
 | 
|---|
 | 1216 | MEMPHYS are added to the SPL data, the degenerate solution for the
 | 
|---|
 | 1217 | test point~2 can be excluded at more than $5\sigma$ and hence the
 | 
|---|
 | 1218 | octant degeneracy is resolved in this example, see
 | 
|---|
 | 1219 | Sec.~\ref{sec:atmospherics} for a more detailed discussion.
 | 
|---|
 | 1220 | 
 | 
|---|
 | 1221 | 
 | 
|---|
 | 1222 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1223 | \subsection{The $\theta_{13}$ discovery potential}
 | 
|---|
 | 1224 | \label{sec:th13}
 | 
|---|
 | 1225 | 
 | 
|---|
 | 1226 | If no finite value of $\theta_{13}$ is discovered by the next round of
 | 
|---|
 | 1227 | experiments an important task of the experiments under consideration
 | 
|---|
 | 1228 | here is to push further the sensitivity to this parameter. In this
 | 
|---|
 | 1229 | section we address this problem, where we use to following definition
 | 
|---|
 | 1230 | of the $\theta_{13}$ discovery potential: Data are simulated for a
 | 
|---|
 | 1231 | finite true value of $\stheta$ and a given true value for $\delCP$. If
 | 
|---|
 | 1232 | the $\Delta\chi^2$ of the fit to these data with $\theta_{13} = 0$ is
 | 
|---|
 | 1233 | larger than 9 the corresponding true value of $\theta_{13}$ ``is
 | 
|---|
 | 1234 | discovered at 3$\sigma$''. In other words, the $3\sigma$ discovery
 | 
|---|
 | 1235 | limit as a function of the true $\delCP$ is given by the true value of
 | 
|---|
 | 1236 | $\stheta$ for which $\Delta\chi^2(\theta_{13}=0) = 9$. In the fitting
 | 
|---|
 | 1237 | process we minimize the $\Delta\chi^2$ with respect to $\theta_{12}$,
 | 
|---|
 | 1238 | $\theta_{23}$, $\Delta m^2_{12}$, and $\Delta m^2_{31}$, and in
 | 
|---|
 | 1239 | general one has to test also for degenerate solutions in sign($\Delta
 | 
|---|
 | 1240 | m^2_{31}$) and the octant of $\theta_{23}$.
 | 
|---|
 | 1241 | 
 | 
|---|
 | 1242 | \begin{figure}
 | 
|---|
 | 1243 |   \centering \includegraphics[width=0.9\textwidth]{./fig9.eps}
 | 
|---|
 | 1244 |   \mycaption{$3\sigma$ discovery sensitivity to $\stheta$ for \BB,
 | 
|---|
 | 1245 |   SPL, and T2HK as a function of the true value of \delCP\ (left
 | 
|---|
 | 1246 |   panel) and as a function of the fraction of all possible values of
 | 
|---|
 | 1247 |   \delCP\ (right panel). The width of the bands corresponds to values
 | 
|---|
 | 1248 |   for the systematical errors between 2\% and 5\%. The black curves
 | 
|---|
 | 1249 |   correspond to the combination of \BB\ and SPL with 10~yrs of total
 | 
|---|
 | 1250 |   data taking each for a systematical error of 2\%, and the dashed
 | 
|---|
 | 1251 |   curves show the sensitivity of the \BB\ when the number of ion
 | 
|---|
 | 1252 |   decays/yr are reduced by a factor of two with respect to the values
 | 
|---|
 | 1253 |   given in Tab.~\ref{tab:setups}.\label{fig:th13}}
 | 
|---|
 | 1254 | \end{figure}
 | 
|---|
 | 1255 | 
 | 
|---|
 | 1256 | The discovery limits are shown for \BB, SPL, and T2HK in
 | 
|---|
 | 1257 | Fig.~\ref{fig:th13}. One observes that SPL and T2HK are rather similar
 | 
|---|
 | 1258 | in performance, whereas the \BB\ with our standard fluxes performs
 | 
|---|
 | 1259 | significantly better. For all three facilities a guaranteed discovery
 | 
|---|
 | 1260 | reach of $\stheta \simeq 5\times 10^{-3}$ is obtained, irrespective of
 | 
|---|
 | 1261 | the actual value of \delCP, however, for certain values of \delCP\ the
 | 
|---|
 | 1262 | sensitivity is significantly improved. For SPL and T2HK discovery
 | 
|---|
 | 1263 | limits around $\stheta \simeq 10^{-3}$ are possible for a large
 | 
|---|
 | 1264 | fraction of all possible values of \delCP, whereas for our standard
 | 
|---|
 | 1265 | \BB\ a sensitivity below $\stheta = 4\times 10^{-4}$ is reached for
 | 
|---|
 | 1266 | 80\% of all possible values of \delCP. If 10~years of data from \BB\
 | 
|---|
 | 1267 | and SPL are combined the discovery limit is dominated by the \BB.
 | 
|---|
 | 1268 | %
 | 
|---|
 | 1269 | Let us stress that the \BB\ performance depends crucially on the
 | 
|---|
 | 1270 | neutrino flux intensity, as can be seen from the dashed curves in
 | 
|---|
 | 1271 | Fig.~\ref{fig:th13}, which has been obtained by reducing the number of
 | 
|---|
 | 1272 | ion decays/yr by a factor of two with respect to our standard values
 | 
|---|
 | 1273 | given in Tab.~\ref{tab:setups}. In this case the sensitivity decreases
 | 
|---|
 | 1274 | significantly, but still values slightly better than from the
 | 
|---|
 | 1275 | Super Beam experiments are reached.
 | 
|---|
 | 1276 | 
 | 
|---|
 | 1277 | In Fig.~\ref{fig:th13} we illustrate also the effect of systematical
 | 
|---|
 | 1278 | errors on the $\theta_{13}$ discovery reach. The lower boundary of the
 | 
|---|
 | 1279 | band for each experiment corresponds to a systematical error of 2\%,
 | 
|---|
 | 1280 | whereas the upper boundary is obtained for 5\%. These errors include
 | 
|---|
 | 1281 | the (uncorrelated) normalization uncertainties on the signal as well
 | 
|---|
 | 1282 | as on the background, where the crucial uncertainty is the error on
 | 
|---|
 | 1283 | the background. We find that the \BB\ is basically not affected by
 | 
|---|
 | 1284 | these errors, since the background has a rather different spectral
 | 
|---|
 | 1285 | shape (strongly peaked at low energies) than the signal. The fact
 | 
|---|
 | 1286 | that T2HK is relatively strongly affected by the actual value of the
 | 
|---|
 | 1287 | systematics can by understood by considering the ratio of signal to
 | 
|---|
 | 1288 | the square-root of the background using the numbers of
 | 
|---|
 | 1289 | Tab.~\ref{tab:events}. We shall discuss this issue in more detail in
 | 
|---|
 | 1290 | the next section in the context of the CP violation discovery reach.
 | 
|---|
 | 1291 | 
 | 
|---|
 | 1292 | Let us remark that the $\theta_{13}$ sensitivities are practically not
 | 
|---|
 | 1293 | affected by the sign($\Delta m^2_{31}$)-degeneracy. This is easy to
 | 
|---|
 | 1294 | understand, since the data is fitted with $\theta_{13} = 0$, and in
 | 
|---|
 | 1295 | this case both mass hierarchies lead to very similar event rates. If
 | 
|---|
 | 1296 | the inverted hierarchy is used as the true hierarchy, the peak in the
 | 
|---|
 | 1297 | discovery limit visible in the left panel of Fig.~\ref{fig:th13}
 | 
|---|
 | 1298 | around $\delCP \sim \pi$ moves to $\delCP \sim 0$. However, the
 | 
|---|
 | 1299 | characteristic shape of the curves, and in particular, the sensitivity
 | 
|---|
 | 1300 | as a function of the \delCP-fraction shown in the right panel are
 | 
|---|
 | 1301 | hardly affected by the sign of the true $\Delta m^2_{31}$.
 | 
|---|
 | 1302 | %
 | 
|---|
 | 1303 | In case of a non-maximal value of $\theta_{23}$ the octant-degeneracy
 | 
|---|
 | 1304 | has a minor impact on the $\theta_{13}$ discovery potential, as
 | 
|---|
 | 1305 | illustrated in Fig.~\ref{fig:SPLTheta13Disco} for the SPL. We show the
 | 
|---|
 | 1306 | discovery limit obtained with the true and the fake octant of
 | 
|---|
 | 1307 | $\theta_{23}$ for a true value of $\sin^2\theta_{23}= 0.6$. Let us
 | 
|---|
 | 1308 | note that for true values of $\sin^2\theta_{23} > 0.5$ the
 | 
|---|
 | 1309 | octant-degenerate solution leads to a worse sensitivity to
 | 
|---|
 | 1310 | $\theta_{13}$ (see figure), whereas for $\sin^2\theta_{23} < 0.5$ the
 | 
|---|
 | 1311 | fake solution does not affect the $\theta_{13}$ discovery, since in
 | 
|---|
 | 1312 | this case the sensitivity is increased.
 | 
|---|
 | 1313 | 
 | 
|---|
 | 1314 | \begin{figure}
 | 
|---|
 | 1315 |   \centering
 | 
|---|
 | 1316 |   \includegraphics[width=0.9\textwidth]{./fig10.eps}
 | 
|---|
 | 1317 |   \mycaption{\label{fig:SPLTheta13Disco} $3\sigma$ discovery
 | 
|---|
 | 1318 |   sensitivity to $\stheta$ for the SPL as a function of the true value
 | 
|---|
 | 1319 |   of \delCP\ for $\sin^2\theta_{23}^\mathrm{true} = 0.6$ and true values for
 | 
|---|
 | 1320 |   the other parameters as given in Eq.~(\ref{eq:default-params}).}
 | 
|---|
 | 1321 | \end{figure}
 | 
|---|
 | 1322 | 
 | 
|---|
 | 1323 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1324 | \subsection{Sensitivity to CP violation}
 | 
|---|
 | 1325 | \label{sec:CPV}
 | 
|---|
 | 1326 | 
 | 
|---|
 | 1327 | In case a finite value of $\theta_{13}$ is established it is important
 | 
|---|
 | 1328 | to quantitatively assess the discovery potential for leptonic CP
 | 
|---|
 | 1329 | violation (CPV). The CP symmetry is violated if the complex phase
 | 
|---|
 | 1330 | \delCP\ is different from $0$ and $\pi$. Therefore, CPV is discovered
 | 
|---|
 | 1331 | if these values for \delCP\ can be excluded. 
 | 
|---|
 | 1332 | %
 | 
|---|
 | 1333 | We evaluate the discovery potential for CPV in the following way:
 | 
|---|
 | 1334 | Data are calculated by scanning the true values of $\stheta$ and
 | 
|---|
 | 1335 | $\delCP$. Then these data are fitted with the CP conserving values
 | 
|---|
 | 1336 | $\delCP = 0$ and $\delCP = \pi$, where all parameters except \delCP\
 | 
|---|
 | 1337 | are varied and the sign and octant degeneracies are taken into
 | 
|---|
 | 1338 | account. If no fit with $\Delta \chi^2 < 9$ is found CP conserving
 | 
|---|
 | 1339 | values of \delCP\ can be excluded at $3\sigma$ for the chosen values
 | 
|---|
 | 1340 | of $\delta_\mathrm{CP}^\mathrm{true}$ and $\stheta^\mathrm{true}$.
 | 
|---|
 | 1341 | 
 | 
|---|
 | 1342 | \begin{figure}[!t]
 | 
|---|
 | 1343 |   \centering
 | 
|---|
 | 1344 |    \includegraphics[width=0.65\textwidth]{./fig11.eps}
 | 
|---|
 | 1345 | %   
 | 
|---|
 | 1346 |    \mycaption{CPV discovery potential for \BB, SPL, and T2HK: For
 | 
|---|
 | 1347 |    parameter values inside the ellipse-shaped curves CP conserving
 | 
|---|
 | 1348 |    values of \delCP\ can be excluded at $3\sigma$ $(\Delta\chi^2>9)$.
 | 
|---|
 | 1349 |    The width of the bands corresponds to values for the systematical
 | 
|---|
 | 1350 |    errors from 2\% to 5\%. The dashed curves show the sensitivity of
 | 
|---|
 | 1351 |    the \BB\ when the number of ion decays/yr are reduced by a factor
 | 
|---|
 | 1352 |    of two with respect to the values given in Tab.~\ref{tab:setups}
 | 
|---|
 | 1353 |    for 2\% systematics.\label{fig:CPV}}
 | 
|---|
 | 1354 | \end{figure}
 | 
|---|
 | 1355 | 
 | 
|---|
 | 1356 | The CPV discovery potential for \BB, SPL, and T2HK is shown in
 | 
|---|
 | 1357 | Fig.~\ref{fig:CPV}. As in the case of the $\theta_{13}$ sensitivity we
 | 
|---|
 | 1358 | find that SPL and T2HK perform rather similar, whereas the \BB\ has
 | 
|---|
 | 1359 | significantly better sensitivity if our adopted numbers of ion decays
 | 
|---|
 | 1360 | per year can be achieved. For systematical errors of 2\% maximal CPV
 | 
|---|
 | 1361 | (for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$) can be discovered at
 | 
|---|
 | 1362 | $3\sigma$ down to $\stheta \simeq 8.8 \,(6.6)\times 10^{-4}$ for SPL
 | 
|---|
 | 1363 | (T2HK), and $\stheta \simeq 2\times 10^{-4}$ for the \BB. This number
 | 
|---|
 | 1364 | for the \BB\ is increased by a factor 3 if the fluxes are reduced to
 | 
|---|
 | 1365 | half of our nominal values.  The best sensitivity to CPV is obtained
 | 
|---|
 | 1366 | for all three facilities around $\stheta \sim 10^{-2}$. For this value
 | 
|---|
 | 1367 | CPV can be established for 78\%, 73\%, 75\% of all values of \delCP\
 | 
|---|
 | 1368 | for \BB, SPL, T2HK, respectively (again for systematics of 2\%).
 | 
|---|
 | 1369 | 
 | 
|---|
 | 1370 | The widths of the bands in Fig.~\ref{fig:CPV} corresponds to different
 | 
|---|
 | 1371 | values for systematical errors. The curves which give the best
 | 
|---|
 | 1372 | sensitivities are obtained for systematics of 2\%, the curves
 | 
|---|
 | 1373 | corresponding to the worst sensitivity have been computed for
 | 
|---|
 | 1374 | systematics of 5\%. We change the uncertainty on the signal as well as
 | 
|---|
 | 1375 | on the background, however, it turns out that the most relevant
 | 
|---|
 | 1376 | uncertainty is the background normalization. We find that the impact
 | 
|---|
 | 1377 | of systematics is very small for the \BB. The reason for this is that
 | 
|---|
 | 1378 | the spectral shape of the background in the \BB\ (from pions and
 | 
|---|
 | 1379 | atmospheric neutrinos) is very different from the signal, and
 | 
|---|
 | 1380 | therefore they can be disentangled by the fit of the energy spectrum.
 | 
|---|
 | 1381 | For the Super Beams the background spectrum is more similar to the
 | 
|---|
 | 1382 | signal, and therefore an uncertainty on the background normalization
 | 
|---|
 | 1383 | might have a strong impact on the sensitivity, as visible from the SPL
 | 
|---|
 | 1384 | and T2HK curves in Fig.~\ref{fig:CPV}. In particular T2HK is strongly
 | 
|---|
 | 1385 | affected, and moving from 2\% to 5\% uncertainy decreases the
 | 
|---|
 | 1386 | sensitivity to maximal CPV by a factor 3.
 | 
|---|
 | 1387 | 
 | 
|---|
 | 1388 | \begin{figure}[!t]
 | 
|---|
 | 1389 |   \centering
 | 
|---|
 | 1390 |    \includegraphics[width=0.9\textwidth]{./fig12.eps}
 | 
|---|
 | 1391 | %   
 | 
|---|
 | 1392 |    \mycaption{Impact of total exposure and systematical errors on the
 | 
|---|
 | 1393 |    CPV discovery potential of \BB, SPL, and T2HK. We show the
 | 
|---|
 | 1394 |    smallest true value of $\stheta$ for which $\delCP = \pi/2$ can be
 | 
|---|
 | 1395 |    distinguished from $\delCP = 0$ or $\delCP = \pi$ at $3\sigma$
 | 
|---|
 | 1396 |    $(\Delta\chi^2>9)$ as a function of the exposure in kt~yrs (left)
 | 
|---|
 | 1397 |    and as a function of the systematical error on the background
 | 
|---|
 | 1398 |    $\sigma_\mathrm{bkgr}$ (right). The widths of the curves in the
 | 
|---|
 | 1399 |    left panel corresponds to values of $\sigma_\mathrm{bkgr}$ from 2\%
 | 
|---|
 | 1400 |    to 5\%. The thin solid curves in the left panel corresponds to no
 | 
|---|
 | 1401 |    systematical errors. The right plot is calculated for the standard
 | 
|---|
 | 1402 |    exposure of 4400~kt~yrs. No systematical error on the signal has
 | 
|---|
 | 1403 |    been assumed. \label{fig:systematics}}
 | 
|---|
 | 1404 | \end{figure}
 | 
|---|
 | 1405 | 
 | 
|---|
 | 1406 | This interesting feature can be understood in the following way. A
 | 
|---|
 | 1407 | rough measure to estimate the sensitivity is given by the signal
 | 
|---|
 | 1408 | compared to the error on the background. The latter receives
 | 
|---|
 | 1409 | contributions from the statistical error $\sqrt{B}$ and from the
 | 
|---|
 | 1410 | systematical uncertainty $\sigma_\mathrm{bkgr}B$, where $B$ is the
 | 
|---|
 | 1411 | number of background events and $\sigma_\mathrm{bkgr}$ is the
 | 
|---|
 | 1412 | (relative) systematical error. Hence the importance of the systematics
 | 
|---|
 | 1413 | can be estimated by the ratio of systematical and statistical errors
 | 
|---|
 | 1414 | $\sigma_\mathrm{bkgr} B / \sqrt{B} = \sigma_\mathrm{bkgr} \sqrt{B}$.
 | 
|---|
 | 1415 | Summing the numbers for background events in the neutrino and
 | 
|---|
 | 1416 | antineutrino channels given in Tab.~\ref{tab:events} one finds that
 | 
|---|
 | 1417 | systematical errors dominate ($\sigma_\mathrm{bkgr} \sqrt{B} > 1$) if
 | 
|---|
 | 1418 | $\sigma_\mathrm{bkgr} \gtrsim 6\%,\, 3\%, \, 2\%$ for \BB, SPL, T2HK,
 | 
|---|
 | 1419 | respectively. 
 | 
|---|
 | 1420 | %
 | 
|---|
 | 1421 | In the right panel Fig.~\ref{fig:systematics} we show the sensitivity
 | 
|---|
 | 1422 | to maximal CPV (as defined in the figure caption) as a function of
 | 
|---|
 | 1423 | $\sigma_\mathrm{bkgr}$. Indeed, the worsening of the sensitivity due
 | 
|---|
 | 1424 | to systematics occurs roughly at the values of $\sigma_\mathrm{bkgr}$
 | 
|---|
 | 1425 | as estimated above. For a more quantitative understanding of these
 | 
|---|
 | 1426 | curves it is necessary to consider the number of signal and background
 | 
|---|
 | 1427 | events for neutrinos and antineutrinos separately, as well as to take
 | 
|---|
 | 1428 | into account spectral information.
 | 
|---|
 | 1429 | 
 | 
|---|
 | 1430 | 
 | 
|---|
 | 1431 | The left panel of Fig.~\ref{fig:systematics} shows the sensitivity to
 | 
|---|
 | 1432 | maximal CPV as a function of the exposure\footnote{Note that the CPV
 | 
|---|
 | 1433 | sensitivity for the \BB\ with reduced fluxes from Fig.~\ref{fig:CPV}
 | 
|---|
 | 1434 | is worse than the value which follows from Fig.~\ref{fig:systematics}.
 | 
|---|
 | 1435 | The reason is that in Fig.~\ref{fig:systematics} the total exposure is
 | 
|---|
 | 1436 | scaled (mass~$\times$~time), i.e., signal and background are scaled in
 | 
|---|
 | 1437 | the same way, whereas for the dashed curve in Fig.~\ref{fig:CPV} only
 | 
|---|
 | 1438 | the fluxes are reduced but backgrounds are kept constant.} for values
 | 
|---|
 | 1439 | of $\sigma_\mathrm{bkgr}$ from 2\% to 5\%. One can observe clearly
 | 
|---|
 | 1440 | that for the standard exposure of 4400~kt~yrs T2HK is dominated by
 | 
|---|
 | 1441 | systematics and changing $\sigma_\mathrm{bkgr}$ from 2\% to 5\% has a
 | 
|---|
 | 1442 | big impact on the sensitivity. In contrast the CERN--MEMPHYS
 | 
|---|
 | 1443 | experiments (especially the \BB) are rather stable with respect to
 | 
|---|
 | 1444 | systematics and for the standard exposure they are still statistics
 | 
|---|
 | 1445 | dominated. We conclude that in T2HK systematics have to be under very
 | 
|---|
 | 1446 | good control\footnote{As a possible solution to this problem for T2HK
 | 
|---|
 | 1447 | it has been proposed in Ref.~\cite{Ishitsuka:2005qi} to place one half
 | 
|---|
 | 1448 | of the Hyper-K detector mass at Kamioka and the second half at the
 | 
|---|
 | 1449 | same off-axis angle in Korea.}, whereas this issue is less important
 | 
|---|
 | 1450 | for \BB\ and SPL.
 | 
|---|
 | 1451 | %
 | 
|---|
 | 1452 | We have checked explicitly that the systematical error on the signal
 | 
|---|
 | 1453 | has negligible impact on these results. Therefore, we have set this
 | 
|---|
 | 1454 | error to zero for calculating Fig.~\ref{fig:systematics} to highlight
 | 
|---|
 | 1455 | the importance of the background error. In all other calculations also
 | 
|---|
 | 1456 | the signal error is included, in particular also in Fig.~\ref{fig:CPV}.
 | 
|---|
 | 1457 | 
 | 
|---|
 | 1458 | 
 | 
|---|
 | 1459 | \begin{figure}[!t]
 | 
|---|
 | 1460 |   \centering
 | 
|---|
 | 1461 |    \includegraphics[width=0.8\textwidth]{./fig13.eps}
 | 
|---|
 | 1462 | %   
 | 
|---|
 | 1463 |    \mycaption{Impact of degeneracies on the CPV discovery potential
 | 
|---|
 | 1464 |    for the \BB. We show the sensitivity to CPV at $3\sigma$
 | 
|---|
 | 1465 |    $(\Delta\chi^2>9)$ computed for 4 different combinations of the
 | 
|---|
 | 1466 |    true values of the hierarchy (NH or IH) and $\theta_{23}$
 | 
|---|
 | 1467 |    ($\sin^2\theta_{23} = 0.4$ or $0.6$). Dashed curves are computed
 | 
|---|
 | 1468 |    neglecting degeneracies in the fit.\label{fig:deltacp}}
 | 
|---|
 | 1469 | \end{figure}
 | 
|---|
 | 1470 | 
 | 
|---|
 | 1471 | Finally, in Fig.~\ref{fig:deltacp} we illustrate the impact of
 | 
|---|
 | 1472 | degeneracies, as well as the true hierarchy and \thetatt-octant on the
 | 
|---|
 | 1473 | CPV sensitivity.  Curves of different colors correspond to the four
 | 
|---|
 | 1474 | different choices for \sigdm\ and the \thetatt-octant of the true
 | 
|---|
 | 1475 | parameters. For the solid curves the simulated data for each choice of
 | 
|---|
 | 1476 | true \sigdm\ and \thetatt-octant are fitted by taking into account all
 | 
|---|
 | 1477 | four degenerate solutions, i.e., also for the fit all four
 | 
|---|
 | 1478 | combinations of \sigdm\ and \thetatt-octant are used. One observes
 | 
|---|
 | 1479 | from the figure that the true hierarchy and octant have a rather small
 | 
|---|
 | 1480 | impact on the \BB\ CPV sensitivity, in particular the sensitivity to
 | 
|---|
 | 1481 | maximal CPV is completely independent.  The main effect of changing the
 | 
|---|
 | 1482 | true hierarchy is to exchange the behavior between $0 < \delCP <
 | 
|---|
 | 1483 | 180^\circ$ and $180^\circ < \delCP < 360^\circ$. For $\stheta \lesssim
 | 
|---|
 | 1484 | 10^{-2}$ the sensitivity gets slightly worse if
 | 
|---|
 | 1485 | $\thetatt^\mathrm{true} > \pi/4$ compared to $\thetatt^\mathrm{true} <
 | 
|---|
 | 1486 | \pi/4$.
 | 
|---|
 | 1487 | 
 | 
|---|
 | 1488 | The dashed curves in Fig.~\ref{fig:deltacp} are computed without
 | 
|---|
 | 1489 | taking into account the degeneracies, i.e., for each choice of true
 | 
|---|
 | 1490 | \sigdm\ and \thetatt-octant the data are fitted only with this
 | 
|---|
 | 1491 | particular choice. The effect of the degeneracies becomes visible for
 | 
|---|
 | 1492 | large values of \thetaot. Note that this is just the region where they
 | 
|---|
 | 1493 | can be reduced by a combined analysis with atmospheric neutrinos (see
 | 
|---|
 | 1494 | Sec.~\ref{sec:atmospherics} or Ref.~\cite{Huber:2005ep}).
 | 
|---|
 | 1495 |  
 | 
|---|
 | 1496 | 
 | 
|---|
 | 1497 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1498 | \section{Synergies provided by the CERN--MEMPHYS facilities}
 | 
|---|
 | 1499 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1500 | \label{sec:synergies}
 | 
|---|
 | 1501 | 
 | 
|---|
 | 1502 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1503 | \subsection{Combining Beta Beam and Super Beam}
 | 
|---|
 | 1504 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1505 | \label{sec:synergies-beams}
 | 
|---|
 | 1506 | 
 | 
|---|
 | 1507 | In this section we discuss synergies which emerge if both \BB\ and SPL
 | 
|---|
 | 1508 | are available. The main difference between these two beams is the
 | 
|---|
 | 1509 | different initial neutrino flavor,
 | 
|---|
 | 1510 | $\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for \BB\ and
 | 
|---|
 | 1511 | $\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ for SPL. This implies
 | 
|---|
 | 1512 | that at near detectors all relevant cross sections can be measured. In
 | 
|---|
 | 1513 | particular, the near detector of the \BB\ will measure the cross
 | 
|---|
 | 1514 | section for the SPL appearance search, and vice versa.
 | 
|---|
 | 1515 | %
 | 
|---|
 | 1516 | If both experiments run with neutrinos and antineutrinos all possible
 | 
|---|
 | 1517 | transition probabilities are covered: $P_{\nu_e\to\nu_\mu}$,
 | 
|---|
 | 1518 | $P_{\bar\nu_e\to\bar\nu_\mu}$, $P_{\nu_\mu\to\nu_e}$, and
 | 
|---|
 | 1519 | $P_{\bar\nu_\mu\to\bar\nu_e}$. Together with the fact that matter
 | 
|---|
 | 1520 | effects are very small because of the relatively short baseline, this
 | 
|---|
 | 1521 | means that in addition to CP also direct tests of the T and CPT
 | 
|---|
 | 1522 | symmetries are possible.
 | 
|---|
 | 1523 | 
 | 
|---|
 | 1524 | \begin{figure}[!t]
 | 
|---|
 | 1525 |   \centering
 | 
|---|
 | 1526 |    \includegraphics[width=0.9\textwidth]{./fig14.eps}
 | 
|---|
 | 1527 | %   
 | 
|---|
 | 1528 |    \mycaption{Discovery potential of a finite value of $\stheta$ at
 | 
|---|
 | 1529 |    $3\sigma$ $(\Delta\chi^2>9)$ for 5~yrs neutrino data from
 | 
|---|
 | 1530 |    \BB, SPL, and the combination of \BB\ + SPL compared to
 | 
|---|
 | 1531 |    10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
 | 
|---|
 | 1532 |    \label{fig:th13-5yrs}}
 | 
|---|
 | 1533 | \end{figure}
 | 
|---|
 | 1534 | 
 | 
|---|
 | 1535 | However, if the CPT symmetry is assumed in principle all information
 | 
|---|
 | 1536 | can be obtained just from neutrino data because of the relations
 | 
|---|
 | 1537 | $P_{\bar\nu_e\to\bar\nu_\mu} = P_{\nu_\mu\to\nu_e}$ and
 | 
|---|
 | 1538 | $P_{\bar\nu_\mu\to\bar\nu_e} = P_{\nu_e\to\nu_\mu}$. As mentioned
 | 
|---|
 | 1539 | already in Sec.~\ref{sec:degeneracies} this implies that (time
 | 
|---|
 | 1540 | consuming) antineutrino running can be avoided. We illustrate this
 | 
|---|
 | 1541 | synergy in Figs.~\ref{fig:th13-5yrs} and \ref{fig:CP-5yrs}. In
 | 
|---|
 | 1542 | Fig.~\ref{fig:th13-5yrs} we show the $\theta_{13}$ discovery potential
 | 
|---|
 | 1543 | of 5 years of neutrino data from \BB\ and SPL. From the left panel the
 | 
|---|
 | 1544 | complementarity of the two experiments is obvious, since each of them
 | 
|---|
 | 1545 | is most sensitive in a different region of \delCP. (As expected from
 | 
|---|
 | 1546 | general properties of the oscillation probabilities the sensitivity
 | 
|---|
 | 1547 | curves of \BB\ and SPL are approximately related by the transformation
 | 
|---|
 | 1548 | $\delCP \to 2\pi - \delCP$.) Combining these two data sets results in
 | 
|---|
 | 1549 | a sensitivity slightly better than from 10 years (2$\nu$+8$\bar\nu$)
 | 
|---|
 | 1550 | of T2HK data.
 | 
|---|
 | 1551 | %
 | 
|---|
 | 1552 | As visible in Fig.~\ref{fig:CP-5yrs} also for the CPV discovery this
 | 
|---|
 | 1553 | synergy works and 5 years of neutrino data from \BB\ and SPL lead to a
 | 
|---|
 | 1554 | similar sensitivity as 10 years of T2HK.
 | 
|---|
 | 1555 | 
 | 
|---|
 | 1556 | \begin{figure}[!t]
 | 
|---|
 | 1557 |   \centering
 | 
|---|
 | 1558 |    \includegraphics[width=0.6\textwidth]{./fig15.eps}
 | 
|---|
 | 1559 | %   
 | 
|---|
 | 1560 |    \mycaption{Sensitivity to CPV at $3\sigma$ $(\Delta\chi^2>9)$ for
 | 
|---|
 | 1561 |    combining 5~yrs neutrino data from \BB\ and SPL compared to
 | 
|---|
 | 1562 |    10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
 | 
|---|
 | 1563 |    \label{fig:CP-5yrs}}
 | 
|---|
 | 1564 | \end{figure}
 | 
|---|
 | 1565 | 
 | 
|---|
 | 1566 | 
 | 
|---|
 | 1567 | 
 | 
|---|
 | 1568 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1569 | \subsection{Resolving degeneracies with atmospheric neutrinos}
 | 
|---|
 | 1570 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1571 | \label{sec:atmospherics}
 | 
|---|
 | 1572 | 
 | 
|---|
 | 1573 | It was pointed out in Ref.~\cite{Huber:2005ep} that for LBL
 | 
|---|
 | 1574 | experiments based on mega ton scale water \v{C}erenkov detectors data
 | 
|---|
 | 1575 | from atmospheric neutrinos (ATM) provide an attractive method to
 | 
|---|
 | 1576 | resolve degeneracies. Atmospheric neutrinos are sensitive to the
 | 
|---|
 | 1577 | neutrino mass hierarchy if $\theta_{13}$ is sufficiently large due to
 | 
|---|
 | 1578 | Earth matter effects, mainly in multi-GeV $e$-like
 | 
|---|
 | 1579 | events~\cite{Petcov:1998su,Akhmedov:1998ui,Bernabeu:2003yp}. Moreover,
 | 
|---|
 | 1580 | sub-GeV $e$-like events provide sensitivity to the octant of
 | 
|---|
 | 1581 | $\theta_{23}$~\cite{Kim:1998bv,Peres:2003wd,Gonzalez-Garcia:2004cu}
 | 
|---|
 | 1582 | due to oscillations with $\Delta m^2_{21}$ (see also
 | 
|---|
 | 1583 | Ref.~\cite{Kajita} for a discussion of atmospheric neutrinos in the
 | 
|---|
 | 1584 | context of Hyper-K). 
 | 
|---|
 | 1585 | %
 | 
|---|
 | 1586 | Following Ref.~\cite{Huber:2005ep} we investigate here the synergy
 | 
|---|
 | 1587 | from a combination of LBL data from \BB\ and SPL with ATM data in the
 | 
|---|
 | 1588 | MEMPHYS detector. Technical details are given in
 | 
|---|
 | 1589 | Sec.~\ref{sec:atm-details}. 
 | 
|---|
 | 1590 |  
 | 
|---|
 | 1591 | The effect of degeneracies in LBL data has been discussed in
 | 
|---|
 | 1592 | Sec.~\ref{sec:degeneracies}, see Figs.~\ref{fig:degeneracies} and
 | 
|---|
 | 1593 | \ref{fig:degeneracies_SPL}. As discussed there, for given true
 | 
|---|
 | 1594 | parameter values the data can be fitted with the wrong hierarchy
 | 
|---|
 | 1595 | and/or with the wrong octant of $\theta_{23}$. Hence, from LBL data
 | 
|---|
 | 1596 | alone the hierarchy and the octant cannot be determined and
 | 
|---|
 | 1597 | ambiguities exist in the determination of $\theta_{13}$ and
 | 
|---|
 | 1598 | $\delta_\mathrm{CP}$.
 | 
|---|
 | 1599 | %
 | 
|---|
 | 1600 | If the LBL data are combined with ATM data only the colored regions in
 | 
|---|
 | 1601 | Fig.~\ref{fig:degeneracies} survive, i.e., in this particular example
 | 
|---|
 | 1602 | for SPL and T2HK the degeneracies are completely lifted at 95\%~CL,
 | 
|---|
 | 1603 | the mass hierarchy and the octant of $\theta_{23}$ can be identified,
 | 
|---|
 | 1604 | and the ambiguities in $\theta_{13}$ and $\delta_\mathrm{CP}$ are
 | 
|---|
 | 1605 | resolved. For the \BB\ an island corresponding to the wrong hierarchy
 | 
|---|
 | 1606 | does survive at the 95\%~CL for 2~dof. Still, the solution with the
 | 
|---|
 | 1607 | wrong sign of $\Delta m^2_{31}$ is disfavored with $\Delta\chi^2 =
 | 
|---|
 | 1608 | 5.1$ with respect to the true solution, which corresponds to
 | 
|---|
 | 1609 | 2.4$\sigma$ for 1~dof.
 | 
|---|
 | 1610 | %
 | 
|---|
 | 1611 | Let us note that in Fig.~\ref{fig:degeneracies} we have chosen a
 | 
|---|
 | 1612 | favorable value of $\sin^2\theta_{23} = 0.6$; for values
 | 
|---|
 | 1613 | $\sin^2\theta_{23} < 0.5$ in general the sensitivity of ATM data is
 | 
|---|
 | 1614 | weaker~\cite{Huber:2005ep}.
 | 
|---|
 | 1615 | 
 | 
|---|
 | 1616 | \begin{figure}[!t]
 | 
|---|
 | 1617 | \centering
 | 
|---|
 | 1618 |   \includegraphics[width=0.9\textwidth]{./fig16.eps}
 | 
|---|
 | 1619 | %
 | 
|---|
 | 1620 |   \mycaption{Sensitivity to the mass hierarchy at $2\sigma$
 | 
|---|
 | 1621 |   $(\Delta\chi^2 = 4)$ as a function of the true values of
 | 
|---|
 | 1622 |   $\sin^22\theta_{13}$ and $\delta_\mathrm{CP}$ (left), and the
 | 
|---|
 | 1623 |   fraction of true values of $\delCP$ (right). The solid curves are
 | 
|---|
 | 1624 |   the sensitivities from the combination of long-baseline and
 | 
|---|
 | 1625 |   atmospheric neutrino data, the dashed curves correspond to
 | 
|---|
 | 1626 |   long-baseline data only. For comparison we show in the right panel
 | 
|---|
 | 1627 |   also the sensitivities of NO$\nu$A and NO$\nu$A+T2K extracted from
 | 
|---|
 | 1628 |   Fig.~13.14 of Ref.~\cite{Ayres:2004js}. For the curve labeled
 | 
|---|
 | 1629 |   ``NO$\nu$A (p.dr.)+T2K@4~MW'' a proton driver has been assumed for
 | 
|---|
 | 1630 |   NO$\nu$A and the T2K beam has been up-graded to 4~MW, see
 | 
|---|
 | 1631 |   Ref.~\cite{Ayres:2004js} for details.}
 | 
|---|
 | 1632 |   \label{fig:hierarchy}
 | 
|---|
 | 1633 | \end{figure}
 | 
|---|
 | 1634 | 
 | 
|---|
 | 1635 | In Fig.~\ref{fig:hierarchy} we show how the combination of ATM+LBL
 | 
|---|
 | 1636 | data leads to a non-trivial sensitivity to the neutrino mass
 | 
|---|
 | 1637 | hierarchy, i.e.\ to the sign of $\Delta m^2_{31}$. For LBL data alone
 | 
|---|
 | 1638 | (dashed curves) there is practically no sensitivity for the
 | 
|---|
 | 1639 | CERN--MEMPHYS experiments (because of the very small matter effects
 | 
|---|
 | 1640 | due to the relatively short baseline), and the sensitivity of T2HK
 | 
|---|
 | 1641 | depends strongly on the true value of $\delta_\mathrm{CP}$. However,
 | 
|---|
 | 1642 | by including data from atmospheric neutrinos (solid curves) the mass
 | 
|---|
 | 1643 | hierarchy can be identified at $2\sigma$~CL provided
 | 
|---|
 | 1644 | $\sin^22\theta_{13} \gtrsim 0.02-0.03$. As an example we have chosen
 | 
|---|
 | 1645 | in that figure a true value of $\theta_{23} = \pi/4$. Generically the
 | 
|---|
 | 1646 | hierarchy sensitivity increases with increasing $\theta_{23}$, see
 | 
|---|
 | 1647 | Ref.~\cite{Huber:2005ep} for a detailed discussion.
 | 
|---|
 | 1648 | 
 | 
|---|
 | 1649 | The sensitivity to the neutrino mass hierarchy shown in
 | 
|---|
 | 1650 | Fig.~\ref{fig:hierarchy} is significantly improved with respect to our
 | 
|---|
 | 1651 | previous results obtained in Ref.~\cite{Huber:2005ep}. There are two
 | 
|---|
 | 1652 | main reasons for this improved performance: First, we use now much
 | 
|---|
 | 1653 | more bins in charged lepton energy for fully contained single-ring
 | 
|---|
 | 1654 | events\footnote{The impact of energy binning on the hierarchy
 | 
|---|
 | 1655 | determination with atmospheric neutrinos has been discussed recently
 | 
|---|
 | 1656 | in Ref.~\cite{Petcov:2005rv} in the context of magnetized iron
 | 
|---|
 | 1657 | detectors.}  (compare Sec.~\ref{sec:atm-details}), and second, we
 | 
|---|
 | 1658 | implemented also information from multi-ring events. This latter point
 | 
|---|
 | 1659 | is important since the relative contribution of neutrinos and
 | 
|---|
 | 1660 | antineutrinos is different for single- and multi-ring
 | 
|---|
 | 1661 | events. Therefore, combining single- and multi-ring data allows to
 | 
|---|
 | 1662 | obtain a discrimination between neutrino and antineutrino events on a
 | 
|---|
 | 1663 | statistical basis. This in turn contains crucial information on the
 | 
|---|
 | 1664 | hierarchy, since the matter enhancement is visible either in neutrinos
 | 
|---|
 | 1665 | or antineutrinos, depending on the hierarchy.
 | 
|---|
 | 1666 | 
 | 
|---|
 | 1667 | Although \BB\ and SPL alone have no sensitivity to the hierarchy at
 | 
|---|
 | 1668 | all, we find that the combination of them does provide rather good
 | 
|---|
 | 1669 | sensitivity even without atmospheric data. The reason for this
 | 
|---|
 | 1670 | interesting effect is the following. Because of the rather short
 | 
|---|
 | 1671 | baseline the matter effect is too small to distinguish between NH and
 | 
|---|
 | 1672 | IH given only neutrino and antineutrino information in one channel.
 | 
|---|
 | 1673 | However, the tiny matter effect suffices to move the hierarchy
 | 
|---|
 | 1674 | degenerate solution to slightly different locations in the ($\stheta$,
 | 
|---|
 | 1675 | $\delCP$) plane for the $\stackrel{\scriptscriptstyle(-)}{\nu}_e \to
 | 
|---|
 | 1676 | \stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ (\BB) and
 | 
|---|
 | 1677 | $\stackrel{\scriptscriptstyle(-)}{\nu}_\mu \to
 | 
|---|
 | 1678 | \stackrel{\scriptscriptstyle (-)}{\nu}_e$ (SPL) channels (compare
 | 
|---|
 | 1679 | Fig.~\ref{fig:degeneracies}). Hence, if all four CP and T conjugate
 | 
|---|
 | 1680 | channels are available (as it is the case for the \BB+SPL combination)
 | 
|---|
 | 1681 | already the small matter effect picked up along the 130~km
 | 
|---|
 | 1682 | CERN--MEMPHYS distance provides sensitivity to the mass hierarchy for
 | 
|---|
 | 1683 | $\sin^22\theta_{13} \gtrsim 0.03$, or $\sin^22\theta_{13} \gtrsim 0.015$
 | 
|---|
 | 1684 | if also atmospheric neutrino data is included.
 | 
|---|
 | 1685 | 
 | 
|---|
 | 1686 | For comparison we show in the right panel of Fig.~\ref{fig:hierarchy}
 | 
|---|
 | 1687 | also the sensitivity of the NO$\nu$A~\cite{Ayres:2004js} experiment,
 | 
|---|
 | 1688 | and of NO$\nu$A+T2K, where in the second case a beam upgrade by a
 | 
|---|
 | 1689 | proton driver has been assumed for NO$\nu$A, and for T2K the
 | 
|---|
 | 1690 | Super-Kamiokande detector has been used but the beam intensity has
 | 
|---|
 | 1691 | been increased by assuming 4~MW power. More details on these
 | 
|---|
 | 1692 | sensitivities can be found in Ref.~\cite{Ayres:2004js}.
 | 
|---|
 | 1693 | %
 | 
|---|
 | 1694 | Let us note that in general LBL experiments with two detectors (or the
 | 
|---|
 | 1695 | combination of two different LBL experiments) are a competitive method
 | 
|---|
 | 1696 | to atmospheric neutrinos for the hierarchy determination, see, e.g.,
 | 
|---|
 | 1697 | Refs.~\cite{Ishitsuka:2005qi,MenaRequejo:2005hn,Hagiwara:2005pe} for
 | 
|---|
 | 1698 | recent analyses.
 | 
|---|
 | 1699 | %
 | 
|---|
 | 1700 | We mention also the possibility to determine the neutrino mass
 | 
|---|
 | 1701 | hierarchy by using neutrino events from a galactic Super Nova
 | 
|---|
 | 1702 | explosion in mega ton \v{C}erenkov detectors such as MEMPHYS, see,
 | 
|---|
 | 1703 | e.g., Ref.~\cite{Kachelriess:2004vs}.
 | 
|---|
 | 1704 | 
 | 
|---|
 | 1705 | \begin{figure}[!t]
 | 
|---|
 | 1706 | \centering
 | 
|---|
 | 1707 |   \includegraphics[width=0.55\textwidth]{./fig17.eps}
 | 
|---|
 | 1708 | %
 | 
|---|
 | 1709 |   \mycaption{$\Delta\chi^2$ of the solution with the wrong octant of
 | 
|---|
 | 1710 |   $\theta_{23}$ as a function of the true value of
 | 
|---|
 | 1711 |   $\sin^2\theta_{23}$. We have assumed a true value of $\theta_{13} =
 | 
|---|
 | 1712 |   0$.}
 | 
|---|
 | 1713 |   \label{fig:octant}
 | 
|---|
 | 1714 | \end{figure}
 | 
|---|
 | 1715 | 
 | 
|---|
 | 1716 | Fig.~\ref{fig:octant} shows the potential of ATM+LBL data to exclude
 | 
|---|
 | 1717 | the octant degenerate solution. Since this effect is based mainly on
 | 
|---|
 | 1718 | oscillations with $\Delta m^2_{21}$ there is very good sensitivity
 | 
|---|
 | 1719 | even for $\theta_{13} = 0$; a finite value of $\theta_{13}$ in general
 | 
|---|
 | 1720 | improves the sensitivity~\cite{Huber:2005ep}.  From the figure one can
 | 
|---|
 | 1721 | read off that atmospheric data alone can can resolve the correct
 | 
|---|
 | 1722 | octant at $3\sigma$ if $|\sin^2\theta_{23} - 0.5| \gtrsim 0.085$. If
 | 
|---|
 | 1723 | atmospheric data is combined with the LBL data from SPL or T2HK there
 | 
|---|
 | 1724 | is sensitivity to the octant for $|\sin^2\theta_{23} - 0.5| \gtrsim
 | 
|---|
 | 1725 | 0.05$. The improvement of the octant sensitivity with respect to
 | 
|---|
 | 1726 | previous analyses~\cite{Huber:2005ep,Gonzalez-Garcia:2004cu} follows
 | 
|---|
 | 1727 | from changes in the analysis of sub-GeV atmospheric events, where now
 | 
|---|
 | 1728 | three bins in lepton momentum are used instead of one. Note that since
 | 
|---|
 | 1729 | in Fig.~\ref{fig:octant} we have assumed a true value of $\theta_{13}
 | 
|---|
 | 1730 | = 0$, combining the \BB\ with ATM does not improve the sensitivity
 | 
|---|
 | 1731 | with respect to atmospheric data alone.
 | 
|---|
 | 1732 | 
 | 
|---|
 | 1733 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1734 | \section{Summary}
 | 
|---|
 | 1735 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 1736 | \label{sec:conclusions}
 | 
|---|
 | 1737 | 
 | 
|---|
 | 1738 | In this work we have studied the physics potential of the
 | 
|---|
 | 1739 | CERN--MEMPHYS neutrino oscillation project. We consider a Beta Beam
 | 
|---|
 | 1740 | (\BB) with $\gamma = 100$ for the stored ions, where existing
 | 
|---|
 | 1741 | facilities at CERN can be used optimally, and a Super Beam based on an
 | 
|---|
 | 1742 | optimized Super Proton Linac (SPL) with a beam energy of 3.5~GeV and
 | 
|---|
 | 1743 | 4~MW power. As target we assume the MEMPHYS detector, a 440~kt water
 | 
|---|
 | 1744 | \v{C}erenkov detector at Fr\'ejus, at a distance of 130~km from
 | 
|---|
 | 1745 | CERN. The main characteristics of the experiments are summarized in
 | 
|---|
 | 1746 | Tab.~\ref{tab:setups}.
 | 
|---|
 | 1747 | %
 | 
|---|
 | 1748 | The adopted neutrino fluxes are based on realistic calculations of ion
 | 
|---|
 | 1749 | production and storage for the \BB, and a full simulation of the beam
 | 
|---|
 | 1750 | line (particle production and decay of secondaries) for SPL. Special
 | 
|---|
 | 1751 | care has be given to the issue of backgrounds, which we include by
 | 
|---|
 | 1752 | means of detailed event simulations and applying Super-Kamiokande particle
 | 
|---|
 | 1753 | identification algorithms.
 | 
|---|
 | 1754 | 
 | 
|---|
 | 1755 | The physics potential of the \BB\ and SPL experiments in terms of
 | 
|---|
 | 1756 | $\theta_{13}$ discovery reach and sensitivity to CP violation has been
 | 
|---|
 | 1757 | addressed where parameter degeneracies are fully taken into account.
 | 
|---|
 | 1758 | The main results on these performance indicators are summarized in
 | 
|---|
 | 1759 | Figs.~\ref{fig:th13} and \ref{fig:CPV}.
 | 
|---|
 | 1760 | %
 | 
|---|
 | 1761 | We obtain a guaranteed discovery reach of $\stheta \simeq 5\times
 | 
|---|
 | 1762 | 10^{-3}$ at $3\sigma$, irrespective of the actual value of \delCP. For
 | 
|---|
 | 1763 | certain values of \delCP\ the sensitivity is significantly improved,
 | 
|---|
 | 1764 | and for \BB\ (SPL) discovery limits around $\stheta \simeq 3\,(10)
 | 
|---|
 | 1765 | \times 10^{-4}$ are possible for a large fraction of all possible
 | 
|---|
 | 1766 | values of \delCP.
 | 
|---|
 | 1767 | %
 | 
|---|
 | 1768 | Maximal CP violation (for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$)
 | 
|---|
 | 1769 | can be discovered at $3\sigma$ down to $\stheta \simeq 2\, (9)\times
 | 
|---|
 | 1770 | 10^{-4}$ for \BB\ (SPL), whereas the best sensitivity to CP violation
 | 
|---|
 | 1771 | is obtained for $\stheta \sim 10^{-2}$: For $\stheta = 10^{-2}$ CP
 | 
|---|
 | 1772 | violation can be established at $3\sigma$ for 78\% (73\%) of all
 | 
|---|
 | 1773 | possible true values of \delCP\ for \BB\ (SPL).
 | 
|---|
 | 1774 | %
 | 
|---|
 | 1775 | We stress that the \BB\ performance in general depends crucially on
 | 
|---|
 | 1776 | the number of ion decays per year.
 | 
|---|
 | 1777 | %
 | 
|---|
 | 1778 | The impact of the value of systematical uncertainties on signal and
 | 
|---|
 | 1779 | background on our results is discussed.
 | 
|---|
 | 1780 | %
 | 
|---|
 | 1781 | The \BB\ and SPL sensitivities are compared to the ones of the
 | 
|---|
 | 1782 | phase~II of the T2K experiment in Japan (T2HK), which is a competing
 | 
|---|
 | 1783 | proposal of similar size and timescale. In general we obtain rather
 | 
|---|
 | 1784 | similar sensitivities for T2HK and SPL, and hence the CERN--MEMPHYS
 | 
|---|
 | 1785 | experiments provide a viable alternative to T2HK. We find that \BB\
 | 
|---|
 | 1786 | and SPL are less sensitive to systematical errors, whereas the
 | 
|---|
 | 1787 | sensitivity of T2HK crucially depends on the systematical error on the
 | 
|---|
 | 1788 | background.\footnote{Let us note that in the present study we have not
 | 
|---|
 | 1789 | considered the recent ``T2KK'' proposal~\cite{Ishitsuka:2005qi}, where
 | 
|---|
 | 1790 | one half of the Hyper-K detector mass is at Kamioka and the second
 | 
|---|
 | 1791 | half in Korea. For such a setup our results do not apply and
 | 
|---|
 | 1792 | especially the conclusion on systematical errors may be different.}
 | 
|---|
 | 1793 | 
 | 
|---|
 | 1794 | Assuming that both \BB\ and SPL experiments are available, we point
 | 
|---|
 | 1795 | out that one can benefit from the different oscillation channels
 | 
|---|
 | 1796 | $\nu_e\to\nu_\mu$ for \BB\ and $\nu_\mu\to\nu_e$ for SPL, since by the
 | 
|---|
 | 1797 | combination of these channels the time intensive antineutrino
 | 
|---|
 | 1798 | measurements can be avoided. We show that 5 years of neutrino data from
 | 
|---|
 | 1799 | \BB\ and SPL lead to similar results as 2 years of neutrino plus 8
 | 
|---|
 | 1800 | years of antineutrino data from T2HK.
 | 
|---|
 | 1801 | %
 | 
|---|
 | 1802 | Furthermore, we discuss the use of atmospheric neutrinos in the
 | 
|---|
 | 1803 | MEMPHYS detector to resolve parameter degeneracies in the
 | 
|---|
 | 1804 | long-baseline data. This effect leads to a sensitivity to the neutrino
 | 
|---|
 | 1805 | mass hierarchy at $2\sigma$~CL for $\sin^22\theta_{13} \gtrsim
 | 
|---|
 | 1806 | 0.025$ for \BB\ and SPL, although these experiments alone (without
 | 
|---|
 | 1807 | atmospheric data) have no sensitivity at all. The optimal hierarchy
 | 
|---|
 | 1808 | sensitivity is obtained from combining \BB+SPL+atmospheric data.
 | 
|---|
 | 1809 | Furthermore, the combination of atmospheric data with a Super Beam
 | 
|---|
 | 1810 | provides a possibility to determine the octant of $\theta_{23}$.
 | 
|---|
 | 1811 | 
 | 
|---|
 | 1812 | To conclude, we have shown that the CERN--MEMPHYS neutrino oscillation
 | 
|---|
 | 1813 | project based on a Beta Beam and/or a Super Beam plus a mega ton scale
 | 
|---|
 | 1814 | water \v{C}erenkov detector offers interesting and competitive physics
 | 
|---|
 | 1815 | possibilities and is worth to be considered as a serious option in
 | 
|---|
 | 1816 | the worldwide process of identifying future high precision neutrino
 | 
|---|
 | 1817 | oscillation facilities~\cite{ISSpage}.
 | 
|---|
 | 1818 | 
 | 
|---|
 | 1819 | \subsection*{Acknowledgment}
 | 
|---|
 | 1820 | 
 | 
|---|
 | 1821 | We thank J.~Argyriades for communication on the Super-K atmospheric
 | 
|---|
 | 1822 | neutrino analysis, A.~Cazes for his work on the SPL simulation, and
 | 
|---|
 | 1823 | P.~Huber for his patience in answering questions concerning the use of
 | 
|---|
 | 1824 | GLoBES. Furthermore, we thank D.~Casper for the help in installing and
 | 
|---|
 | 1825 | running Nuance, and E.~Couce for discussions about the \BB\
 | 
|---|
 | 1826 | backgrounds.  T.S.\ is supported by the $6^\mathrm{th}$~Framework
 | 
|---|
 | 1827 | Program of the European Community under a Marie Curie Intra-European
 | 
|---|
 | 1828 | Fellowship.
 | 
|---|
 | 1829 | 
 | 
|---|
 | 1830 | 
 | 
|---|
 | 1831 | %\newpage
 | 
|---|
 | 1832 | \begin{thebibliography}{99}
 | 
|---|
 | 1833 | 
 | 
|---|
 | 1834 | \bibitem{solar}
 | 
|---|
 | 1835 |   B.~T.~Cleveland {\it et al.},
 | 
|---|
 | 1836 |   Astrophys.\ J.\  {\bf 496} (1998) 505;
 | 
|---|
 | 1837 |   %%CITATION = ASJOA,496,505;%%
 | 
|---|
 | 1838 | %
 | 
|---|
 | 1839 |   J.N.~Abdurashitov {\it et al.}  [SAGE],
 | 
|---|
 | 1840 |   J.\ Exp.\ Theor.\ Phys.\  {\bf 95} (2002) 181
 | 
|---|
 | 1841 |   % [Zh.\ Eksp.\ Teor.\ Fiz.\  {\bf 122} (2002) 211].
 | 
|---|
 | 1842 |   [astro-ph/0204245];
 | 
|---|
 | 1843 |   %%CITATION = ASTRO-PH 0204245;%%
 | 
|---|
 | 1844 | %
 | 
|---|
 | 1845 |   T. Kirsten {\it et al.} [GALLEX and GNO], 
 | 
|---|
 | 1846 |   Nucl. Phys. B (Proc. Suppl.)  {\bf 118} (2003) 33;
 | 
|---|
 | 1847 | %
 | 
|---|
 | 1848 |   S.~Fukuda {\it et al.} [Super-Kamiokande],
 | 
|---|
 | 1849 |   %``Determination of solar neutrino 
 | 
|---|
 | 1850 |   % oscillation parameters using 1496 days  of Super-Kamiokande-I data,''
 | 
|---|
 | 1851 |   Phys. Lett. {\bf B539} (2002) 179;
 | 
|---|
 | 1852 | %
 | 
|---|
 | 1853 | %\bibitem{ahmad:2002ka}
 | 
|---|
 | 1854 |   Q.R. Ahmad {\em et~al.} [SNO],
 | 
|---|
 | 1855 |   Phys. Rev. Lett. {\bf 89}, 011302 (2002) 
 | 
|---|
 | 1856 |   [nucl-ex/0204009];
 | 
|---|
 | 1857 |   %%CITATION = NUCL-EX 0204009;%%
 | 
|---|
 | 1858 | %
 | 
|---|
 | 1859 | %\bibitem{Aharmim:2005gt}
 | 
|---|
 | 1860 |   B.~Aharmim {\it et al.}  [SNO],
 | 
|---|
 | 1861 |   %``Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar
 | 
|---|
 | 1862 |   %neutrinos from the 391-day salt phase SNO data set,''
 | 
|---|
 | 1863 |   Phys.\ Rev.\ C {\bf 72} (2005) 055502
 | 
|---|
 | 1864 |   [nucl-ex/0502021].
 | 
|---|
 | 1865 |   %%CITATION = NUCL-EX 0502021;%%
 | 
|---|
 | 1866 | 
 | 
|---|
 | 1867 | \bibitem{Fukuda:1998mi}
 | 
|---|
 | 1868 |   Y.~Fukuda {\it et al.} [Super-Kamiokande Coll.],
 | 
|---|
 | 1869 |   %``Evidence for oscillation of atmospheric neutrinos,''
 | 
|---|
 | 1870 |   Phys.\ Rev.\ Lett.\  {\bf 81} (1998) 1562
 | 
|---|
 | 1871 |   [hep-ex/9807003].
 | 
|---|
 | 1872 |   %%CITATION = HEP-EX 9807003;%%
 | 
|---|
 | 1873 | 
 | 
|---|
 | 1874 | \bibitem{Ashie:2005ik}
 | 
|---|
 | 1875 |   Super-Kamiokande Coll.,
 | 
|---|
 | 1876 |   Y.~Ashie {\it et al.},  %[Super-Kamiokande Collaboration],
 | 
|---|
 | 1877 |   %``A measurement of atmospheric neutrino oscillation parameters by
 | 
|---|
 | 1878 |   %Super-Kamiokande I,''
 | 
|---|
 | 1879 |   Phys.\ Rev.\ D {\bf 71}, 112005 (2005)
 | 
|---|
 | 1880 |   [hep-ex/0501064];
 | 
|---|
 | 1881 |   %%CITATION = HEP-EX 0501064;%%
 | 
|---|
 | 1882 | %
 | 
|---|
 | 1883 | %\bibitem{Hosaka:2006zd}
 | 
|---|
 | 1884 |   J.~Hosaka {\it et al.},% [Super-Kamiokande Collaboration],
 | 
|---|
 | 1885 |   %``Three flavor neutrino oscillation analysis of atmospheric neutrinos in
 | 
|---|
 | 1886 |   %Super-Kamiokande,''
 | 
|---|
 | 1887 |   Phys.\ Rev.\ D {\bf 74}, 032002 (2006)
 | 
|---|
 | 1888 |   [hep-ex/0604011].
 | 
|---|
 | 1889 |   %%CITATION = HEP-EX 0604011;%%
 | 
|---|
 | 1890 | 
 | 
|---|
 | 1891 | 
 | 
|---|
 | 1892 | \bibitem{Araki:2004mb}
 | 
|---|
 | 1893 |   T.~Araki {\it et al.} [KamLAND Coll.],
 | 
|---|
 | 1894 |   %``Measurement of neutrino oscillation with KamLAND: Evidence of spectral
 | 
|---|
 | 1895 |   %distortion,''
 | 
|---|
 | 1896 |   Phys.\ Rev.\ Lett.\  {\bf 94}, 081801 (2005)
 | 
|---|
 | 1897 |   [hep-ex/0406035].
 | 
|---|
 | 1898 |   %%CITATION = HEP-EX 0406035;%%
 | 
|---|
 | 1899 | 
 | 
|---|
 | 1900 | 
 | 
|---|
 | 1901 | \bibitem{Aliu:2004sq}
 | 
|---|
 | 1902 |   E.~Aliu {\it et al.}  [K2K Coll.],
 | 
|---|
 | 1903 |   %``Evidence for muon neutrino oscillation in an accelerator-based
 | 
|---|
 | 1904 |   %experiment,''
 | 
|---|
 | 1905 |   Phys.\ Rev.\ Lett.\  {\bf 94}, 081802 (2005)
 | 
|---|
 | 1906 |   [hep-ex/0411038].
 | 
|---|
 | 1907 |   %%CITATION = HEP-EX 0411038;%%
 | 
|---|
 | 1908 | 
 | 
|---|
 | 1909 | \bibitem{MINOS} 
 | 
|---|
 | 1910 |   D.G.~Micheal {\it et al.} [MINOS Coll.],
 | 
|---|
 | 1911 |   %''Observation of muon neutrino disappearance with the {MINOS} detectors and
 | 
|---|
 | 1912 |   %the {NuMI} neutrino beam,''
 | 
|---|
 | 1913 |   hep-ex/0607088.
 | 
|---|
 | 1914 | 
 | 
|---|
 | 1915 | \bibitem{OPERA}
 | 
|---|
 | 1916 |   D. Autiero [OPERA Coll.], 
 | 
|---|
 | 1917 |   Nucl.\ Phys.\ B (Proc. Suppl.) {\bf 143}, 257 (2005);
 | 
|---|
 | 1918 |   M. Guler  \etal, \textit{Experiment proposal}, 
 | 
|---|
 | 1919 |   CERN/SPSC 2000-028 SPSC/P318 LNGS P25/2000.
 | 
|---|
 | 1920 | 
 | 
|---|
 | 1921 | \bibitem{CNGS}
 | 
|---|
 | 1922 |   G. Acquistapace \etal, CERN-98-02.
 | 
|---|
 | 1923 | 
 | 
|---|
 | 1924 | \bibitem{LSND}
 | 
|---|
 | 1925 |   A. Athanassopoulos \etal, Phys.\ Rev.\ Lett.\ {\bf 81}, 1774  (1998);
 | 
|---|
 | 1926 |   A. Aguilar \etal, Phys.\ Rev.\ D {\bf 64}, 112007 (2001).
 | 
|---|
 | 1927 | 
 | 
|---|
 | 1928 | \bibitem{MINIBOONE}
 | 
|---|
 | 1929 |   I. Stancu \etal, FERMILAB-TM-2207.
 | 
|---|
 | 1930 | 
 | 
|---|
 | 1931 | \bibitem{FOGLILISI05}
 | 
|---|
 | 1932 |   G.~L.~Fogli, E.~Lisi, A.~Marrone and A.~Palazzo,
 | 
|---|
 | 1933 |   %``Global analysis of three-flavor neutrino masses and mixings,''
 | 
|---|
 | 1934 |   Prog.\ Part.\ Nucl.\ Phys.\  {\bf 57}, 742 (2006)
 | 
|---|
 | 1935 |   [hep-ph/0506083].
 | 
|---|
 | 1936 |   %%CITATION = HEP-PH 0506083;%%
 | 
|---|
 | 1937 | 
 | 
|---|
 | 1938 | \bibitem{Maltoni:2004ei}
 | 
|---|
 | 1939 |   M.~Maltoni, T.~Schwetz, M.~A.~Tortola and J.~W.~F.~Valle,
 | 
|---|
 | 1940 |   %``Status of global fits to neutrino oscillations,''
 | 
|---|
 | 1941 |   New J.\ Phys.\  {\bf 6}, 122 (2004)
 | 
|---|
 | 1942 |   [hep-ph/0405172];
 | 
|---|
 | 1943 |   %%CITATION = HEP-PH 0405172;%%
 | 
|---|
 | 1944 | %
 | 
|---|
 | 1945 | %\bibitem{Schwetz:2005jr}
 | 
|---|
 | 1946 |   T.~Schwetz,
 | 
|---|
 | 1947 |   %``Neutrino oscillations: Current status and prospects,''
 | 
|---|
 | 1948 |   Acta Phys.\ Polon.\ B {\bf 36}, 3203 (2005)
 | 
|---|
 | 1949 |   [hep-ph/0510331].
 | 
|---|
 | 1950 |   %%CITATION = HEP-PH 0510331;%%
 | 
|---|
 | 1951 | 
 | 
|---|
 | 1952 | \bibitem{PMNS}
 | 
|---|
 | 1953 |   B.~Pontecorvo, Sov.\ Phys.--JETP {\bf 6}, 429 (1957) 
 | 
|---|
 | 1954 |   [Zh.\ Eksp.\ Teor.\ Fiz.\ \textbf{33}, 549 (1957)];
 | 
|---|
 | 1955 |   Z.~Maki, M.~Nakagawa and S.~Sakata, 
 | 
|---|
 | 1956 |   Prog.\ Theor.\ Phys.\ \textbf{28}, 870 (1962);
 | 
|---|
 | 1957 |   B.~Pontecorvo, Sov.\ Phys.--JETP \textbf{26}, 984 (1968) 
 | 
|---|
 | 1958 |   [Zh. Eksp. Teor. Fiz. \textbf{53}, 1717 (1967)];
 | 
|---|
 | 1959 |   V.~N.~Gribov and B.~Pontecorvo, 
 | 
|---|
 | 1960 |   Phys.\ Lett.\ B \textbf{28}, 493 (1969). 
 | 
|---|
 | 1961 | 
 | 
|---|
 | 1962 | \bibitem{CHOOZ}
 | 
|---|
 | 1963 |   Chooz Collaboration,
 | 
|---|
 | 1964 |   M. Apollonio \etal, Phys.\ Lett.\ B {\bf 466}, 415 (1999);
 | 
|---|
 | 1965 | %\bibitem{Apollonio:2002gd}
 | 
|---|
 | 1966 |   M.~Apollonio {\it et al.},
 | 
|---|
 | 1967 |   %``Search for neutrino oscillations on a long base-line at the CHOOZ  nuclear
 | 
|---|
 | 1968 |   %power station,''
 | 
|---|
 | 1969 |   Eur.\ Phys.\ J.\ C {\bf 27}, 331 (2003)
 | 
|---|
 | 1970 |   [hep-ex/0301017].
 | 
|---|
 | 1971 |   %%CITATION = HEP-EX 0301017;%%
 | 
|---|
 | 1972 | 
 | 
|---|
 | 1973 | \bibitem{Wpaper}
 | 
|---|
 | 1974 |   K.~Anderson \etal, White paper report on using nuclear 
 | 
|---|
 | 1975 |   reactors to search for a value of $\theta_{13}$, 
 | 
|---|
 | 1976 |   hep-ex/0402041;
 | 
|---|
 | 1977 | %
 | 
|---|
 | 1978 |   F.~Ardellier \etal, Letter of intent for Double-Chooz, 
 | 
|---|
 | 1979 |   hep-ex/0405032.
 | 
|---|
 | 1980 | 
 | 
|---|
 | 1981 | \bibitem{T2K}
 | 
|---|
 | 1982 |   Y.~Itow {\it et al.},
 | 
|---|
 | 1983 |   The JHF-Kamioka neutrino project,
 | 
|---|
 | 1984 |   hep-ex/0106019;
 | 
|---|
 | 1985 |   %%CITATION = HEP-EX 0106019;%%
 | 
|---|
 | 1986 | %
 | 
|---|
 | 1987 | %\bibitem{Kobayashi:2005hu}
 | 
|---|
 | 1988 |   T.~Kobayashi,
 | 
|---|
 | 1989 |   %``Super beams,''
 | 
|---|
 | 1990 |   Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 303.
 | 
|---|
 | 1991 |   %%CITATION = NUPHZ,143,303;%%
 | 
|---|
 | 1992 | 
 | 
|---|
 | 1993 | \bibitem{Ayres:2004js}
 | 
|---|
 | 1994 |   D.~S.~Ayres {\it et al.} [NOvA Coll.],
 | 
|---|
 | 1995 |   %``NOvA proposal to build a 30-kiloton off-axis detector to study neutrino
 | 
|---|
 | 1996 |   %oscillations in the Fermilab NuMI beamline,''
 | 
|---|
 | 1997 |   hep-ex/0503053.
 | 
|---|
 | 1998 |   %%CITATION = HEP-EX 0503053;%%
 | 
|---|
 | 1999 | 
 | 
|---|
 | 2000 | \bibitem{Huber:2003pm}
 | 
|---|
 | 2001 |   P.~Huber, M.~Lindner, T.~Schwetz and W.~Winter,
 | 
|---|
 | 2002 |   %``Reactor neutrino experiments compared to superbeams,''
 | 
|---|
 | 2003 |   Nucl.\ Phys.\ B {\bf 665} (2003) 487
 | 
|---|
 | 2004 |   [hep-ph/0303232];
 | 
|---|
 | 2005 |   %%CITATION = HEP-PH 0303232;%%
 | 
|---|
 | 2006 | %
 | 
|---|
 | 2007 | %\bibitem{Huber:2004ug}
 | 
|---|
 | 2008 |   P.~Huber, M.~Lindner, M.~Rolinec, T.~Schwetz and W.~Winter,
 | 
|---|
 | 2009 |   %``Prospects of accelerator and reactor neutrino oscillation experiments  for
 | 
|---|
 | 2010 |   %the coming ten years,''
 | 
|---|
 | 2011 |   Phys.\ Rev.\ D {\bf 70} (2004) 073014
 | 
|---|
 | 2012 |   [hep-ph/0403068].
 | 
|---|
 | 2013 |   %%CITATION = HEP-PH 0403068;%%
 | 
|---|
 | 2014 | 
 | 
|---|
 | 2015 | \bibitem{Albrow:2005kw}
 | 
|---|
 | 2016 |   M.~G.~Albrow {\it et al.},
 | 
|---|
 | 2017 |   Physics at a Fermilab proton driver,
 | 
|---|
 | 2018 |   hep-ex/0509019.
 | 
|---|
 | 2019 |   %%CITATION = HEP-EX 0509019;%%
 | 
|---|
 | 2020 | 
 | 
|---|
 | 2021 | \bibitem{SPL}
 | 
|---|
 | 2022 |   M.~Baylac {\it et al.},
 | 
|---|
 | 2023 |   Conceptual design of the SPL II: A high-power superconducting H- linac
 | 
|---|
 | 2024 |   at CERN, CERN-2006-006.
 | 
|---|
 | 2025 | 
 | 
|---|
 | 2026 | \bibitem{BNLHS}
 | 
|---|
 | 2027 | %\bibitem{Diwan:2003bp}
 | 
|---|
 | 2028 |   M.~V.~Diwan {\it et al.},
 | 
|---|
 | 2029 |   %``Very long baseline neutrino oscillation experiments for precise
 | 
|---|
 | 2030 |   %measurements of mixing parameters and CP violating effects,''
 | 
|---|
 | 2031 |   Phys.\ Rev.\ D {\bf 68} (2003) 012002
 | 
|---|
 | 2032 |   [hep-ph/0303081].
 | 
|---|
 | 2033 |   %%CITATION = HEP-PH 0303081;%%
 | 
|---|
 | 2034 | 
 | 
|---|
 | 2035 | \bibitem{zucchelli}
 | 
|---|
 | 2036 | %\bibitem{Zucchelli:2002sa}
 | 
|---|
 | 2037 |   P.~Zucchelli,
 | 
|---|
 | 2038 |   %``A novel concept for a anti-nu/e / nu/e neutrino factory: The Beta Beam,''
 | 
|---|
 | 2039 |   Phys.\ Lett.\ B {\bf 532} (2002) 166.
 | 
|---|
 | 2040 |   %%CITATION = PHLTA,B532,166;%%
 | 
|---|
 | 2041 | 
 | 
|---|
 | 2042 | \bibitem{Albright:2004iw}
 | 
|---|
 | 2043 |   C.~Albright {\it et al.}  [Neutrino Factory/Muon Collider Coll.],
 | 
|---|
 | 2044 |   %``The neutrino factory and Beta Beam experiments and development,''
 | 
|---|
 | 2045 |   physics/0411123.
 | 
|---|
 | 2046 |   %%CITATION = PHYS-ICS 0411123;%%
 | 
|---|
 | 2047 | 
 | 
|---|
 | 2048 | \bibitem{Blondel:2004ae}
 | 
|---|
 | 2049 |   A.~Blondel {\it et al.},
 | 
|---|
 | 2050 |   ECFA/CERN studies of a European neutrino factory complex,
 | 
|---|
 | 2051 |   CERN-2004-002
 | 
|---|
 | 2052 | 
 | 
|---|
 | 2053 | \bibitem{Campagne:2004wt}
 | 
|---|
 | 2054 |   J.~E.~Campagne and A.~Cazes,
 | 
|---|
 | 2055 |   %``The theta(13) and delta(CP) sensitivities of the SPL-Frejus project
 | 
|---|
 | 2056 |   %revisited,''
 | 
|---|
 | 2057 |   Eur.\ Phys.\ J.\ C {\bf 45} (2006) 643
 | 
|---|
 | 2058 |   [hep-ex/0411062].
 | 
|---|
 | 2059 |   %%CITATION = HEP-EX 0411062;%%
 | 
|---|
 | 2060 | 
 | 
|---|
 | 2061 | \bibitem{Mezzetto:2003ub}
 | 
|---|
 | 2062 |   M.~Mezzetto,
 | 
|---|
 | 2063 |   %``Physics reach of the beta beam,''
 | 
|---|
 | 2064 |   J.\ Phys.\ G {\bf 29} (2003) 1771
 | 
|---|
 | 2065 |   [hep-ex/0302007];
 | 
|---|
 | 2066 |   %%CITATION = HEP-EX 0302007;%%
 | 
|---|
 | 2067 | %
 | 
|---|
 | 2068 |   J.~Bouchez, M.~Lindroos, M.~Mezzetto,
 | 
|---|
 | 2069 |   %``Beta Beams: Present design and expected performances,''
 | 
|---|
 | 2070 |   AIP Conf.\ Proc.\  {\bf 721} (2004) 37
 | 
|---|
 | 2071 |   [hep-ex/0310059].
 | 
|---|
 | 2072 |   %%CITATION = HEP-EX 0310059;%%
 | 
|---|
 | 2073 | 
 | 
|---|
 | 2074 | \bibitem{memphys}
 | 
|---|
 | 2075 |   A.~de Bellefon {\it et al.}, 
 | 
|---|
 | 2076 |   MEMPHYS: A large scale water \v{C}erenkov detector
 | 
|---|
 | 2077 |   at Fr\'ejus, Contribution to the CERN strategic committee,
 | 
|---|
 | 2078 |   hep-ex/0607026,\\
 | 
|---|
 | 2079 |   \verb!http://apc-p7.org/APC_CS/Experiences/MEMPHYS/!
 | 
|---|
 | 2080 | 
 | 
|---|
 | 2081 | \bibitem{UNO} 
 | 
|---|
 | 2082 |   C.~K.~Jung,
 | 
|---|
 | 2083 |   Feasibility of a next generation underground water Cherenkov detector:
 | 
|---|
 | 2084 |   UNO, hep-ex/0005046.
 | 
|---|
 | 2085 |   %%CITATION = HEP-EX 0005046;%%
 | 
|---|
 | 2086 | 
 | 
|---|
 | 2087 | \bibitem{Nakamura:2003hk}
 | 
|---|
 | 2088 |   K.~Nakamura,
 | 
|---|
 | 2089 |   %``Hyper-Kamiokande: A next generation water Cherenkov detector,''
 | 
|---|
 | 2090 |   Int.\ J.\ Mod.\ Phys.\ A {\bf 18} (2003) 4053.
 | 
|---|
 | 2091 |   %%CITATION = IMPAE,A18,4053;%%
 | 
|---|
 | 2092 | 
 | 
|---|
 | 2093 | \bibitem{Huber:2005ep}
 | 
|---|
 | 2094 |   P.~Huber, M.~Maltoni, T.~Schwetz,
 | 
|---|
 | 2095 |   %``Resolving parameter degeneracies in long-baseline experiments by
 | 
|---|
 | 2096 |   %atmospheric neutrino data,''
 | 
|---|
 | 2097 |   Phys.\ Rev.\ D {\bf 71} (2005) 053006
 | 
|---|
 | 2098 |   [hep-ph/0501037].
 | 
|---|
 | 2099 |   %%CITATION = HEP-PH 0501037;%%
 | 
|---|
 | 2100 | 
 | 
|---|
 | 2101 | \bibitem{Globes}
 | 
|---|
 | 2102 |   P.~Huber, M.~Lindner and W.~Winter,
 | 
|---|
 | 2103 |   %``Simulation of long-baseline neutrino oscillation experiments with
 | 
|---|
 | 2104 |   %GLoBES,''
 | 
|---|
 | 2105 |   Comput.\ Phys.\ Commun.\  {\bf 167} (2005) 195
 | 
|---|
 | 2106 |   [hep-ph/0407333],
 | 
|---|
 | 2107 |   \verb!http://www.ph.tum.de/~globes!
 | 
|---|
 | 2108 | 
 | 
|---|
 | 2109 | \bibitem{Huber:2002mx}
 | 
|---|
 | 2110 |   P.~Huber, M.~Lindner and W.~Winter,
 | 
|---|
 | 2111 |   %``Superbeams versus neutrino factories,''
 | 
|---|
 | 2112 |   Nucl.\ Phys.\ B {\bf 645} (2002) 3
 | 
|---|
 | 2113 |   [hep-ph/0204352].
 | 
|---|
 | 2114 |   %%CITATION = HEP-PH 0204352;%%
 | 
|---|
 | 2115 | 
 | 
|---|
 | 2116 | \bibitem{Nuance}
 | 
|---|
 | 2117 |   NUANCE event generator (v3), 
 | 
|---|
 | 2118 |   \verb!http://nuint.ps.uci.edu/nuance/!,
 | 
|---|
 | 2119 |   D.~Casper,
 | 
|---|
 | 2120 |   %``The nuance neutrino physics simulation, and the future,''
 | 
|---|
 | 2121 |   Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 112} (2002) 161
 | 
|---|
 | 2122 |   [hep-ph/0208030].
 | 
|---|
 | 2123 | 
 | 
|---|
 | 2124 | \bibitem{ISSpage}
 | 
|---|
 | 2125 |   Webpage of the International Scoping Study physics working group:\\
 | 
|---|
 | 2126 |   \verb!http://www.hep.ph.ic.ac.uk/iss/wg1-phys-phen/index.html!
 | 
|---|
 | 2127 | 
 | 
|---|
 | 2128 | % BB %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 2129 | 
 | 
|---|
 | 2130 | \bibitem{MyNufact04}
 | 
|---|
 | 2131 |   M.~Mezzetto,
 | 
|---|
 | 2132 |   %``SPL and Beta Beams to the Frejus,''
 | 
|---|
 | 2133 |   Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 149} (2005) 179.
 | 
|---|
 | 2134 | 
 | 
|---|
 | 2135 | \bibitem{Donini:2004hu}
 | 
|---|
 | 2136 |   A.~Donini, E.~Fernandez-Martinez, P.~Migliozzi, S.~Rigolin and L.~Scotto Lavina,
 | 
|---|
 | 2137 |   %``Study of the eightfold degeneracy with a standard beta-beam and a
 | 
|---|
 | 2138 |   %super-beam facility,''
 | 
|---|
 | 2139 |   Nucl.\ Phys.\ B {\bf 710}, 402 (2005)
 | 
|---|
 | 2140 |   [hep-ph/0406132].
 | 
|---|
 | 2141 |   %%CITATION = HEP-PH 0406132;%%
 | 
|---|
 | 2142 | 
 | 
|---|
 | 2143 | \bibitem{JJHigh2} 
 | 
|---|
 | 2144 | %\bibitem{Burguet-Castell:2005pa}
 | 
|---|
 | 2145 |   J.~Burguet-Castell, D.~Casper, E.~Couce, J.~J.~Gomez-Cadenas and P.~Hernandez,
 | 
|---|
 | 2146 |   %``Optimal beta-beam at the CERN-SPS,''
 | 
|---|
 | 2147 |   Nucl.\ Phys.\ B {\bf 725} (2005) 306
 | 
|---|
 | 2148 |   [hep-ph/0503021].
 | 
|---|
 | 2149 |   %%CITATION = HEP-PH 0503021;%%
 | 
|---|
 | 2150 | 
 | 
|---|
 | 2151 | \bibitem{LindnerBB}
 | 
|---|
 | 2152 | %\bibitem{Huber:2005jk}
 | 
|---|
 | 2153 |   P.~Huber, M.~Lindner, M.~Rolinec and W.~Winter,
 | 
|---|
 | 2154 |   %``Physics and optimization of beta-beams: From low to very high gamma,''
 | 
|---|
 | 2155 |   Phys.\ Rev.\ D {\bf 73}, 053002 (2006)
 | 
|---|
 | 2156 |   [hep-ph/0506237].
 | 
|---|
 | 2157 |   %%CITATION = HEP-PH 0506237;%%
 | 
|---|
 | 2158 | 
 | 
|---|
 | 2159 | \bibitem{JJHigh1}
 | 
|---|
 | 2160 |  J.~Burguet-Castell, D.~Casper, J.~J.~Gomez-Cadenas, P.~Hernandez and F.~Sanchez,
 | 
|---|
 | 2161 |  Nucl.\ Phys.\ B {\bf 695} (2004) 217
 | 
|---|
 | 2162 |  [hep-ph/0312068].
 | 
|---|
 | 2163 | 
 | 
|---|
 | 2164 | \bibitem{Terranova}
 | 
|---|
 | 2165 |   F.~Terranova, A.~Marotta, P.~Migliozzi and M.~Spinetti,
 | 
|---|
 | 2166 |   %``High energy beta beams without massive detectors,''
 | 
|---|
 | 2167 |   Eur.\ Phys.\ J.\ C {\bf 38}, 69 (2004)
 | 
|---|
 | 2168 |   [hep-ph/0405081].
 | 
|---|
 | 2169 |   %%CITATION = HEP-PH 0405081;%%
 | 
|---|
 | 2170 | 
 | 
|---|
 | 2171 | \bibitem{BB-Reviews}
 | 
|---|
 | 2172 |   M.~Mezzetto, %``Beta Beams,''
 | 
|---|
 | 2173 |   Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 309
 | 
|---|
 | 2174 |   [hep-ex/0410083];
 | 
|---|
 | 2175 | %
 | 
|---|
 | 2176 |   C.~Volpe,
 | 
|---|
 | 2177 |   %``Topical review on 'beta-beams',''
 | 
|---|
 | 2178 |   hep-ph/0605033.
 | 
|---|
 | 2179 | 
 | 
|---|
 | 2180 | \bibitem{Volpe}
 | 
|---|
 | 2181 |   C.~Volpe,
 | 
|---|
 | 2182 |   %``What about a Beta Beam facility for low energy neutrinos?,''
 | 
|---|
 | 2183 |   J.\ Phys.\ G {\bf 30} (2004) L1
 | 
|---|
 | 2184 |   [hep-ph/0303222].
 | 
|---|
 | 2185 | 
 | 
|---|
 | 2186 | \bibitem{Lindroos}
 | 
|---|
 | 2187 | %\bibitem{Autin:2002ms}
 | 
|---|
 | 2188 |   B.~Autin {\it et al.},
 | 
|---|
 | 2189 |   %``The acceleration and storage of radioactive ions for a neutrino  factory,''
 | 
|---|
 | 2190 |   J.\ Phys.\ G {\bf 29}, 1785 (2003)
 | 
|---|
 | 2191 |   [physics/0306106];
 | 
|---|
 | 2192 |   %%CITATION = PHYS-ICS 0306106;%%
 | 
|---|
 | 2193 | % 
 | 
|---|
 | 2194 |   M.~Benedikt, S.~Hancock and M.~Lindroos,
 | 
|---|
 | 2195 |   % ``Baseline Design for a Beta-Beam Neutrino Factory'', 
 | 
|---|
 | 2196 |   Proceedings of EPAC, 2004,
 | 
|---|
 | 2197 |   \verb!http://accelconf.web.cern.ch/AccelConf/e04!;
 | 
|---|
 | 2198 | %
 | 
|---|
 | 2199 |   M.~Lindroos, EURISOL DS/TASK12/TN-05-02.
 | 
|---|
 | 2200 | 
 | 
|---|
 | 2201 | \bibitem{Eurisol}
 | 
|---|
 | 2202 |   Eurisol Beta Beam webpage: \verb!http://beta-beam.web.cern.ch/beta-beam/!.
 | 
|---|
 | 2203 | 
 | 
|---|
 | 2204 | \bibitem{Lindroos-Optimization}
 | 
|---|
 | 2205 |   M.~Benedikt, A.~Fabich, S.~Hancock and M.~Lindroos,
 | 
|---|
 | 2206 |   %``Optimization Of The Beta-Beam Baseline,''
 | 
|---|
 | 2207 |   Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 211.
 | 
|---|
 | 2208 | 
 | 
|---|
 | 2209 | \bibitem{MezzettoNuFact05}
 | 
|---|
 | 2210 |   M.~Mezzetto,
 | 
|---|
 | 2211 |   %``Physics potential of the gamma = 100,100 beta beam,''
 | 
|---|
 | 2212 |   Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 214
 | 
|---|
 | 2213 |   [hep-ex/0511005].
 | 
|---|
 | 2214 | 
 | 
|---|
 | 2215 | % SPL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 2216 | 
 | 
|---|
 | 2217 | \bibitem{Neugen}
 | 
|---|
 | 2218 |   The NEUGEN neutrino event generator,
 | 
|---|
 | 2219 |   \verb!http://minos.phy.tufts.edu/gallag/neugen/!.
 | 
|---|
 | 2220 | 
 | 
|---|
 | 2221 | \bibitem{FLUKA}
 | 
|---|
 | 2222 | A.~Fasso \etal, Proceedings of the MonteCarlo 2000 conference, 
 | 
|---|
 | 2223 | Lisbon, October 26 2000, 
 | 
|---|
 | 2224 | A.~Kling \etal\ (eds.), Springer-Verlag Berlin (2001), 159-164 and 955-960. 
 | 
|---|
 | 2225 | 
 | 
|---|
 | 2226 | \bibitem{GEANT}
 | 
|---|
 | 2227 | Application Software group, Computing and Network Division \etal, 
 | 
|---|
 | 2228 | GEANT Description and Simulation Tool, CERN Geneva, Switzerland
 | 
|---|
 | 2229 | 
 | 
|---|
 | 2230 | \bibitem{HARP-MINERVA}
 | 
|---|
 | 2231 |   C. Catanesi \etal\ [HARP Coll.], CERN-SPSC 2002/019;
 | 
|---|
 | 2232 | %
 | 
|---|
 | 2233 | %\bibitem{Drakoulakos:2004gn}
 | 
|---|
 | 2234 |   D.~Drakoulakos {\it et al.}  [Minerva Coll.],
 | 
|---|
 | 2235 |   %``Proposal to perform a high-statistics neutrino scattering experiment  using
 | 
|---|
 | 2236 |   %a fine-grained detector in the NuMI beam,''
 | 
|---|
 | 2237 |   hep-ex/0405002.
 | 
|---|
 | 2238 |   %%CITATION = HEP-EX 0405002;%%
 | 
|---|
 | 2239 | 
 | 
|---|
 | 2240 | \bibitem{Mezzetto:2003mm}
 | 
|---|
 | 2241 |   M.~Mezzetto,
 | 
|---|
 | 2242 |   %``Physics potential of the SPL super beam,''
 | 
|---|
 | 2243 |   J.\ Phys.\ G {\bf 29}, 1781 (2003)
 | 
|---|
 | 2244 |   [hep-ex/0302005].
 | 
|---|
 | 2245 |   %%CITATION = HEP-EX 0302005;%%
 | 
|---|
 | 2246 | 
 | 
|---|
 | 2247 | % ATM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 2248 | 
 | 
|---|
 | 2249 | \bibitem{Honda:2004yz}
 | 
|---|
 | 2250 |   M.~Honda, T.~Kajita, K.~Kasahara and S.~Midorikawa,
 | 
|---|
 | 2251 |   %``A new calculation of the atmospheric neutrino flux in a 3-dimensional
 | 
|---|
 | 2252 |   %scheme,''
 | 
|---|
 | 2253 |   Phys.\ Rev.\ D {\bf 70} (2004) 043008
 | 
|---|
 | 2254 |   [astro-ph/0404457].
 | 
|---|
 | 2255 |   %%CITATION = ASTRO-PH 0404457;%%
 | 
|---|
 | 2256 | 
 | 
|---|
 | 2257 | \bibitem{Lipari:1991ut}
 | 
|---|
 | 2258 |   P.~Lipari and T.~Stanev,
 | 
|---|
 | 2259 |   %``Propagation of multi - TeV muons,''
 | 
|---|
 | 2260 |   Phys.\ Rev.\ D {\bf 44} (1991) 3543.
 | 
|---|
 | 2261 |   %%CITATION = PHRVA,D44,3543;%%
 | 
|---|
 | 2262 | 
 | 
|---|
 | 2263 | \bibitem{Gonzalez-Garcia:2004wg}
 | 
|---|
 | 2264 |   M.~C.~Gonzalez-Garcia and M.~Maltoni,
 | 
|---|
 | 2265 |   %``Atmospheric neutrino oscillations and new physics,''
 | 
|---|
 | 2266 |   Phys.\ Rev.\ D {\bf 70} (2004) 033010
 | 
|---|
 | 2267 |   [hep-ph/0404085].
 | 
|---|
 | 2268 |   %%CITATION = HEP-PH 0404085;%%
 | 
|---|
 | 2269 | 
 | 
|---|
 | 2270 | % DEGENERACIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 2271 | 
 | 
|---|
 | 2272 | \bibitem{Burguet-Castell:2001ez}
 | 
|---|
 | 2273 |   J.~Burguet-Castell, M.~B.~Gavela, J.~J.~Gomez-Cadenas, P.~Hernandez and O.~Mena,
 | 
|---|
 | 2274 |   %``On the measurement of leptonic CP violation,''
 | 
|---|
 | 2275 |   Nucl.\ Phys.\ B {\bf 608} (2001) 301
 | 
|---|
 | 2276 |   [hep-ph/0103258].
 | 
|---|
 | 2277 |   %%CITATION = HEP-PH 0103258;%%
 | 
|---|
 | 2278 | 
 | 
|---|
 | 2279 | \bibitem{Minakata:2001qm}
 | 
|---|
 | 2280 |   H.~Minakata and H.~Nunokawa,
 | 
|---|
 | 2281 |   %``Exploring neutrino mixing with low energy superbeams,''
 | 
|---|
 | 2282 |   JHEP {\bf 0110}, 001 (2001)
 | 
|---|
 | 2283 |   [hep-ph/0108085].
 | 
|---|
 | 2284 |   %%CITATION = HEP-PH 0108085;%%
 | 
|---|
 | 2285 | 
 | 
|---|
 | 2286 | \bibitem{Fogli:1996pv}
 | 
|---|
 | 2287 |   G.~L.~Fogli and E.~Lisi,
 | 
|---|
 | 2288 |   %``Tests of three-flavor mixing in long-baseline neutrino oscillation
 | 
|---|
 | 2289 |   %experiments,''
 | 
|---|
 | 2290 |   Phys.\ Rev.\ D {\bf 54}, 3667 (1996)
 | 
|---|
 | 2291 |   [hep-ph/9604415].
 | 
|---|
 | 2292 |   %%CITATION = HEP-PH 9604415;%%
 | 
|---|
 | 2293 | 
 | 
|---|
 | 2294 | \bibitem{Barger:2001yr}
 | 
|---|
 | 2295 |   V.~Barger, D.~Marfatia and K.~Whisnant,
 | 
|---|
 | 2296 |   %``Breaking eight-fold degeneracies in neutrino CP violation, mixing, and
 | 
|---|
 | 2297 |   %mass hierarchy,''
 | 
|---|
 | 2298 |   Phys.\ Rev.\ D {\bf 65}, 073023 (2002)
 | 
|---|
 | 2299 |   [hep-ph/0112119].
 | 
|---|
 | 2300 |   %%CITATION = HEP-PH 0112119;%%
 | 
|---|
 | 2301 | 
 | 
|---|
 | 2302 | \bibitem{Yasuda:2004gu}
 | 
|---|
 | 2303 |   O.~Yasuda,
 | 
|---|
 | 2304 |   %``New plots and parameter degeneracies in neutrino oscillations,''
 | 
|---|
 | 2305 |   New J.\ Phys.\  {\bf 6}, 83 (2004)
 | 
|---|
 | 2306 |   [hep-ph/0405005].
 | 
|---|
 | 2307 |   %%CITATION = HEP-PH 0405005;%%
 | 
|---|
 | 2308 | 
 | 
|---|
 | 2309 | \bibitem{Ishitsuka:2005qi}
 | 
|---|
 | 2310 |   M.~Ishitsuka, T.~Kajita, H.~Minakata and H.~Nunokawa,
 | 
|---|
 | 2311 |   %``Resolving neutrino mass hierarchy and CP degeneracy by two identical
 | 
|---|
 | 2312 |   %detectors with different baselines,''
 | 
|---|
 | 2313 |   Phys.\ Rev.\ D {\bf 72} (2005) 033003
 | 
|---|
 | 2314 |   [hep-ph/0504026].
 | 
|---|
 | 2315 |   %%CITATION = HEP-PH 0504026;%%
 | 
|---|
 | 2316 | 
 | 
|---|
 | 2317 | \bibitem{Antusch:2004yx}
 | 
|---|
 | 2318 |   S.~Antusch, P.~Huber, J.~Kersten, T.~Schwetz and W.~Winter,
 | 
|---|
 | 2319 |   %``Is there maximal mixing in the lepton sector?,''
 | 
|---|
 | 2320 |   Phys.\ Rev.\ D {\bf 70}, 097302 (2004)
 | 
|---|
 | 2321 |   [hep-ph/0404268].
 | 
|---|
 | 2322 |   %%CITATION = HEP-PH 0404268;%%
 | 
|---|
 | 2323 | 
 | 
|---|
 | 2324 | \bibitem{Minakata:2004pg}
 | 
|---|
 | 2325 |   H.~Minakata, M.~Sonoyama and H.~Sugiyama,
 | 
|---|
 | 2326 |   %``Determination of theta(23) in long-baseline neutrino oscillation
 | 
|---|
 | 2327 |   %experiments with three-flavor mixing effects,''
 | 
|---|
 | 2328 |   Phys.\ Rev.\ D {\bf 70} (2004) 113012
 | 
|---|
 | 2329 |   [hep-ph/0406073].
 | 
|---|
 | 2330 |   %%CITATION = HEP-PH 0406073;%%
 | 
|---|
 | 2331 | 
 | 
|---|
 | 2332 | \bibitem{Donini:2005db}
 | 
|---|
 | 2333 |   A.~Donini, E.~Fernandez-Martinez, D.~Meloni and S.~Rigolin,
 | 
|---|
 | 2334 |   %``nu/mu disappearance at the SPL, T2K-I, NOnuA and the neutrino factory,''
 | 
|---|
 | 2335 |   Nucl.\ Phys.\ B {\bf 743}, 41 (2006)
 | 
|---|
 | 2336 |   [hep-ph/0512038].
 | 
|---|
 | 2337 |   %%CITATION = HEP-PH 0512038;%%
 | 
|---|
 | 2338 | 
 | 
|---|
 | 2339 | \bibitem{Peres:2003wd}
 | 
|---|
 | 2340 |   O.L.G.~Peres, A.Y.~Smirnov,
 | 
|---|
 | 2341 |   %``Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and
 | 
|---|
 | 2342 |   %CP-violation,''
 | 
|---|
 | 2343 |   Nucl.\ Phys.\ B {\bf 680} (2004) 479
 | 
|---|
 | 2344 |   [hep-ph/0309312].
 | 
|---|
 | 2345 |   %%CITATION = HEP-PH 0309312;%%
 | 
|---|
 | 2346 | 
 | 
|---|
 | 2347 | \bibitem{Gonzalez-Garcia:2004cu}
 | 
|---|
 | 2348 |   M.C.~Gonzalez-Garcia, M.~Maltoni, A.Y. Smirnov,
 | 
|---|
 | 2349 |   %``Measuring the deviation of the 2-3 lepton mixing from maximal with
 | 
|---|
 | 2350 |   %atmospheric neutrinos,''
 | 
|---|
 | 2351 |   Phys.\ Rev.\ D {\bf 70} (2004) 093005
 | 
|---|
 | 2352 |   [hep-ph/0408170].
 | 
|---|
 | 2353 |   %%CITATION = HEP-PH 0408170;%%
 | 
|---|
 | 2354 | 
 | 
|---|
 | 2355 | \bibitem{Petcov:1998su}
 | 
|---|
 | 2356 |   S.~T.~Petcov,
 | 
|---|
 | 2357 |   %``Diffractive-like (or parametric-resonance-like?) enhancement of the  earth
 | 
|---|
 | 2358 |   %(day-night) effect for solar neutrinos crossing the earth core,''
 | 
|---|
 | 2359 |   Phys.\ Lett.\ B {\bf 434} (1998) 321
 | 
|---|
 | 2360 |   [hep-ph/9805262];
 | 
|---|
 | 2361 |   %%CITATION = HEP-PH 9805262;%%
 | 
|---|
 | 2362 | %
 | 
|---|
 | 2363 | %\bibitem{Chizhov:1998ug}
 | 
|---|
 | 2364 |   M.~Chizhov, M.~Maris and S.~T.~Petcov,
 | 
|---|
 | 2365 |   %``On the oscillation length resonance in the transitions of solar and
 | 
|---|
 | 2366 |   %atmospheric neutrinos crossing the earth core,''
 | 
|---|
 | 2367 |   hep-ph/9810501;
 | 
|---|
 | 2368 |   %%CITATION = HEP-PH 9810501;%%
 | 
|---|
 | 2369 | %
 | 
|---|
 | 2370 | %\bibitem{Chizhov:1999az}
 | 
|---|
 | 2371 |   M.~V.~Chizhov and S.~T.~Petcov,
 | 
|---|
 | 2372 |   %``New conditions for a total neutrino conversion in a medium,''
 | 
|---|
 | 2373 |   Phys.\ Rev.\ Lett.\  {\bf 83} (1999) 1096
 | 
|---|
 | 2374 |   [hep-ph/9903399].
 | 
|---|
 | 2375 |   %%CITATION = HEP-PH 9903399;%%
 | 
|---|
 | 2376 | 
 | 
|---|
 | 2377 | \bibitem{Akhmedov:1998ui}
 | 
|---|
 | 2378 |   E.~K.~Akhmedov,
 | 
|---|
 | 2379 |   %``Parametric resonance of neutrino oscillations and passage of solar and
 | 
|---|
 | 2380 |   %atmospheric neutrinos through the earth,''
 | 
|---|
 | 2381 |   Nucl.\ Phys.\ B {\bf 538}, 25 (1999)
 | 
|---|
 | 2382 |   [hep-ph/9805272];
 | 
|---|
 | 2383 |   %%CITATION = HEP-PH 9805272;%%
 | 
|---|
 | 2384 | %
 | 
|---|
 | 2385 | %\bibitem{Akhmedov:1998xq}
 | 
|---|
 | 2386 |   E.~K.~Akhmedov, A.~Dighe, P.~Lipari and A.~Y.~Smirnov,
 | 
|---|
 | 2387 |   %``Atmospheric neutrinos at Super-Kamiokande and parametric resonance in
 | 
|---|
 | 2388 |   %neutrino oscillations,''
 | 
|---|
 | 2389 |   Nucl.\ Phys.\ B {\bf 542}, 3 (1999)
 | 
|---|
 | 2390 |   [hep-ph/9808270].
 | 
|---|
 | 2391 |   %%CITATION = HEP-PH 9808270;%%
 | 
|---|
 | 2392 | 
 | 
|---|
 | 2393 | \bibitem{Bernabeu:2003yp}
 | 
|---|
 | 2394 |   J.~Bernabeu, S.~Palomares-Ruiz and S.~T.~Petcov,
 | 
|---|
 | 2395 |   %``Atmospheric neutrino oscillations, theta(13) and neutrino mass
 | 
|---|
 | 2396 |   %hierarchy,''
 | 
|---|
 | 2397 |   Nucl.\ Phys.\ B {\bf 669}, 255 (2003)
 | 
|---|
 | 2398 |   [hep-ph/0305152].
 | 
|---|
 | 2399 |   %%CITATION = HEP-PH 0305152;%%
 | 
|---|
 | 2400 | 
 | 
|---|
 | 2401 | \bibitem{Kim:1998bv}
 | 
|---|
 | 2402 |   C.~W.~Kim and U.~W.~Lee,
 | 
|---|
 | 2403 |   %``Comment on the possible electron-neutrino excess in the  Super-Kamiokande
 | 
|---|
 | 2404 |   %atmospheric neutrino experiment,''
 | 
|---|
 | 2405 |   Phys.\ Lett.\ B {\bf 444}, 204 (1998)
 | 
|---|
 | 2406 |   [hep-ph/9809491].
 | 
|---|
 | 2407 |   %%CITATION = HEP-PH 9809491;%%
 | 
|---|
 | 2408 | 
 | 
|---|
 | 2409 | \bibitem{Kajita}
 | 
|---|
 | 2410 |   T.~Kajita, Talk at NNN05, 7--9 April 2005, Aussois, Savoie, France,\\
 | 
|---|
 | 2411 |   \verb!http://nnn05.in2p3.fr/!
 | 
|---|
 | 2412 | 
 | 
|---|
 | 2413 | \bibitem{Petcov:2005rv}
 | 
|---|
 | 2414 |   S.~T.~Petcov and T.~Schwetz,
 | 
|---|
 | 2415 |   %``Determining the neutrino mass hierarchy with atmospheric neutrinos,''
 | 
|---|
 | 2416 |   Nucl.\ Phys.\ B {\bf 740}, 1 (2006)
 | 
|---|
 | 2417 |   [hep-ph/0511277].
 | 
|---|
 | 2418 |   %%CITATION = HEP-PH 0511277;%%
 | 
|---|
 | 2419 | 
 | 
|---|
 | 2420 | \bibitem{MenaRequejo:2005hn}
 | 
|---|
 | 2421 |   O.~Mena-Requejo, S.~Palomares-Ruiz and S.~Pascoli,
 | 
|---|
 | 2422 |   %``Super-NOvA: A long-baseline neutrino experiment with two off-axis
 | 
|---|
 | 2423 |   %detectors,''
 | 
|---|
 | 2424 |   Phys.\ Rev.\ D {\bf 72} (2005) 053002
 | 
|---|
 | 2425 |   [hep-ph/0504015];
 | 
|---|
 | 2426 |   %%CITATION = HEP-PH 0504015;%%
 | 
|---|
 | 2427 | %
 | 
|---|
 | 2428 | %\bibitem{Mena:2005ri}
 | 
|---|
 | 2429 |   %O.~Mena, S.~Palomares-Ruiz and S.~Pascoli,
 | 
|---|
 | 2430 |   %``Determining the neutrino mass hierarchy and CP violation in NOnuA with a
 | 
|---|
 | 2431 |   %second off-axis detector,''
 | 
|---|
 | 2432 |   Phys.\ Rev.\ D {\bf 73} (2006) 073007
 | 
|---|
 | 2433 |   [hep-ph/0510182].
 | 
|---|
 | 2434 |   %%CITATION = HEP-PH 0510182;%%
 | 
|---|
 | 2435 | 
 | 
|---|
 | 2436 | \bibitem{Hagiwara:2005pe}
 | 
|---|
 | 2437 |   K.~Hagiwara, N.~Okamura and K.~Senda,
 | 
|---|
 | 2438 |   %``Solving the neutrino parameter degeneracy by measuring the T2K off-axis
 | 
|---|
 | 2439 |   %beam in Korea,''
 | 
|---|
 | 2440 |   Phys.\ Lett.\ B {\bf 637}, 266 (2006)
 | 
|---|
 | 2441 |   [hep-ph/0504061].
 | 
|---|
 | 2442 |   %%CITATION = HEP-PH 0504061;%%
 | 
|---|
 | 2443 | 
 | 
|---|
 | 2444 | \bibitem{Kachelriess:2004vs}
 | 
|---|
 | 2445 |   M.~Kachelriess and R.~Tomas,
 | 
|---|
 | 2446 |   %``Identifying the neutrino mass hierarchy with supernova neutrinos,''
 | 
|---|
 | 2447 |   hep-ph/0412100.
 | 
|---|
 | 2448 |   %%CITATION = HEP-PH 0412100;%%
 | 
|---|
 | 2449 | 
 | 
|---|
 | 2450 | \end{thebibliography}
 | 
|---|
 | 2451 | \end{document}
 | 
|---|
 | 2452 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | 
|---|
 | 2453 | 
 | 
|---|
 | 2454 | 
 | 
|---|