source: Backup NB/Talks/MEMPHYSetal/CERN-Frejus/TS-29sept06/CERN-MEMPHYS.tex @ 391

Last change on this file since 391 was 385, checked in by campagne, 16 years ago
File size: 108.3 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2\NeedsTeXFormat{LaTeX2e}
3\documentclass[12pt,a4paper]{article}
4
5%-- used packages ------------------------------------------------------
6
7%\usepackage{cite}
8\usepackage{graphicx}
9\usepackage{epsfig}
10\usepackage{amssymb}
11\usepackage{amsmath}
12\usepackage{latexsym}
13
14
15%-- page parameters -------------------------------------------------
16
17\jot = 1.5ex
18\parskip 5pt plus 1pt
19%\parindent 0pt
20\evensidemargin -0.1in   \oddsidemargin  -0.1in
21\textwidth  6.5in       \textheight 9.4in
22\topmargin -.8cm        \headsep    1.0cm
23
24%-- command (re)definitions -----------------------------------------
25
26\newcommand{\capdef}{}
27%\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
28%       \caption[#1]{{\itshape #2}}}
29\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
30       \caption[#1]{{\footnotesize #2}}}
31\makeatletter
32\renewcommand{\fnum@table}{\textbf{\tablename~\thetable}}
33\renewcommand{\fnum@figure}{\textbf{\figurename~\thefigure}}
34\makeatother
35\def\ltap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$<$}\ }
36\def\gtap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$>$}\ }
37
38\newcounter{myenumi}
39\newcommand{\myitem}{\refstepcounter{myenumi}\item}
40\renewcommand{\themyenumi}{\roman{myenumi}}
41\newenvironment{mylist}{%
42        \setcounter{myenumi}{0}
43        \begin{list}{\textit{\themyenumi)}}{%
44        \setlength{\topsep}{0.2\baselineskip}%
45        \setlength{\partopsep}{-\topsep}%
46        \setlength{\itemsep}{\topsep}%
47        \setlength{\parsep}{0\baselineskip}%
48        \setlength{\leftmargin}{0em}%
49        \setlength{\listparindent}{\parindent}%
50        \setlength{\itemindent}{2.5em}%
51        \setlength{\labelwidth}{1.5em}%
52        \setlength{\labelsep}{0.75em}}}%
53{\end{list}}
54
55\newlength{\myem}
56\settowidth{\myem}{m}
57\newcommand{\sep}[1]{#1}
58\newcounter{mysubequation}[equation]
59\renewcommand{\themysubequation}{\alph{mysubequation}}
60\newcommand{\mytag}{\stepcounter{mysubequation}%
61\tag{\theequation\protect\sep{\themysubequation}}}
62\newcommand{\globallabel}[1]{\refstepcounter{equation}\label{#1}}
63
64\makeatletter
65\renewcommand{\section}{\@startsection{section}{1}{0em}{-\baselineskip}%
66{\baselineskip}{\normalfont\large\bfseries}}
67\renewcommand{\subsection}%
68{\@startsection{subsection}{2}{0em}{-0.7\baselineskip}%
69{0.7\baselineskip}{\normalfont\bfseries}}
70\makeatother
71
72
73%%%%%%%%%%%%%%%%%%%%%%%%
74% definitions
75%%%%%%%%%%%%%%%%%%%%%%%%
76\newcommand{\centre}[2]{\multispan{#1}{\hfill #2\hfill}}
77\newcommand{\etal}{\textit{et al.}}
78\newcommand{\stheta}{\ensuremath{\sin^22\theta_{13}}}
79\newcommand{\BB}{$\beta$B}
80\newcommand{\sigdm}{\ensuremath{{\rm sign}(\Delta m^2_{31})}}
81\newcommand{\delCP}{\ensuremath{\delta_{\rm CP}}}
82\newcommand{\thetatt}{\ensuremath{\theta_{23}}}
83
84\def\nubar{$\overline{\nu}\ $}
85\def\nue{\ensuremath{\nu_{e}}}
86\def\nubare{\ensuremath{\overline{\nu}_{e}}}
87\def\nubarecc{$\overline{\nu}_{e}^{CC}\ $}
88\def\numu{\ensuremath{\nu_{\mu}\ }}
89\def\nubarmu{\ensuremath{\overline{\nu}_{\mu}}}
90\def\nubarmucc{$\overline{\nu}_{\mu}^{CC}\ $}
91\def\nutau{\ensuremath{\nu_{\tau}\ }}
92\def\nubartau{\ensuremath{\overline{\nu}_{\tau}}}
93\newcommand{\nuenumu}{\ensuremath{\nue \rightarrow \numu\,}}
94\newcommand{\numunutau}{\ensuremath{\numu \rightarrow \nutau\,}}
95\newcommand{\nuenutau}{\ensuremath{\nue \rightarrow \nutau}}
96\newcommand{\nubarenubarmu}{\ensuremath{\overline{\nu}_e \rightarrow \overline{\nu}_\mu\,}}
97\newcommand{\nubarmunubare}{\ensuremath{\overline{\nu}_\mu \rightarrow \overline{\nu}_e\,}}
98\newcommand{\dmot}{\ensuremath{\Delta m^2_{12}\,}}
99
100\newcommand{\He}{\ensuremath{^6{\mathrm{He}}}}
101\newcommand{\Ne}{\ensuremath{^{18}{\mathrm{Ne}}}}
102\def\Li{^6{\mathrm{Li}}}
103\def\anue{\overline{{\mathrm\nu}}_{\mathrm e}}
104\def\anumu{\overline{{\mathrm\nu}}_{\mathrm \mu}}
105\newcommand{\thetaot}{\ensuremath{\theta_{13}}\,}
106\newcommand{\numunue}{\ensuremath{\nu_\mu \rightarrow \nu_e}}
107\newcommand{\nueovernumu}{\ensuremath{\nue/\numu}}
108
109\newcommand{\Efin}{E^\text{fin}}
110\newcommand{\Emin}{E_\text{min}}
111
112
113\begin{document}
114%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115%%%%                     Title-page                              %%%%
116%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
117
118%\begin{titlepage}
119
120% the footnote symbols are only redefined for the title page !
121\renewcommand{\thefootnote}{\alph{footnote}}
122
123\begin{flushright}
124LAL-06-35\\
125IC/2006/011\\
126SISSA 16/2006/EP\\
127\end{flushright}
128
129\vspace*{1cm}
130
131\renewcommand{\thefootnote}{\fnsymbol{footnote}}
132\setcounter{footnote}{-1}
133
134{\begin{center} 
135{\Large\textbf{
136Physics potential of the CERN--MEMPHYS\\[2mm] 
137neutrino oscillation project}
138}
139\end{center}}
140
141\vspace*{.8cm}
142
143\begin{center} {\bf
144J.-E.\ Campagne$^a$,
145M.\ Maltoni$^b$,
146M.\ Mezzetto$^c$, and
147T.\ Schwetz$^d$}
148\end{center}
149
150{\it
151\begin{center}
152  $^a$Laboratoire de l'Acc\'el\'erateur Lin\'eaire,
153  IN2P3-CNRS and Universit\'e PARIS-SUD 11\\
154  Centre Scientifique d'Orsay-B\^at.\ 200-B.P.\ 34,
155  91898 Orsay Cedex, France\\[2mm]
156
157  $^b$International Centre for Theoretical Physics,
158  Strada Costiera 11, 31014 Trieste, Italy\\[2mm]
159
160  $^c$Istituto Nazionale Fisica Nucleare, Sezione di Padova,
161  Via Marzolo 8, 35100 Padova, Italy\\[2mm]
162%
163  $^d$Scuola Internazionale Superiore di Studi Avanzati,
164  Via Beirut 2--4, 34014 Trieste, Italy
165\end{center}}
166
167\vspace*{0.5cm}
168
169
170\begin{abstract}
171We consider the physics potential of CERN based neutrino oscillation
172experiments consisting of a Beta Beam (\BB) and a Super Beam (SPL)
173sending neutrinos to MEMPHYS, a 440~kt water \v{C}erenkov detector at
174Fr\'ejus, at a distance of 130~km from CERN. The $\theta_{13}$
175discovery reach and the sensitivity to CP violation are investigated,
176including a detailed discussion of parameter degeneracies and
177systematical errors. For SPL sensitivities similar to the ones of the
178phase~II of the T2K experiment (T2HK) are obtained, whereas the \BB\
179may reach significantly better sensitivities, depending on the
180achieved number of total ion decays.  The results for the
181CERN--MEMPHYS experiments are less affected by systematical
182uncertainties than T2HK.
183%
184We point out that by a combination of data from \BB\ and SPL a
185measurement with antineutrinos is not necessary and hence the same
186physics results can be obtained within about half of the measurement time
187compared to one single experiment.
188%
189Furthermore, it is shown how including data from atmospheric neutrinos in
190the MEMPHYS detector allows to resolve parameter degeneracies and, in
191particular, provides sensitivity to the neutrino mass hierarchy and
192the octant of $\theta_{23}$.
193%\pacs{14.60.Pq, 14.60.Lm}
194\end{abstract}
195
196\renewcommand{\thefootnote}{\arabic{footnote}}
197\setcounter{footnote}{0}
198
199\newpage
200%\tableofcontents
201
202%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
203\section{Introduction}
204%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
205
206In recent years strong evidence for neutrino oscillations has been
207obtained in solar~\cite{solar},
208atmospheric~\cite{Fukuda:1998mi,Ashie:2005ik},
209reactor~\cite{Araki:2004mb}, and accelerator~\cite{Aliu:2004sq}
210neutrino experiments. The very near future of long-baseline (LBL)
211neutrino experiments is devoted to the study of the oscillation
212mechanism in the range of $\Delta m^2_{31} \approx 2.4\times10^{-3} \:
213\mathrm{eV}^2$ indicated by atmospheric neutrinos using conventional
214$\nu_\mu$ beams.  Similar as in the K2K experiment in
215Japan~\cite{Aliu:2004sq}, the presently running MINOS experiment in
216the USA~\cite{MINOS} uses a low energy beam to measure $\Delta
217m^2_{31}$ by observing the $\nu_\mu\rightarrow\nu_\mu$ disappearance
218probability, while the OPERA~\cite{OPERA} experiment will be able to
219detect $\nu_\tau$ appearance within the high energy CERN--Gran Sasso
220beam~\cite{CNGS}.
221%
222If we do not consider the LSND anomaly~\cite{LSND} that will be
223further studied soon by the MiniBooNE experiment~\cite{MINIBOONE}, all
224data can be accommodated within the three flavor scenario (see
225Refs.~\cite{FOGLILISI05,Maltoni:2004ei} for recent global analyses),
226and neutrino oscillations are described by two neutrino mass-squared
227differences ($\Delta m^2_{21}$ and $\Delta m^2_{31}$) and the $3\times
2283$ unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing
229matrix~\cite{PMNS} with three angles
230($\theta_{12}$,$\theta_{13}$,$\theta_{23}$) and one Dirac CP phase
231$\delCP$.
232
233Future tasks of neutrino physics are an improved sensitivity to the
234last unknown mixing angle, $\theta_{13}$, to explore the CP violation
235mechanism in the leptonic sector, and to determine the sign of $\Delta
236m^2_{31}$ which describes the type of the neutrino mass hierarchy
237(normal, $\Delta m^2_{31} > 0$ or inverted, $\Delta m^2_{31} < 0$).
238%
239The present upper bound on $\theta_{13}$ is dominated by the
240constraint from the Chooz reactor experiment~\cite{CHOOZ}. A global
241analysis of all data yields $\sin^22\theta_{13}<0.082$ at
24290\%~CL~\cite{Maltoni:2004ei}. A main purpose of upcoming reactor and
243accelerator experiments is to improve this bound or to reveal a finite
244value of $\theta_{13}$. In reactor experiments, one uses $\bar{\nu}_e$
245in disappearance mode and the sensitivity is increased with respect to
246present experiments by the use of a near detector close to the
247reactor~\cite{Wpaper}. In accelerator experiments, the first
248generation of so-called Super Beams with sub-mega watt proton drivers
249such as T2K (phase-I)~\cite{T2K} and NO$\nu$A~\cite{Ayres:2004js}, the
250appearance channel $\nu_\mu\to\nu_e$ is explored. This next generation
251of reactor and Super Beam experiments will reach sensitivities of the
252order of $\sin^22\theta_{13} \lesssim 0.01$ ($90\%$~CL) within a time
253scale of several years~\cite{Huber:2003pm}.
254%
255Beyond this medium term program, there are several projects on how to
256enter the high precision age in neutrino oscillations and to attack
257the ultimate goals like the discovery of leptonic CP violation or the
258determination of the neutrino mass hierarchy. In accelerator
259experiments, one can extend the Super Beam concept by moving to
260multi-mega watt proton drivers~\cite{T2K,Albrow:2005kw,SPL,BNLHS} or
261apply novel technologies, such as neutrino beams from decaying ions
262(so-called Beta Beams)~\cite{zucchelli,Albright:2004iw} or from
263decaying muons (so-called Neutrino
264Factories)~\cite{Albright:2004iw,Blondel:2004ae}.
265
266In this work we focus on possible future neutrino oscillation
267facilities hosted at CERN, namely a multi-mega watt Super Beam
268experiment based on a Super Proton Linac (SPL)~\cite{Campagne:2004wt}
269and a $\gamma = 100$ Beta Beam
270(\BB)~\cite{Mezzetto:2003ub}. These experiments will search for
271$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
272\stackrel{\scriptscriptstyle(-)}{\nu}_e$ and
273$\stackrel{\scriptscriptstyle (-)}{\nu}_e \to
274\stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ appearance, respectively,
275by sending the neutrinos to a mega ton scale water \v{C}erenkov
276detector (MEMPHYS)~\cite{memphys}, located at a distance of 130~km from
277CERN under the Fr\'ejus mountain. Similar detectors are under
278consideration also in the US (UNO~\cite{UNO}) and in Japan
279(Hyper-K~\cite{T2K,Nakamura:2003hk}).
280%
281We perform a detailed analysis of the SPL and \BB\ physics
282potential, discussing the discovery reach for $\theta_{13}$ and
283leptonic CP violation. In addition we consider the possibility to
284resolve parameter degeneracies in the LBL data by using the
285atmospheric neutrinos available in the mega ton
286detector~\cite{Huber:2005ep}. This leads to a sensitivity to the
287neutrino mass hierarchy of the CERN--MEMPHYS experiments, despite the
288rather short baseline.
289%
290The physics performances of \BB\ and SPL are compared to the ones
291obtainable at the second phase of the T2K experiment in Japan, which
292is based on an upgraded version of the original T2K beam and the
293Hyper-K detector (T2HK)~\cite{T2K}.
294
295The outline of the paper is as follows.  In Sec.~\ref{sec:analysis} we
296summarize the main characteristics of the \BB, SPL, and T2HK
297experiments and give general details of the physics analysis methods,
298whereas in Sec.~\ref{sec:experiments} we describe in some detail the
299MEMPHYS detector, the \BB, the SPL Super Beam, and our atmospheric
300neutrino analysis. In Sec.~\ref{sec:degeneracies} we review the
301problem of parameter degeneracies and discuss its implications for the
302experiments under consideration. In Sec.~\ref{sec:sensitivities} we
303present the sensitivities to the ``atmospheric parameters''
304$\theta_{23}$ and $\Delta m^2_{31}$, the $\theta_{13}$ discovery
305potential, and the sensitivity to CP violation. We also investigate in
306some detail the impact of systematical errors. In
307Sec.~\ref{sec:synergies} we discuss synergies which are offered by the
308CERN--MEMPHYS facilities.  We point out advantages of the case when
309\BB\ and SPL are available simultaneously, and we consider the use of
310atmospheric neutrino data in MEMPHYS in combination with the LBL
311experiments. Our results are summarized in Sec.~\ref{sec:conclusions}.
312
313
314
315%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
316\section{Experiments overview and analysis methods}
317%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
318\label{sec:analysis}
319
320In this section we give the most important experimental parameters
321which we adopt for the simulation of the CERN--MEMPHYS experiments
322\BB\ and SPL, as well as for the T2HK experiment in Japan. These
323parameters are summarized in Tab.~\ref{tab:setups}. For all
324experiments the detector mass is 440~kt, and the running time is 10
325years, with a division in neutrino and antineutrino running time in
326such a way that roughly an equal number of events is obtained. We
327always use the total available information from appearance as well as
328disappearance channels including the energy spectrum. For all three
329experiments we adopt rather optimistic values for the systematical
330uncertainties of 2\% as default values, but we also consider the case
331when systematics are increased to 5\%. These errors are uncorrelated
332between the various signal channels (neutrinos and antineutrinos), and
333between signals and backgrounds.
334
335\begin{table}
336  \centering
337  \begin{tabular}{lcc@{\qquad\qquad}c}
338  \hline\noalign{\smallskip}
339       & \BB & SPL & T2HK \\
340  \noalign{\smallskip}\hline\noalign{\smallskip}
341  Detector mass & 440~kt & 440~kt & 440~kt\\
342  Baseline      & 130 km & 130 km & 295 km \\
343  Running time ($\nu + \bar\nu$)
344                & 5 + 5 yr & 2 + 8 yr & 2 + 8 yr \\
345  Beam intensity  & $5.8\,(2.2) \cdot 10^{18}$ He (Ne) dcys/yr & 4 MW & 4 MW\\
346  Systematics on signal  & 2\% & 2\% & 2\%\\
347  Systematics on backgr. & 2\% & 2\% & 2\%\\
348  \noalign{\smallskip}\hline
349  \end{tabular}
350  \mycaption{Summary of default parameters used for the simulation of the
351  \BB, SPL, and T2HK experiments.\label{tab:setups}}
352\end{table}
353
354A more detailed description of the CERN--MEMPHYS experiments is given
355in Sec.~\ref{sec:experiments}. For the T2HK simulation we use the
356setup provided by GLoBES~\cite{Globes} based on
357Ref.~\cite{Huber:2002mx}, which follows closely the LOI~\cite{T2K}. In
358order to allow a fair comparison we introduce the following changes
359with respect to the configuration used in Ref.~\cite{Huber:2002mx}:
360The fiducial mass is set to 440~kt, the systematical errors on the
361background and on the $\nu_e$ and $\bar\nu_e$ appearance signals is
362set to 2\%, and we use a total running time of 10 years, divided into
3632 years of data taking with neutrinos and 8 years with
364antineutrinos. We include an additional background from the
365$\bar\nu_\mu \to \bar\nu_e$ ($\nu_\mu \to \nu_e$) channel in the
366neutrino (antineutrino) mode. Furthermore, we use
367the same CC detection cross section as for the \BB/SPL
368analysis~\cite{Nuance}. For more details see
369Refs.~\cite{T2K,Huber:2002mx}.
370
371\begin{table}
372  \centering
373  \begin{tabular}{lcccccc}
374  \hline\noalign{\smallskip}
375       & \centre{2}{\BB} & \centre{2}{SPL} & \centre{2}{T2HK} \\
376  \noalign{\smallskip}\hline\noalign{\smallskip}
377  & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$\\
378  \noalign{\smallskip}\hline\noalign{\smallskip}
379%
380  appearance $\nu$ & & & & & & \\
381  background       & \centre{2}{143} &\centre{2}{622} &\centre{2}{898}\\
382  $\stheta=0$      & \centre{2}{28}  &\centre{2}{51}  &\centre{2}{83}  \\
383  $\stheta=10^{-3}$&    76  &   88   &   105  &   14  &   178 &    17  \\ 
384  $\stheta=10^{-2}$&   326  &  365   &   423  &  137  &   746 &   238  \\
385
386  \noalign{\smallskip}\hline\noalign{\smallskip}
387%
388  appearance $\bar\nu$ & & & & & & \\
389  background       & \centre{2}{157} &\centre{2}{640} &\centre{2}{1510}\\
390  $\stheta=0$      & \centre{2}{31}  &\centre{2}{57}  &\centre{2}{93}  \\
391  $\stheta=10^{-3}$&    83  &   12   &   102  &  146  &   192 &   269  \\ 
392  $\stheta=10^{-2}$&   351  &  126   &   376  &  516  &   762 &  1007  \\
393
394  \noalign{\smallskip}\hline\noalign{\smallskip}
395%
396  disapp. $\nu$ &\centre{2}{100315}&\centre{2}{21653}&\centre{2}{24949}\\
397  background    & \centre{2}{6}   &\centre{2}{1}    &\centre{2}{444}\\
398  disapp. $\bar\nu$&\centre{2}{84125}&\centre{2}{18321}&\centre{2}{34650}\\
399  background       &\centre{2}{5}    &\centre{2}{1}    &\centre{2}{725}\\
400  \noalign{\smallskip}\hline
401
402  \end{tabular}
403  \mycaption{Number of events for appearance and disappearance signals
404  and backgrounds for the \BB, SPL, and T2HK experiments as
405  defined in Tab.~\ref{tab:setups}. For the appearance signals the
406  event numbers are given for several values of $\stheta$ and $\delCP
407  = 0$ and $\pi/2$. The background as well as the disappearance event
408  numbers correspond to $\theta_{13}=0$. For the other oscillation
409  parameters the values of Eq.~(\ref{eq:default-params}) are
410  used.\label{tab:events}}
411\end{table}
412
413In Tab.~\ref{tab:events} we give the number of signal and background
414events for the experiment setups as defined in Tab.~\ref{tab:setups}.
415For the appearance channels ($\stackrel{\scriptscriptstyle (-)}{\nu}_e
416\to \stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ for the \BB\ and
417$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
418\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for SPL and T2HK) we give the
419signal events for various values of $\theta_{13}$ and $\delCP$. The
420``signal'' events for $\theta_{13} = 0$ are appearance events induced by
421the oscillations with $\Delta m^2_{21}$. The value $\stheta = 10^{-3}$
422corresponds roughly to the sensitivity limit for the considered
423experiments, whereas $\stheta = 10^{-2}$ gives a good sensitivity
424to CP violation. This can be appreciated by comparing the values of
425$\nu$ and $\bar\nu$ appearance events for $\delCP = 0$ and $\pi/2$. In
426the table the background to the appearance signal is given for
427$\theta_{13} = 0$. Note that in general the number of background
428events depends also on the oscillation parameters, since also the
429background neutrinos in the beam oscillate. This effect is
430consistently taken into account in the analysis, however, for the
431parameter values in the table the change in the background events due
432to oscillations is only of the order of a few events.
433
434The physics analysis is performed with the GLoBES open source
435software~\cite{Globes}, which provides a convenient tool to simulate
436long-baseline experiments and compare different facilities in a
437unified framework. The experiment definition (AEDL) files for the \BB\
438and SPL simulation with GLoBES are available at Ref.~\cite{ISSpage}.
439In the analysis parameter degeneracies and correlations are fully
440taken into account and in general all oscillation parameters are
441varied in the fit.
442%
443To simulate the ``data'' we adopt the following
444set of ``true values'' for the oscillation parameters:
445%
446\begin{equation}\label{eq:default-params}
447\begin{array}{l@{\qquad}l}
448  \Delta m^2_{31} = +2.4 \times 10^{-3}~\mathrm{eV}^2\,, & 
449  \sin^2\theta_{23} = 0.5\,,\\ 
450  \Delta m^2_{21} = 7.9 \times 10^{-5}~\mathrm{eV}^2 \,,&
451  \sin^2\theta_{12} = 0.3 \,,
452\end{array}
453\end{equation} 
454%
455and we include a prior knowledge of these values with an accuracy of
45610\% for $\theta_{12}$, $\theta_{23}$, $\Delta m^2_{31}$, and 4\% for
457$\Delta m^2_{21}$ at 1$\sigma$. These values and accuracies are
458motivated by recent global fits to neutrino oscillation
459data~\cite{FOGLILISI05,Maltoni:2004ei}, and they are always used
460except where explicitly stated otherwise.
461
462
463%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
464\section{The CERN--MEMPHYS experiments}
465%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
466\label{sec:experiments}
467
468%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
469\subsection{The MEMPHYS detector}
470%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
471
472MEMPHYS (MEgaton Mass PHYSics)~\cite{memphys} is a mega ton class
473water \v{C}erenkov detector in the straight extrapolation of
474Super-Kamiokande, located at Fr\'ejus, at a distance of 130~km from
475CERN. It is an alternative design of the UNO~\cite{UNO} and
476Hyper-Kamiokande~\cite{Nakamura:2003hk} detectors and shares the same
477physics case, both from the non-accelerator domain (nucleon decay,
478super nova neutrino detection, solar neutrinos, atmospheric neutrinos)
479and from the accelerator domain which is the subject of this paper. A
480recent civil engineering pre-study to envisage the possibly of large
481cavity excavation located under the Fr\'ejus mountain (4800~m.e.w.)
482near the present Modane underground laboratory has been undertaken.
483The main result of this pre-study is that MEMPHYS may be built with
484present techniques as a modular detector consisting of several shafts,
485each with 65~m in diameter, 65~m in height for the total water
486containment. A schematic view of the layout is shown in
487Fig.~\ref{fig:MEMPHYS}. For the present study we have chosen a
488fiducial mass of 440~kt which means 3 shafts and an inner detector of
48957~m in diameter and 57~m in height.  Each inner detector may be
490equipped with photo detectors (81000 per shaft) with a 30\%
491geometrical coverage and the same photo-statistics as Super-Kamiokande
492(with a 40\% coverage). In principle up to 5 shafts are possible,
493corresponding to a fiducial mass of 730~kt.
494%
495The Fr\'ejus site offers a natural protection against cosmic rays by a
496factor $10^6$. If not mentioned otherwise, the event selection and
497particle identification are the Super-Kamiokande algorithms results.
498
499\begin{figure}
500\centering
501\includegraphics[width=0.65\textwidth]{./fig1.eps}
502\mycaption{\label{fig:MEMPHYS}Sketch of the MEMPHYS detector under the
503Fr\'ejus mountain.}     
504\end{figure}
505
506
507%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
508\subsection{The $\gamma = 100\times100$ baseline Beta Beam}
509%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
510
511The concept of a Beta Beam (\BB) has been introduced by P.~Zucchelli
512in Ref.~\cite{zucchelli}. Neutrinos are produced by the decay of
513radioactive isotopes which are stored in a decay ring. An important
514parameter is the relativistic gamma factor of the ions, which
515determines the energy of the emitted neutrinos. \BB\ performances have
516been computed previously for $\gamma(\He)= 66$~\cite{Mezzetto:2003ub},
517100~\cite{MyNufact04,Donini:2004hu,JJHigh2}, 150~\cite{JJHigh2},
518200~\cite{LindnerBB}, 350~\cite{JJHigh2},
519500~\cite{JJHigh1,LindnerBB}, 1000~\cite{LindnerBB},
5202000~\cite{JJHigh1}, 2488~\cite{Terranova}. Reviews can be found in
521Ref.~\cite{BB-Reviews}, the physics potential of a very low gamma \BB\
522has been studied in Ref.~\cite{Volpe}. Performances of a \BB\ with
523$\gamma > 150$ are extremely promising, however, they are neither
524based on an existing accelerator complex nor on detailed calculations
525of the ion decay rates. For a CERN based \BB, fluxes have been
526estimated in Ref.~\cite{Lindroos} and a design study is in progress
527for the facility \cite{Eurisol}. In this work we assume an integrated
528flux of neutrinos in 10 years corresponding to $2.9\cdot 10^{19}$
529useful \He\ decays and $1.1 \cdot 10^{19}$ useful \Ne\ decays. These
530fluxes have been assumed in all the physics papers quoted above, and
531they are two times higher than the baseline fluxes computed in
532Ref.~\cite{Lindroos}. These latter fluxes suffer for the known
533limitations of the PS and SPS synchrotrons at CERN, ways to improve
534them have been delineated in Ref.~\cite{Lindroos-Optimization}.
535
536The infrastructure available at CERN as well as the MEMPHYS
537location at a distance of 130~km suggest a $\gamma$-factor of about
538$100$. Such a value implies a mean neutrino energy of 400~MeV, which
539leads to the oscillation maximum at about 200~km for $\Delta m^2_{31}
540= 2.4\times 10^{-3}$~eV$^2$.  We have checked that the performance at
541the somewhat shorter baseline of 130~km is rather similar to the one
542at the oscillation maximum. Moreover, the purpose of this paper is to
543estimate the physics potential for a realistic set-up and not to study
544the optimization of the \BB\ regardless of any logistic consideration
545(see, e.g., Refs.~\cite{LindnerBB,JJHigh2} for such optimization
546studies).
547
548The signal events from the $\nu_e \to \nu_\mu$ neutrino and
549antineutrino appearance channels in the \BB\ are \numu charged current
550(CC) events. The Nuance v3r503 Monte Carlo code~\cite{Nuance} is used
551to generate signal events. The selection for these events is based on
552standard Super-Kamiokande particle identification algorithms.  The
553muon identification is reinforced by asking for the detection of the
554Michel decay electron.
555%
556The neutrino energy is reconstructed by smearing momentum and
557direction of the charged lepton with the Super-Kamiokande resolution
558functions, and applying quasi-elastic (QE) kinematics assuming the
559known incoming neutrino direction. Energy reconstruction in the \BB\
560energy range is remarkably powerful, and the contamination of non-QE
561events very small, as shown in Fig.~\ref{fig:QE-Energy}.
562%
563As pointed out in Ref.~\cite{JJHigh2}, it is necessary to use a
564migration matrix for the neutrino energy reconstruction to properly
565handle Fermi motion smearing and the non-QE event contamination.  We
566use 100~MeV bins for the reconstructed energy and 40~MeV bins for the
567true neutrino energy.  Four migration matrices (for
568$\nu_e,\bar\nu_e,\nu_\mu,\bar\nu_\mu$) are applied to signal events as
569well as backgrounds. As suggested from Fig.~\ref{fig:QE-Energy} the
570results using migration matrices are very similar to a Gaussian
571energy resolution.
572
573\begin{figure}[!t]
574  \centering
575  \includegraphics[width=0.65\textwidth]{./fig2.eps}
576  \mycaption{\label{fig:QE-Energy} Energy resolution for \nue\
577  interactions in the 200--300~MeV energy range. The quantity
578  displayed is the difference between the reconstructed and the true
579  neutrino energy.}
580\end{figure}
581
582Backgrounds from charged pions and atmospheric neutrinos are computed
583with the identical analysis chain as signal events.
584Charged pions generated in NC events (or in NC-like events where the
585leading electron goes undetected) are the main source of background for
586the experiment. To compute this background inclusive NC and CC events
587have been generated with the \BB\ spectrum. Events have been selected
588where the only visible track is a charged pion above the \v{C}erenkov
589threshold. Particle identification efficiencies have been applied to
590those particles. The probability for a pion to survive in water until
591its decay has been computed with Geant~3.21 and cross-checked with a
592Fluka~2003 simulation. This probability is different for positive and
593negative pions, the latter having a higher probability to be absorbed
594before decaying. The surviving events are background, and the
595reconstructed neutrino energy is computed misidentifying these pions
596as muons. Event rates are reported in Tab.~\ref{tab:sigbck}. From
597these numbers it becomes evident that requiring the detection of the
598Michel electron provides an efficient cut to eliminate the pion
599background.
600%
601These background rates are significantly smaller than quoted in
602Ref.~\cite{MyNufact04}, where pion decays were computed with the
603same probabilities as for muons and they are slightly different
604from those quoted in Ref.~\cite{ MezzettoNuFact05}, where an
605older version of Nuance had been used.
606%
607The numbers of Tab.~\ref{tab:sigbck} have been cross-checked by
608comparing the Nuance and Neugen~\cite{Neugen} event
609generators, finding a fair agreement in background rates and energy shape.
610
611\begin{table}[t]
612     \centering
613     \begin{tabular}{l@{\qquad}rrr@{\qquad}rrr}
614     \hline\noalign{\smallskip}
615       & \multicolumn{3}{ c }{\Ne} & \multicolumn{3}{c}{\He} \\
616     \hline\noalign{\smallskip}
617       & \numu CC & $\pi^+$ & $\pi^-$ & \nubarmu CC & $\pi^+$ & $\pi^-$ \\
618     \hline\noalign{\smallskip}
619      Generated ev.\ & 115367   &  557   &  341 & 101899 &  674   &  400 \\
620      Particle ID    &  95717   &  204   &  100 & 85285  &  240   &  118 \\
621      Decay          &  61347   &  107   &    8 & 69242  &  120   &    8 \\
622\hline\noalign{\smallskip}
623    \end{tabular}
624    \mycaption{\label{tab:sigbck} Events for the \BB\ in a 4400~kt~yr
625    exposure.  \numu(\nubarmu) CC events are computed assuming full
626    oscillations ($P_{\nu_e\to\nu_\mu} = 1$), and pion backgrounds are
627    computed from \nue(\nubare) CC+NC events. In the rows we give the
628    number events generated within the fiducial volume (``Generated
629    ev.''), after muon particle identification (``Particle ID''), and
630    after applying a further identification requiring the detection of
631    the Michel electron (``Decay''). }
632\end{table}
633
634Also atmospheric neutrinos can constitute an important source of
635background~\cite{zucchelli,JJHigh2,JJHigh1,MezzettoNuFact05}. This
636background can be suppressed only by keeping a very short duty cycle
637($2.2 \cdot 10^{-3}$ is the target value for the \BB\ design study),
638and this in turn is one of the most challenging bounds on the design
639of the Beta Beam complex. Following Ref.~\cite{MezzettoNuFact05} we
640include the atmospheric neutrino background based on a Monte Carlo
641simulation using Nuance. Events are reconstructed as if they were
642signal neutrino events. We estimate that 5 events/year would survive
643the analysis chain in a full solar year (the \BB\ should run for about
6441/3 of this period) and include these events as backgrounds in the
645analysis. Under these circumstances, the present value of the \BB\
646duty cycle seems to be an overkill, it could be reduced by a factor 5
647at least, see also Ref.~\cite{MezzettoNuFact05} for a discussion of
648the effect of a higher duty cycle.
649
650
651%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
652\subsection{The $3.5$-GeV SPL Super Beam}
653%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
654
655
656In the recent Conceptual Design Report 2 (CDR2) the foreseen Super
657Proton Linac (SPL)~\cite{SPL} will provide the protons for the muon
658production in the context of a Neutrino Factory, and at a first stage
659will feed protons to a fixed target experiment to produce an intense
660conventional neutrino beam (``Super Beam''). The parameters of the
661beam line take into account the optimization~\cite{Campagne:2004wt} of
662the beam energy as well as the secondary particle focusing and decay
663to search for $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu
664\rightarrow \bar{\nu}_e$ appearance as well as $\nu_\mu$,
665$\bar\nu_\mu$ disappearance in a mega ton scale water \v{C}erenkov
666detector. In particular, a full simulation of the beam line from the
667proton on target interaction up to the secondary particle decay tunnel
668has been performed. The proton on a liquid mercury target (30~cm long,
669$7.5$~mm radius, 13.546 density) has been simulated with
670FLUKA~2002.4~\cite{FLUKA} while the horn focusing system and the decay
671tunnel simulation has been preformed with
672GEANT~3.21~\cite{GEANT}.\footnote{Although there are differences
673between the predicted pion and kaon productions as a function of
674proton kinetic energy with FLUKA~2002.4 and 2005.6, the results are
675consistent for the relevant energy of 3.5~GeV. We emphasize that the
676pion and the kaon production cross-sections are waiting for
677experimental confirmation~\cite{HARP-MINERVA} and a new optimization
678would be required if their is a disagreement with the present
679knowledge.}
680
681\begin{figure}[!t]
682  \centering 
683  \includegraphics[width=0.65\textwidth]{./fig3.eps}
684  \mycaption{\label{fig:fluxSPLContrib} Neutrino fluxes, at $130$~km
685  from the target with the horns focusing the positive particles
686  (top panel) or the negative particles (bottom panel). The fluxes are
687  computed for a SPL proton beam of $3.5$~GeV (4~MW), a decay tunnel
688  with a length of $40$~m and a radius of $2$~m.}
689\end{figure}
690
691Since the optimization requirements for a Neutrino Factory are rather
692different than for a Super Beam the new SPL configuration has a
693significant impact on the physics performance (see
694Ref.~\cite{Campagne:2004wt} for a detailed discussion).  The SPL
695fluxes of the four neutrino species ($\nu_\mu$, $\nu_e$,
696$\bar{\nu}_\mu$, $\bar{\nu}_e$) for the positive ($\nu_\mu$ beam) and
697the negative focusing ($\bar{\nu}_\mu$ beam) are show in
698Fig.~\ref{fig:fluxSPLContrib}.  The total number of $\nu_\mu$
699($\bar{\nu}_\mu$) in positive (negative) focusing is about
700$1.18\,(0.97) \times 10^{12}\:\mathrm{m}^{-2}\mathrm{y}^{-1}$ with an
701average energy of $300$~MeV. The $\nu_e$ ($\bar{\nu}_e$) contamination
702in the $\nu_\mu$ ($\bar\nu_\mu$) beam is around $0.7\%$
703($6.0\%$). Following Ref.~\cite{Mezzetto:2003mm}, the $\pi^o$
704background is reduced using a tighter PID cut compared to standard
705Super-Kamiokande analysis. The Michel electron is required for the
706$\mu$ identification.
707%
708For the $\nu_\mu \rightarrow \nu_e$ channel the background consists
709roughly of 90\% $\nu_e \rightarrow \nu_e$ CC interactions, 6\% $\pi^o$
710from NC interactions, 3\% miss identified muons from $\nu_\mu
711\rightarrow \nu_\mu$ CC, and 1\% $\bar{\nu}_e \rightarrow \bar{\nu}_e$
712CC interactions. For the $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
713channel the contributions to the background are 45\% $\bar{\nu}_e
714\rightarrow \bar{\nu}_e$ CC interactions, 35\% $\nu_e \rightarrow
715\nu_e$ CC interactions, 18\% $\pi^o$ from NC interactions and 2\% miss
716identified muons from $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ CC.
717In addition we include the events from the contamination of
718``wrong sign'' muon-neutrinos due to $\bar\nu_\mu \to \bar\nu_e$
719($\nu_\mu \to \nu_e$) oscillations in the neutrino (antineutrino)
720mode.
721%
722We have checked that with the envisaged duty cycle of $2.4\times
72310^{-4}$ the background from atmospheric neutrinos is negligible for
724the SPL.
725
726\begin{figure}[!t]
727  \centering
728  \includegraphics[width=0.5\textwidth]{./fig4.eps}
729%
730  \mycaption{\label{fig:fluxComparison} 
731  Comparison of the fluxes from SPL and \BB.}
732\end{figure}
733
734Considering the signal over square-root of background
735ratio, the $3.5$~GeV beam energy is more favorable than the original
736$2.2$~GeV option. Compared to the fluxes used in
737Refs.~\cite{Mezzetto:2003mm,Donini:2004hu} the gain is at least a
738factor $2.5$ and this justifies to reconsider in detail the physics
739potential of the SPL Super Beam.
740%
741Both the appearance and the disappearance channels are used. For the
742spectral analysis we use 10 bins of 100~MeV in the interval $0 < E_\nu
743< 1$~GeV, applying the same migration matrices as for the \BB\ to take
744into account properly the neutrino energy reconstruction. As ultimate
745goal suggested in Ref.~\cite{T2K} a 2\% systematical error is used as
746default both for signal and background, this would be achieved by a
747special care of the design of the close position. However, we discuss
748also how a 5\% systematical error affects the sensitivities.
749%
750Using neutrino cross-sections on water from Ref.~\cite{Nuance}, the
751number of expected $\nu_\mu$ charged current is about $98$ per
752kt~yr. In Fig.~\ref{fig:fluxComparison} we compare the fluxes from the
753SPL to the one from the \BB.
754
755%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
756\subsection{The atmospheric neutrino analysis}
757%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
758\label{sec:atm-details}
759
760The simulation of atmospheric neutrino data in MEMPHYS is based on the
761analysis presented in Ref.~\cite{Huber:2005ep}, with the following
762differences:
763%
764\begin{itemize}
765  \item We replace the neutrino fluxes at Kamioka with those at Gran
766    Sasso. We use the Honda calculations~\cite{Honda:2004yz}, which
767    unfortunately are not yet available for the Fr\'ejus
768    site. However, since the fluxes increase with the geomagnetic
769    latitude and Fr\'ejus is northern than Gran Sasso, our choice is
770    conservative.
771   
772  \item We take into account the specific geometry of the MEMPHYS
773    detector. This is particularly important to properly separate
774    fully contained from partially contained events, as well as
775    stopping muon from through-going muon events.
776   
777  \item We divide our total data sample into 420 different bins:
778    fully contained single-ring events, further subdivided according
779    to flavor ($e$-like or $\mu$-like), lepton momentum (8 bins:
780    0.1--0.3, 0.3--0.5, 0.5--1, 1--2, 2--3, 3--5, 5--8,
781    8--$\infty$~GeV) and lepton direction (20 bins in zenith angle);
782%
783    fully contained multi-ring events, further subdivided according to
784    flavor ($e$-like or $\mu$-like), reconstructed neutrino energy (3
785    bins: 0--1.33, 1.33--5, 5--$\infty$~GeV) and lepton direction (10
786    bins in zenith angle);
787%       
788    partially contained $\mu$-like events, divided into 20 zenith bins;
789%       
790    up-going muons, divided into stopping and through-going events, and in
791    10 zenith bins each.
792
793    \item We include in our calculations the neutral-current
794      contamination of each bin. To this extent we assume that the
795      ratio between neural-current and \emph{unoscillated}
796      charged-current events in MEMPHYS is the same as in
797      Super-Kamiokande, and we take this ratio from
798      Ref.~\cite{Ashie:2005ik}.
799     
800    \item We consider also multi-ring events, which we define
801      as fully contained charged-current events which are \emph{not}
802      tagged as single-ring. Again, we assume that the survival
803      efficiency and the NC contamination are the same as for
804      Super-Kamiokande~\cite{Ashie:2005ik}.
805\end{itemize}
806
807The expected number of contained events is given by:
808%
809\begin{multline} \label{eq:contained}
810    N_b(\vec\omega) = N_b^\text{NC} +
811    n_\text{tgt} T \sum_{\alpha,\beta,\pm}
812    \int_0^\infty dh \int_{-1}^{+1} dc_\nu
813    \int_{\Emin}^\infty dE_\nu \int_{\Emin}^{E_\nu} dE_l
814    \int_{-1}^{+1} dc_a \int_0^{2\pi} d\varphi_a
815    \\
816    \frac{d^3 \Phi_\alpha^\pm}{dE_\nu \, dc_\nu \, dh}(E_\nu, c_\nu, h)
817    \, P_{\alpha\to\beta}^\pm(E_\nu, c_\nu, h \,|\, \vec\omega)
818    \, \frac{d^2\sigma_\beta^\pm}{dE_l \, dc_a}(E_\nu, E_l, c_a)
819    \, \varepsilon_\beta^b(E_l, c_l(c_\nu, c_a, \varphi_a))
820    \,,
821\end{multline}
822%
823where $P_{\alpha\to\beta}^+$ ($P_{\alpha\to\beta}^-$) is the
824$\nu_\alpha \to \nu_\beta$ ($\bar{\nu}_\alpha \to \bar{\nu}_\beta$)
825conversion probability for given values of the neutrino energy
826$E_\nu$, the cosine $c_\nu$ of the angle between the incoming neutrino
827and the vertical direction, the production altitude $h$, and the
828neutrino oscillation parameters $\vec\omega$. We calculate the
829conversion probability numerically in the general three-flavor
830framework taking into account matter effects from a realistic Earth
831density profile. Further, $N_b^\text{NC}$ is the neutral-current
832background for the bin $b$, $n_\text{tgt}$ is the number of targets,
833$T$ is the experiment running time, $\Phi_\alpha^+$ ($\Phi_\alpha^-$)
834is the flux of atmospheric neutrinos (antineutrinos) of type $\alpha$,
835and $\sigma_\beta^+$ ($\sigma_\beta^-$) is the charged-current
836neutrino- (antineutrino-) nucleon interaction cross section.
837%
838The variable $E_l$ is the energy of the final lepton of type $\beta$,
839while $c_a$ and $\varphi_a$ parametrize the opening angle between the
840incoming neutrino and the final lepton directions as determined by the
841kinematics of the neutrino interaction.
842%
843Finally, $\varepsilon_\beta^b$ gives the probability that a charged
844lepton of type $\beta$, energy $E_l$ and direction $c_l$ contributes
845to the bin $b$.
846
847Up-going muon events are calculated as follows:
848%
849\begin{multline} \label{eq:upgoing}
850    N_b(\vec\omega) = \rho_\text{rock} T \sum_{\alpha,\pm} 
851    \int_0^\infty dh \int_{-1}^{+1} dc_\nu
852    \int_{\Emin}^\infty dE_\nu 
853    \int_{\Emin}^{E_\nu} dE^0_\mu \int_{\Emin}^{E^0_\mu} d\Efin_\mu
854    \int_{-1}^{+1} dc_a \int_0^{2\pi} d\varphi_a
855    \\
856    \frac{d^3 \Phi_\alpha^\pm}{dE_\nu \, dc_\nu \, dh}(E_\nu, c_\nu, h)
857    \, P_{\alpha\to\mu}^\pm(E_\nu, c_\nu, h \,|\, \vec\omega)
858    \, \frac{d^2\sigma_\mu^\pm}{dE^0_\mu \, dc_a}(E_\nu, dE^0_\mu, c_a)
859    \\
860    \times R_\text{rock}(E^0_\mu,\Efin_\mu)
861    \, \mathcal{A}_\text{eff}^b(\Efin_\mu,
862    c_l(c_\nu, c_a, \varphi_a)) \,,
863\end{multline}
864%
865where $\rho_\text{rock}$ is the density of targets in standard rock,
866$R_\text{rock}$ is the effective muon range~\cite{Lipari:1991ut} for a
867muon which is produced with energy $E^0_\mu$ and reaches the detector
868with energy $\Efin_\mu$, and $\mathcal{A}_\text{eff}^b$ is the
869effective area for the bin $b$. The other variables and physical
870quantities are the same as for contained events.
871
872The statistical analysis is based on the pull method, as described in
873Ref.~\cite{Gonzalez-Garcia:2004wg}. In our analysis we include three
874different kind of experimental uncertainties:
875%
876Flux uncertainties: total normalization (20\%), tilt factor (5\%),
877zenith angle (5\%), $\nu/\bar\nu$ ratio (5\%), and $\mu/e$ ratio
878(5\%);
879%   
880cross-section uncertainties: total normalization (15\%) and $\mu/e$
881ratio (1\%) for each type of charged-current interaction
882(quasi-elastic, one-pion production, and deep-inelastic scattering),
883and total normalization (15\%) for the neutral-current contributions;
884%   
885systematic uncertainties: same as in previous analyses, details are
886given in the Appendix of Ref.~\cite{Gonzalez-Garcia:2004wg}. In
887addition, we assume independent normalization uncertainties (20\%) for
888$e$-like and $\mu$-like multi-ring events.
889%
890Since we are dividing our data sample into a large number of bins, it
891is important to use Poisson statistics as some of the bins contain
892only a few number of events. We therefore write our $\chi^2$ as:
893%
894\begin{equation} \label{eq:poisson}
895    \chi^2(\vec\omega) = \min_{\vec\xi} \left[ 2 \sum_b \left(
896    N_b^\text{th}(\vec\omega,\, \vec\xi)
897    - N_b^\text{ex} + N_b^\text{ex} \ln\frac{N_b^\text{ex}}
898    {N_b^\text{th}(\vec\omega,\, \vec\xi)} \right)
899    + \sum_n \xi_n^2 \right] \,,
900\end{equation}
901%
902where the number of events for a given value of the pulls $\vec\xi$ is
903given by:
904%
905\begin{equation} \label{eq:theopulls}
906    N_b^\text{th}(\vec\omega,\, \vec\xi) = N_b^\text{th}(\vec\omega) \,
907    \exp\left( \sum_n \pi_b^n(\vec\omega)\, \xi_n \right) \,.
908\end{equation}
909%
910The use of an exponential dependence on the pulls in
911Eq.~\eqref{eq:theopulls}, rather than the usual linear dependence,
912ensures that the theoretical predictions remain positive for
913\emph{any} value of the pulls, thus avoiding numerical inconsistencies
914during the pull minimization procedure.
915
916 
917
918%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
919\section{Degeneracies}
920%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
921\label{sec:degeneracies}
922
923
924A characteristic feature in the analysis of future LBL experiments is
925the presence of {\it parameter degeneracies}.  Due to the inherent
926three-flavor structure of the oscillation probabilities, for a given
927experiment in general several disconnected regions in the
928multi-dimensional space of oscillation parameters will be
929present. Traditionally these degeneracies are referred to in the
930following way:
931%
932\begin{itemize}
933\item
934The {\it intrinsic} or
935($\delCP,\theta_{13}$)-degeneracy~\cite{Burguet-Castell:2001ez}:
936For a measurement based on the $\nu_\mu \to \nu_e$ oscillation probability for
937neutrinos and antineutrinos two disconnected solutions appear in the
938($\delCP,\theta_{13}$) plane.
939\item
940The {\it hierarchy} or sign($\Delta
941m^2_{31}$)-degeneracy~\cite{Minakata:2001qm}: The two solutions
942corresponding to the two signs of $\Delta m^2_{31}$ appear in general
943at different values of $\delCP$ and $\theta_{13}$.
944\item
945The {\it octant} or $\theta_{23}$-degeneracy~\cite{Fogli:1996pv}:
946Since LBL experiments are sensitive mainly to $\sin^22\theta_{23}$ it
947is difficult to distinguish the two octants $\theta_{23} < \pi/4$ and
948$\theta_{23} > \pi/4$.  Again, the solutions corresponding to
949$\theta_{23}$ and $\pi/2 - \theta_{23}$ appear in general at different
950values of $\delCP$ and $\theta_{13}$.
951\end{itemize}
952%
953This leads to an eight-fold ambiguity in $\theta_{13}$ and
954$\delCP$~\cite{Barger:2001yr}, and hence degeneracies provide a
955serious limitation for the determination of $\theta_{13}$, $\delCP$,
956and the sign of $\Delta m^2_{31}$. Recent discussions of degeneracies
957can be found for example in
958Refs.~\cite{Huber:2002mx,Huber:2005ep,Yasuda:2004gu,Ishitsuka:2005qi};
959degeneracies in the context of CERN--Fr\'ejus \BB\ and SPL have been
960considered previously in Ref.~\cite{Donini:2004hu}.
961%
962In Fig.~\ref{fig:degeneracies} we illustrate the effect of
963degeneracies for the \BB, SPL, and T2HK experiments. Assuming the
964true parameter values $\delta_\mathrm{CP} = -0.85 \pi$,
965$\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$ we show the
966allowed regions in the plane of $\stheta$ and $\delCP$ taking into
967account the solutions with the wrong hierarchy and the wrong octant of
968$\theta_{23}$.
969
970\begin{figure}[!t]
971\centering
972\includegraphics[width=0.95\textwidth]{./fig5.eps}
973%
974  \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
975  $\delta_\mathrm{CP}$ for LBL data alone (contour lines) and LBL+ATM
976  data combined (colored regions). $\mathrm{H^{tr/wr} (O^{tr/wr})}$
977  refers to solutions with the true/wrong mass hierarchy (octant of
978  $\theta_{23}$). The true parameter values are $\delta_\mathrm{CP} =
979  -0.85 \pi$, $\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$,
980  and the values from Eq.~(\ref{eq:default-params}) for the other
981  parameters.}
982\label{fig:degeneracies}
983\end{figure}
984
985
986\begin{figure}[!t]
987\centering
988\includegraphics[width=0.9\textwidth]{./fig6.eps}
989%
990  \mycaption{Resolving degeneracies in SPL by successively using the
991  appearance rate measurement, disappearance channel rate and
992  spectrum, spectral information in the appearance channel, and
993  atmospheric neutrinos.  Allowed regions in $\sin^22\theta_{13}$ and
994  $\delta_\mathrm{CP}$ are shown at 95\%~CL, and $\mathrm{H^{tr/wr}
995  (O^{tr/wr})}$ refers to solutions with the true/wrong mass hierarchy
996  (octant of $\theta_{23}$). The true parameter values are
997  $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} = 0.03$,
998  $\sin^2\theta_{23} = 0.6$, and the values from
999  Eq.~(\ref{eq:default-params}) for the other parameters.}
1000\label{fig:degeneracies_SPL}
1001\end{figure}
1002
1003As visible in Fig.~\ref{fig:degeneracies} for the
1004Super Beam experiments SPL and T2HK there is only a four-fold
1005degeneracy related to sign($\Delta m^2_{31}$) and the octant of
1006$\theta_{23}$, whereas the intrinsic degeneracy can be resolved.
1007%
1008Several pieces of information contribute to this effect, as we
1009illustrate at the example of SPL in Fig.~\ref{fig:degeneracies_SPL}.
1010The dashed curves in the left panel of this figure show the allowed
1011regions for only the appearance measurement (for neutrinos and
1012antineutrinos) without spectral information, i.e., just a counting
1013experiment. In this case the eight-fold degeneracy is present in its
1014full beauty, and one finds two solutions (corresponding to the
1015intrinsic degeneracy) for each choice of sign($\Delta m^2_{31}$) and
1016the octant of $\theta_{23}$. Moreover, the allowed regions are
1017relatively large. For the thin solid curves the information from the
1018disappearance rate is added. The main effect is to decrease the size
1019of the allowed regions in $\stheta$. This is especially pronounced for
1020the solutions involving the wrong octant of $\theta_{23}$, since these
1021solutions are strongly affected by an uncertainty in $\theta_{23}$
1022which gets reduced by the disappearance information. Using in addition
1023to the disappearance rate also the spectrum again decreases the size
1024of the allowed regions, however, still all eight solutions are present
1025(compare dashed curves in the right panel).
1026%
1027The most relevant effect comes from the inclusion of spectral
1028information in the appearance channel, as visible from the comparison
1029of the dashed and thick-solid curves in the right panel of
1030Fig.~\ref{fig:degeneracies_SPL}. The intrinsic degeneracy gets
1031resolved and only four solutions corresponding to the sign and octant
1032degeneracies are left.\footnote{The inclusion of spectral information
1033might be the source of possible differences to previous studies, see
1034e.g.\ Ref.~\cite{Donini:2004hu}.} Note that the thick curves in the
1035right panel of Fig.~\ref{fig:degeneracies_SPL} correspond to the
1036regions show in Fig.~\ref{fig:degeneracies} for the SPL.
1037%
1038Finally, by the inclusion of information from atmospheric neutrinos
1039all degeneracies can be resolved in this example, and the true
1040solution is identified at 95\%~CL (see Sec.~\ref{sec:atmospherics} and
1041Ref.~\cite{Huber:2005ep} for further discussions of atmospheric
1042neutrinos).
1043
1044Concerning the \BB\ one observes from Fig.~\ref{fig:degeneracies} that
1045in this case the ($\delCP,\theta_{13}$)-degeneracy cannot be resolved
1046and one has to deal with eight distinct solutions. One reason for this
1047is the absence of precise information on $|\Delta m^2_{31}|$ and
1048$\sin^22\theta_{23}$ which is provided by the $\nu_\mu$ disappearance
1049in Super Beam experiments but is not available from the \BB. If
1050external information on these parameters at the level of 3\% is
1051included the allowed regions in Fig.~\ref{fig:degeneracies} are
1052significantly reduced. However, still all eight solutions are present,
1053which indicates that for the \BB\ spectral information is not
1054efficient enough to resolve the ($\delCP,\theta_{13}$)-degeneracy, and
1055in this case only the inclusion of atmospheric neutrino data allows a
1056nearly complete resolution of the degeneracies.
1057
1058An important observation from Fig.~\ref{fig:degeneracies} is that
1059degeneracies have only a very small impact on the CP violation
1060discovery, in the sense that if the true solution is CP violating also
1061the fake solutions are located at CP violating values of
1062$\delCP$. Indeed, since for the relatively short baselines in the
1063experiments under consideration matter effects are very small, the
1064sign($\Delta m^2_{31}$)-degenerate solution is located within good
1065approximation at $\delCP' \approx \pi -
1066\delCP$~\cite{Minakata:2001qm}. Therefore, although degeneracies
1067strongly affect the determination of $\theta_{13}$ and $\delCP$ they
1068have only a small impact on the CP violation discovery potential.
1069Furthermore, as clear from Fig.~\ref{fig:degeneracies} the sign($\Delta
1070m^2_{31}$) degeneracy has practically no effect on the $\theta_{13}$
1071measurement, whereas the octant degeneracy has very little impact on
1072the determination of $\delCP$.
1073
1074\begin{figure}[!t]
1075\centering
1076\includegraphics[width=0.9\textwidth]{./fig7.eps}
1077%
1078  \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
1079  $\delta_\mathrm{CP}$ for 5~years data (neutrinos only) from \BB,
1080  SPL, and the combination. $\mathrm{H^{tr/wr} (O^{tr/wr})}$ refers to
1081  solutions with the true/wrong mass hierarchy (octant of
1082  $\theta_{23}$). For the colored regions in the left panel also
1083  5~years of atmospheric data are included; the solution with the
1084  wrong hierarchy has $\Delta\chi^2 = 4$. The true parameter
1085  values are $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} =
1086  0.03$, $\sin^2\theta_{23} = 0.6$, and the values from
1087  Eq.~(\ref{eq:default-params}) for the other parameters. For the \BB\
1088  only analysis (middle panel) an external accuracy of 2\% (3\%) for
1089  $|\Delta m^2_{31}|$ ($\theta_{23}$) has been assumed, whereas for
1090  the left and right panel the default value of 10\% has been used.}
1091\label{fig:degeneracies_5yrs}
1092\end{figure}
1093
1094Fig.~\ref{fig:degeneracies} shows also that the fake solutions occur
1095at similar locations in the ($\stheta$, $\delCP$) plane for \BB\ and
1096SPL. Therefore, as noted in Ref.~\cite{Donini:2004hu}, in this sense
1097the two experiments are not complementary, and the combination of
109810~years of \BB\ and SPL data is not very effective in resolving
1099degeneracies. This is obvious since the baseline is the same and the
1100neutrino energies are similar.
1101%
1102Note however, that the \BB\ looks for $\nu_e\to\nu_\mu$ appearance,
1103whereas in SPL the T-conjugate channel $\nu_\mu\to\nu_e$ is observed.
1104Assuming CPT invariance the relation $P_{\nu_\alpha\to\nu_\beta} =
1105P_{\bar\nu_\beta\to\bar\nu_\alpha}$ holds, which implies that the
1106antineutrino measurement can be replaced by a measurement in the
1107T-conjugate channel.  Hence, if \BB\ and SPL experiments are available
1108simultaneously the full information can be obtained just from neutrino
1109data, and in principle the (time consuming) antineutrino measurement
1110is not necessary. As shown in Fig.~\ref{fig:degeneracies_5yrs} the
1111combination of 5~yrs neutrino data from the \BB\ with 5~yrs of
1112neutrino data from SPL leads to a result very close to the 10~yrs
1113neutrino+antineutrino data from one experiment alone. Hence, if \BB\
1114and SPL experiments are available simultaneously the data taking
1115period is reduced approximately by a factor of 2 with respect to a
1116single experiment. This synergy is discussed later in
1117Sec.~\ref{sec:synergies-beams} in the context of the $\theta_{13}$ and
1118CP violation discovery potentials.
1119
1120
1121%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1122\section{Physics potential}
1123%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1124\label{sec:sensitivities}
1125
1126\subsection{Sensitivity to the atmospheric parameters}
1127\label{sec:atm}
1128
1129The $\nu_\mu$ disappearance channel available in the Super Beam
1130experiments SPL and T2HK allows a precise determination of the
1131atmospheric parameters $|\Delta m^2_{31}|$ and $\sin^22\theta_{23}$,
1132see, e.g., Refs.~\cite{Antusch:2004yx,Minakata:2004pg,Donini:2005db}
1133for recent analyses). Fig.~\ref{fig:atm-params} illustrates the
1134improvement on these parameters by Super Beam experiments with respect
1135to the present knowledge from SK atmospheric and K2K data. We show the
1136allowed regions at 99\%~CL for T2K-I, SPL, and T2HK, where in all
1137three cases 5~years of neutrino data are assumed. T2K-I corresponds to
1138the phase~I of the T2K experiment with a beam power of 0.77~MW and the
1139Super-Kamiokande detector as target~\cite{T2K}. In Tab.~\ref{tab:atm-params} we
1140give the corresponding relative accuracies at 3$\sigma$ for $|\Delta
1141m^2_{31}|$ and $\sin^2\theta_{23}$.
1142
1143\begin{figure}[!t]
1144\centering
1145  \includegraphics[width=0.55\textwidth]{./fig8.eps}
1146  \mycaption{\label{fig:atm-params} Allowed regions of $\Delta
1147  m^2_{31}$ and $\sin^2\theta_{23}$ at 99\%~CL (2 d.o.f.)  after 5~yrs
1148  of neutrino data taking for SPL, T2K phase~I, T2HK, and the
1149  combination of SPL with 5~yrs of atmospheric neutrino data in the
1150  MEMPHYS detector. For the true parameter values we use $\Delta
1151  m^2_{31} = 2.2\, (2.6) \times 10^{-3}~\mathrm{eV}^2$ and
1152  $\sin^2\theta_{23} = 0.5 \, (0.37)$ for the test point 1 (2), and
1153  $\theta_{13} = 0$ and the solar parameters as given in
1154  Eq.~(\ref{eq:default-params}). The shaded region corresponds to the
1155  99\%~CL region from present SK and K2K data~\cite{Maltoni:2004ei}.}
1156\end{figure}
1157
1158
1159\begin{table}[!t]
1160  \centering
1161  \begin{tabular}{lcrrr}
1162  \hline\noalign{\smallskip}
1163    & True values  & T2K-I & SPL & T2HK \\
1164  \noalign{\smallskip}\hline\noalign{\smallskip}
1165  $\Delta m^2_{31}$   & $2.2\cdot 10^{-3}$ eV$^2$ & 4.7\% & 3.2\% & 1.1\% \\
1166  $\sin^2\theta_{23}$ & $0.5$                     & 20\%  & 20\%  & 6\%   \\
1167  \noalign{\smallskip}\hline\noalign{\smallskip}
1168  $\Delta m^2_{31}$   & $2.6\cdot 10^{-3}$ eV$^2$ & 4.4\% & 2.5\% & 0.7\% \\
1169  $\sin^2\theta_{23}$ & $0.37$                    & 8.9\% & 3.1\% & 0.8\% \\
1170  \noalign{\smallskip}\hline
1171  \end{tabular}
1172  \mycaption{Accuracies at $3\sigma$ on the atmospheric parameters
1173  $|\Delta m^2_{31}|$ and $\sin^2\theta_{23}$ for 5 years of neutrino
1174  data from T2K-I, SPL, and T2HK for the two test points shown in
1175  Fig.~\ref{fig:atm-params} ($\theta^\mathrm{true}_{13} = 0$). The
1176  accuracy for a parameter $x$ is defined as $(x^\mathrm{upper} -
1177  x^\mathrm{lower})/(2 x^\mathrm{true})$, where $x^\mathrm{upper}$
1178  ($x^\mathrm{lower}$) is the upper (lower) bound at 3$\sigma$ for
1179  1~d.o.f.\ obtained by projecting the contour $\Delta \chi^2 = 9$
1180  onto the $x$-axis. For the accuracies for test point~2 the octant
1181  degenerate solution is neglected.\label{tab:atm-params}}
1182\end{table}
1183
1184From the figure and the table it becomes evident that the T2K setups
1185are very good in measuring the atmospheric parameters, and only a
1186modest improvement is possible with SPL with respect to T2K phase~I.
1187T2HK provides an excellent sensitivity for these parameters, and for
1188the example of the test point~2 sub-percent accuracies are obtained at
11893$\sigma$. The disadvantage of SPL with respect to T2HK is the
1190limited spectral information. Because of the lower beam energy
1191nuclear Fermi motion is a severe limitation for energy reconstruction
1192in SPL, whereas in T2K the somewhat higher energy allows an efficient
1193use of spectral information of quasi-elastic events. Indeed, due to
1194the large number of events in the disappearance channel (cf.\
1195Tab.~\ref{tab:events}) the measurement is completely dominated by the
1196spectrum, and even increasing the normalization uncertainty up to
1197100\% has very little impact on the allowed regions. The effect of
1198spectral information on the disappearance measurement is
1199discussed in some detail in Ref.~\cite{Donini:2005db}.
1200
1201For the test point~1, with maximal mixing for $\theta_{23}$, rather
1202poor accuracies of $\sim20\%$ for T2K-I and SPL, and $6\%$ for T2HK
1203are obtained for $\sin^2\theta_{23}$. The reason is that in the
1204disappearance channel $\sin^22\theta_{23}$ is measured with high
1205precision, which translates to rather large errors for
1206$\sin^2\theta_{23}$ if $\theta_{23} = \pi/4$~\cite{Minakata:2004pg}.
1207%
1208For the same reason it is difficult to resolve the octant degeneracy,
1209and for the test point~2, with a non-maximal value of
1210$\sin^2\theta_{23} = 0.37$, for all three LBL experiments the
1211degenerate solution is present around $\sin^2\theta_{23} = 0.63$.
1212%
1213As pointed out in Refs.~\cite{Peres:2003wd,Gonzalez-Garcia:2004cu}
1214atmospheric neutrino data may allow to distinguish between the two
1215octants of $\theta_{23}$. If 5~years of atmospheric neutrino data in
1216MEMPHYS are added to the SPL data, the degenerate solution for the
1217test point~2 can be excluded at more than $5\sigma$ and hence the
1218octant degeneracy is resolved in this example, see
1219Sec.~\ref{sec:atmospherics} for a more detailed discussion.
1220
1221
1222%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1223\subsection{The $\theta_{13}$ discovery potential}
1224\label{sec:th13}
1225
1226If no finite value of $\theta_{13}$ is discovered by the next round of
1227experiments an important task of the experiments under consideration
1228here is to push further the sensitivity to this parameter. In this
1229section we address this problem, where we use to following definition
1230of the $\theta_{13}$ discovery potential: Data are simulated for a
1231finite true value of $\stheta$ and a given true value for $\delCP$. If
1232the $\Delta\chi^2$ of the fit to these data with $\theta_{13} = 0$ is
1233larger than 9 the corresponding true value of $\theta_{13}$ ``is
1234discovered at 3$\sigma$''. In other words, the $3\sigma$ discovery
1235limit as a function of the true $\delCP$ is given by the true value of
1236$\stheta$ for which $\Delta\chi^2(\theta_{13}=0) = 9$. In the fitting
1237process we minimize the $\Delta\chi^2$ with respect to $\theta_{12}$,
1238$\theta_{23}$, $\Delta m^2_{12}$, and $\Delta m^2_{31}$, and in
1239general one has to test also for degenerate solutions in sign($\Delta
1240m^2_{31}$) and the octant of $\theta_{23}$.
1241
1242\begin{figure}
1243  \centering \includegraphics[width=0.9\textwidth]{./fig9.eps}
1244  \mycaption{$3\sigma$ discovery sensitivity to $\stheta$ for \BB,
1245  SPL, and T2HK as a function of the true value of \delCP\ (left
1246  panel) and as a function of the fraction of all possible values of
1247  \delCP\ (right panel). The width of the bands corresponds to values
1248  for the systematical errors between 2\% and 5\%. The black curves
1249  correspond to the combination of \BB\ and SPL with 10~yrs of total
1250  data taking each for a systematical error of 2\%, and the dashed
1251  curves show the sensitivity of the \BB\ when the number of ion
1252  decays/yr are reduced by a factor of two with respect to the values
1253  given in Tab.~\ref{tab:setups}.\label{fig:th13}}
1254\end{figure}
1255
1256The discovery limits are shown for \BB, SPL, and T2HK in
1257Fig.~\ref{fig:th13}. One observes that SPL and T2HK are rather similar
1258in performance, whereas the \BB\ with our standard fluxes performs
1259significantly better. For all three facilities a guaranteed discovery
1260reach of $\stheta \simeq 5\times 10^{-3}$ is obtained, irrespective of
1261the actual value of \delCP, however, for certain values of \delCP\ the
1262sensitivity is significantly improved. For SPL and T2HK discovery
1263limits around $\stheta \simeq 10^{-3}$ are possible for a large
1264fraction of all possible values of \delCP, whereas for our standard
1265\BB\ a sensitivity below $\stheta = 4\times 10^{-4}$ is reached for
126680\% of all possible values of \delCP. If 10~years of data from \BB\
1267and SPL are combined the discovery limit is dominated by the \BB.
1268%
1269Let us stress that the \BB\ performance depends crucially on the
1270neutrino flux intensity, as can be seen from the dashed curves in
1271Fig.~\ref{fig:th13}, which has been obtained by reducing the number of
1272ion decays/yr by a factor of two with respect to our standard values
1273given in Tab.~\ref{tab:setups}. In this case the sensitivity decreases
1274significantly, but still values slightly better than from the
1275Super Beam experiments are reached.
1276
1277In Fig.~\ref{fig:th13} we illustrate also the effect of systematical
1278errors on the $\theta_{13}$ discovery reach. The lower boundary of the
1279band for each experiment corresponds to a systematical error of 2\%,
1280whereas the upper boundary is obtained for 5\%. These errors include
1281the (uncorrelated) normalization uncertainties on the signal as well
1282as on the background, where the crucial uncertainty is the error on
1283the background. We find that the \BB\ is basically not affected by
1284these errors, since the background has a rather different spectral
1285shape (strongly peaked at low energies) than the signal. The fact
1286that T2HK is relatively strongly affected by the actual value of the
1287systematics can by understood by considering the ratio of signal to
1288the square-root of the background using the numbers of
1289Tab.~\ref{tab:events}. We shall discuss this issue in more detail in
1290the next section in the context of the CP violation discovery reach.
1291
1292Let us remark that the $\theta_{13}$ sensitivities are practically not
1293affected by the sign($\Delta m^2_{31}$)-degeneracy. This is easy to
1294understand, since the data is fitted with $\theta_{13} = 0$, and in
1295this case both mass hierarchies lead to very similar event rates. If
1296the inverted hierarchy is used as the true hierarchy, the peak in the
1297discovery limit visible in the left panel of Fig.~\ref{fig:th13}
1298around $\delCP \sim \pi$ moves to $\delCP \sim 0$. However, the
1299characteristic shape of the curves, and in particular, the sensitivity
1300as a function of the \delCP-fraction shown in the right panel are
1301hardly affected by the sign of the true $\Delta m^2_{31}$.
1302%
1303In case of a non-maximal value of $\theta_{23}$ the octant-degeneracy
1304has a minor impact on the $\theta_{13}$ discovery potential, as
1305illustrated in Fig.~\ref{fig:SPLTheta13Disco} for the SPL. We show the
1306discovery limit obtained with the true and the fake octant of
1307$\theta_{23}$ for a true value of $\sin^2\theta_{23}= 0.6$. Let us
1308note that for true values of $\sin^2\theta_{23} > 0.5$ the
1309octant-degenerate solution leads to a worse sensitivity to
1310$\theta_{13}$ (see figure), whereas for $\sin^2\theta_{23} < 0.5$ the
1311fake solution does not affect the $\theta_{13}$ discovery, since in
1312this case the sensitivity is increased.
1313
1314\begin{figure}
1315  \centering
1316  \includegraphics[width=0.9\textwidth]{./fig10.eps}
1317  \mycaption{\label{fig:SPLTheta13Disco} $3\sigma$ discovery
1318  sensitivity to $\stheta$ for the SPL as a function of the true value
1319  of \delCP\ for $\sin^2\theta_{23}^\mathrm{true} = 0.6$ and true values for
1320  the other parameters as given in Eq.~(\ref{eq:default-params}).}
1321\end{figure}
1322
1323%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1324\subsection{Sensitivity to CP violation}
1325\label{sec:CPV}
1326
1327In case a finite value of $\theta_{13}$ is established it is important
1328to quantitatively assess the discovery potential for leptonic CP
1329violation (CPV). The CP symmetry is violated if the complex phase
1330\delCP\ is different from $0$ and $\pi$. Therefore, CPV is discovered
1331if these values for \delCP\ can be excluded.
1332%
1333We evaluate the discovery potential for CPV in the following way:
1334Data are calculated by scanning the true values of $\stheta$ and
1335$\delCP$. Then these data are fitted with the CP conserving values
1336$\delCP = 0$ and $\delCP = \pi$, where all parameters except \delCP\
1337are varied and the sign and octant degeneracies are taken into
1338account. If no fit with $\Delta \chi^2 < 9$ is found CP conserving
1339values of \delCP\ can be excluded at $3\sigma$ for the chosen values
1340of $\delta_\mathrm{CP}^\mathrm{true}$ and $\stheta^\mathrm{true}$.
1341
1342\begin{figure}[!t]
1343  \centering
1344   \includegraphics[width=0.65\textwidth]{./fig11.eps}
1345%   
1346   \mycaption{CPV discovery potential for \BB, SPL, and T2HK: For
1347   parameter values inside the ellipse-shaped curves CP conserving
1348   values of \delCP\ can be excluded at $3\sigma$ $(\Delta\chi^2>9)$.
1349   The width of the bands corresponds to values for the systematical
1350   errors from 2\% to 5\%. The dashed curves show the sensitivity of
1351   the \BB\ when the number of ion decays/yr are reduced by a factor
1352   of two with respect to the values given in Tab.~\ref{tab:setups}
1353   for 2\% systematics.\label{fig:CPV}}
1354\end{figure}
1355
1356The CPV discovery potential for \BB, SPL, and T2HK is shown in
1357Fig.~\ref{fig:CPV}. As in the case of the $\theta_{13}$ sensitivity we
1358find that SPL and T2HK perform rather similar, whereas the \BB\ has
1359significantly better sensitivity if our adopted numbers of ion decays
1360per year can be achieved. For systematical errors of 2\% maximal CPV
1361(for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$) can be discovered at
1362$3\sigma$ down to $\stheta \simeq 8.8 \,(6.6)\times 10^{-4}$ for SPL
1363(T2HK), and $\stheta \simeq 2\times 10^{-4}$ for the \BB. This number
1364for the \BB\ is increased by a factor 3 if the fluxes are reduced to
1365half of our nominal values.  The best sensitivity to CPV is obtained
1366for all three facilities around $\stheta \sim 10^{-2}$. For this value
1367CPV can be established for 78\%, 73\%, 75\% of all values of \delCP\
1368for \BB, SPL, T2HK, respectively (again for systematics of 2\%).
1369
1370The widths of the bands in Fig.~\ref{fig:CPV} corresponds to different
1371values for systematical errors. The curves which give the best
1372sensitivities are obtained for systematics of 2\%, the curves
1373corresponding to the worst sensitivity have been computed for
1374systematics of 5\%. We change the uncertainty on the signal as well as
1375on the background, however, it turns out that the most relevant
1376uncertainty is the background normalization. We find that the impact
1377of systematics is very small for the \BB. The reason for this is that
1378the spectral shape of the background in the \BB\ (from pions and
1379atmospheric neutrinos) is very different from the signal, and
1380therefore they can be disentangled by the fit of the energy spectrum.
1381For the Super Beams the background spectrum is more similar to the
1382signal, and therefore an uncertainty on the background normalization
1383might have a strong impact on the sensitivity, as visible from the SPL
1384and T2HK curves in Fig.~\ref{fig:CPV}. In particular T2HK is strongly
1385affected, and moving from 2\% to 5\% uncertainy decreases the
1386sensitivity to maximal CPV by a factor 3.
1387
1388\begin{figure}[!t]
1389  \centering
1390   \includegraphics[width=0.9\textwidth]{./fig12.eps}
1391%   
1392   \mycaption{Impact of total exposure and systematical errors on the
1393   CPV discovery potential of \BB, SPL, and T2HK. We show the
1394   smallest true value of $\stheta$ for which $\delCP = \pi/2$ can be
1395   distinguished from $\delCP = 0$ or $\delCP = \pi$ at $3\sigma$
1396   $(\Delta\chi^2>9)$ as a function of the exposure in kt~yrs (left)
1397   and as a function of the systematical error on the background
1398   $\sigma_\mathrm{bkgr}$ (right). The widths of the curves in the
1399   left panel corresponds to values of $\sigma_\mathrm{bkgr}$ from 2\%
1400   to 5\%. The thin solid curves in the left panel corresponds to no
1401   systematical errors. The right plot is calculated for the standard
1402   exposure of 4400~kt~yrs. No systematical error on the signal has
1403   been assumed. \label{fig:systematics}}
1404\end{figure}
1405
1406This interesting feature can be understood in the following way. A
1407rough measure to estimate the sensitivity is given by the signal
1408compared to the error on the background. The latter receives
1409contributions from the statistical error $\sqrt{B}$ and from the
1410systematical uncertainty $\sigma_\mathrm{bkgr}B$, where $B$ is the
1411number of background events and $\sigma_\mathrm{bkgr}$ is the
1412(relative) systematical error. Hence the importance of the systematics
1413can be estimated by the ratio of systematical and statistical errors
1414$\sigma_\mathrm{bkgr} B / \sqrt{B} = \sigma_\mathrm{bkgr} \sqrt{B}$.
1415Summing the numbers for background events in the neutrino and
1416antineutrino channels given in Tab.~\ref{tab:events} one finds that
1417systematical errors dominate ($\sigma_\mathrm{bkgr} \sqrt{B} > 1$) if
1418$\sigma_\mathrm{bkgr} \gtrsim 6\%,\, 3\%, \, 2\%$ for \BB, SPL, T2HK,
1419respectively.
1420%
1421In the right panel Fig.~\ref{fig:systematics} we show the sensitivity
1422to maximal CPV (as defined in the figure caption) as a function of
1423$\sigma_\mathrm{bkgr}$. Indeed, the worsening of the sensitivity due
1424to systematics occurs roughly at the values of $\sigma_\mathrm{bkgr}$
1425as estimated above. For a more quantitative understanding of these
1426curves it is necessary to consider the number of signal and background
1427events for neutrinos and antineutrinos separately, as well as to take
1428into account spectral information.
1429
1430
1431The left panel of Fig.~\ref{fig:systematics} shows the sensitivity to
1432maximal CPV as a function of the exposure\footnote{Note that the CPV
1433sensitivity for the \BB\ with reduced fluxes from Fig.~\ref{fig:CPV}
1434is worse than the value which follows from Fig.~\ref{fig:systematics}.
1435The reason is that in Fig.~\ref{fig:systematics} the total exposure is
1436scaled (mass~$\times$~time), i.e., signal and background are scaled in
1437the same way, whereas for the dashed curve in Fig.~\ref{fig:CPV} only
1438the fluxes are reduced but backgrounds are kept constant.} for values
1439of $\sigma_\mathrm{bkgr}$ from 2\% to 5\%. One can observe clearly
1440that for the standard exposure of 4400~kt~yrs T2HK is dominated by
1441systematics and changing $\sigma_\mathrm{bkgr}$ from 2\% to 5\% has a
1442big impact on the sensitivity. In contrast the CERN--MEMPHYS
1443experiments (especially the \BB) are rather stable with respect to
1444systematics and for the standard exposure they are still statistics
1445dominated. We conclude that in T2HK systematics have to be under very
1446good control\footnote{As a possible solution to this problem for T2HK
1447it has been proposed in Ref.~\cite{Ishitsuka:2005qi} to place one half
1448of the Hyper-K detector mass at Kamioka and the second half at the
1449same off-axis angle in Korea.}, whereas this issue is less important
1450for \BB\ and SPL.
1451%
1452We have checked explicitly that the systematical error on the signal
1453has negligible impact on these results. Therefore, we have set this
1454error to zero for calculating Fig.~\ref{fig:systematics} to highlight
1455the importance of the background error. In all other calculations also
1456the signal error is included, in particular also in Fig.~\ref{fig:CPV}.
1457
1458
1459\begin{figure}[!t]
1460  \centering
1461   \includegraphics[width=0.8\textwidth]{./fig13.eps}
1462%   
1463   \mycaption{Impact of degeneracies on the CPV discovery potential
1464   for the \BB. We show the sensitivity to CPV at $3\sigma$
1465   $(\Delta\chi^2>9)$ computed for 4 different combinations of the
1466   true values of the hierarchy (NH or IH) and $\theta_{23}$
1467   ($\sin^2\theta_{23} = 0.4$ or $0.6$). Dashed curves are computed
1468   neglecting degeneracies in the fit.\label{fig:deltacp}}
1469\end{figure}
1470
1471Finally, in Fig.~\ref{fig:deltacp} we illustrate the impact of
1472degeneracies, as well as the true hierarchy and \thetatt-octant on the
1473CPV sensitivity.  Curves of different colors correspond to the four
1474different choices for \sigdm\ and the \thetatt-octant of the true
1475parameters. For the solid curves the simulated data for each choice of
1476true \sigdm\ and \thetatt-octant are fitted by taking into account all
1477four degenerate solutions, i.e., also for the fit all four
1478combinations of \sigdm\ and \thetatt-octant are used. One observes
1479from the figure that the true hierarchy and octant have a rather small
1480impact on the \BB\ CPV sensitivity, in particular the sensitivity to
1481maximal CPV is completely independent.  The main effect of changing the
1482true hierarchy is to exchange the behavior between $0 < \delCP <
1483180^\circ$ and $180^\circ < \delCP < 360^\circ$. For $\stheta \lesssim
148410^{-2}$ the sensitivity gets slightly worse if
1485$\thetatt^\mathrm{true} > \pi/4$ compared to $\thetatt^\mathrm{true} <
1486\pi/4$.
1487
1488The dashed curves in Fig.~\ref{fig:deltacp} are computed without
1489taking into account the degeneracies, i.e., for each choice of true
1490\sigdm\ and \thetatt-octant the data are fitted only with this
1491particular choice. The effect of the degeneracies becomes visible for
1492large values of \thetaot. Note that this is just the region where they
1493can be reduced by a combined analysis with atmospheric neutrinos (see
1494Sec.~\ref{sec:atmospherics} or Ref.~\cite{Huber:2005ep}).
1495 
1496
1497%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1498\section{Synergies provided by the CERN--MEMPHYS facilities}
1499%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1500\label{sec:synergies}
1501
1502%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1503\subsection{Combining Beta Beam and Super Beam}
1504%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1505\label{sec:synergies-beams}
1506
1507In this section we discuss synergies which emerge if both \BB\ and SPL
1508are available. The main difference between these two beams is the
1509different initial neutrino flavor,
1510$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for \BB\ and
1511$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ for SPL. This implies
1512that at near detectors all relevant cross sections can be measured. In
1513particular, the near detector of the \BB\ will measure the cross
1514section for the SPL appearance search, and vice versa.
1515%
1516If both experiments run with neutrinos and antineutrinos all possible
1517transition probabilities are covered: $P_{\nu_e\to\nu_\mu}$,
1518$P_{\bar\nu_e\to\bar\nu_\mu}$, $P_{\nu_\mu\to\nu_e}$, and
1519$P_{\bar\nu_\mu\to\bar\nu_e}$. Together with the fact that matter
1520effects are very small because of the relatively short baseline, this
1521means that in addition to CP also direct tests of the T and CPT
1522symmetries are possible.
1523
1524\begin{figure}[!t]
1525  \centering
1526   \includegraphics[width=0.9\textwidth]{./fig14.eps}
1527%   
1528   \mycaption{Discovery potential of a finite value of $\stheta$ at
1529   $3\sigma$ $(\Delta\chi^2>9)$ for 5~yrs neutrino data from
1530   \BB, SPL, and the combination of \BB\ + SPL compared to
1531   10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
1532   \label{fig:th13-5yrs}}
1533\end{figure}
1534
1535However, if the CPT symmetry is assumed in principle all information
1536can be obtained just from neutrino data because of the relations
1537$P_{\bar\nu_e\to\bar\nu_\mu} = P_{\nu_\mu\to\nu_e}$ and
1538$P_{\bar\nu_\mu\to\bar\nu_e} = P_{\nu_e\to\nu_\mu}$. As mentioned
1539already in Sec.~\ref{sec:degeneracies} this implies that (time
1540consuming) antineutrino running can be avoided. We illustrate this
1541synergy in Figs.~\ref{fig:th13-5yrs} and \ref{fig:CP-5yrs}. In
1542Fig.~\ref{fig:th13-5yrs} we show the $\theta_{13}$ discovery potential
1543of 5 years of neutrino data from \BB\ and SPL. From the left panel the
1544complementarity of the two experiments is obvious, since each of them
1545is most sensitive in a different region of \delCP. (As expected from
1546general properties of the oscillation probabilities the sensitivity
1547curves of \BB\ and SPL are approximately related by the transformation
1548$\delCP \to 2\pi - \delCP$.) Combining these two data sets results in
1549a sensitivity slightly better than from 10 years (2$\nu$+8$\bar\nu$)
1550of T2HK data.
1551%
1552As visible in Fig.~\ref{fig:CP-5yrs} also for the CPV discovery this
1553synergy works and 5 years of neutrino data from \BB\ and SPL lead to a
1554similar sensitivity as 10 years of T2HK.
1555
1556\begin{figure}[!t]
1557  \centering
1558   \includegraphics[width=0.6\textwidth]{./fig15.eps}
1559%   
1560   \mycaption{Sensitivity to CPV at $3\sigma$ $(\Delta\chi^2>9)$ for
1561   combining 5~yrs neutrino data from \BB\ and SPL compared to
1562   10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
1563   \label{fig:CP-5yrs}}
1564\end{figure}
1565
1566
1567
1568%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1569\subsection{Resolving degeneracies with atmospheric neutrinos}
1570%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1571\label{sec:atmospherics}
1572
1573It was pointed out in Ref.~\cite{Huber:2005ep} that for LBL
1574experiments based on mega ton scale water \v{C}erenkov detectors data
1575from atmospheric neutrinos (ATM) provide an attractive method to
1576resolve degeneracies. Atmospheric neutrinos are sensitive to the
1577neutrino mass hierarchy if $\theta_{13}$ is sufficiently large due to
1578Earth matter effects, mainly in multi-GeV $e$-like
1579events~\cite{Petcov:1998su,Akhmedov:1998ui,Bernabeu:2003yp}. Moreover,
1580sub-GeV $e$-like events provide sensitivity to the octant of
1581$\theta_{23}$~\cite{Kim:1998bv,Peres:2003wd,Gonzalez-Garcia:2004cu}
1582due to oscillations with $\Delta m^2_{21}$ (see also
1583Ref.~\cite{Kajita} for a discussion of atmospheric neutrinos in the
1584context of Hyper-K).
1585%
1586Following Ref.~\cite{Huber:2005ep} we investigate here the synergy
1587from a combination of LBL data from \BB\ and SPL with ATM data in the
1588MEMPHYS detector. Technical details are given in
1589Sec.~\ref{sec:atm-details}.
1590 
1591The effect of degeneracies in LBL data has been discussed in
1592Sec.~\ref{sec:degeneracies}, see Figs.~\ref{fig:degeneracies} and
1593\ref{fig:degeneracies_SPL}. As discussed there, for given true
1594parameter values the data can be fitted with the wrong hierarchy
1595and/or with the wrong octant of $\theta_{23}$. Hence, from LBL data
1596alone the hierarchy and the octant cannot be determined and
1597ambiguities exist in the determination of $\theta_{13}$ and
1598$\delta_\mathrm{CP}$.
1599%
1600If the LBL data are combined with ATM data only the colored regions in
1601Fig.~\ref{fig:degeneracies} survive, i.e., in this particular example
1602for SPL and T2HK the degeneracies are completely lifted at 95\%~CL,
1603the mass hierarchy and the octant of $\theta_{23}$ can be identified,
1604and the ambiguities in $\theta_{13}$ and $\delta_\mathrm{CP}$ are
1605resolved. For the \BB\ an island corresponding to the wrong hierarchy
1606does survive at the 95\%~CL for 2~dof. Still, the solution with the
1607wrong sign of $\Delta m^2_{31}$ is disfavored with $\Delta\chi^2 =
16085.1$ with respect to the true solution, which corresponds to
16092.4$\sigma$ for 1~dof.
1610%
1611Let us note that in Fig.~\ref{fig:degeneracies} we have chosen a
1612favorable value of $\sin^2\theta_{23} = 0.6$; for values
1613$\sin^2\theta_{23} < 0.5$ in general the sensitivity of ATM data is
1614weaker~\cite{Huber:2005ep}.
1615
1616\begin{figure}[!t]
1617\centering
1618  \includegraphics[width=0.9\textwidth]{./fig16.eps}
1619%
1620  \mycaption{Sensitivity to the mass hierarchy at $2\sigma$
1621  $(\Delta\chi^2 = 4)$ as a function of the true values of
1622  $\sin^22\theta_{13}$ and $\delta_\mathrm{CP}$ (left), and the
1623  fraction of true values of $\delCP$ (right). The solid curves are
1624  the sensitivities from the combination of long-baseline and
1625  atmospheric neutrino data, the dashed curves correspond to
1626  long-baseline data only. For comparison we show in the right panel
1627  also the sensitivities of NO$\nu$A and NO$\nu$A+T2K extracted from
1628  Fig.~13.14 of Ref.~\cite{Ayres:2004js}. For the curve labeled
1629  ``NO$\nu$A (p.dr.)+T2K@4~MW'' a proton driver has been assumed for
1630  NO$\nu$A and the T2K beam has been up-graded to 4~MW, see
1631  Ref.~\cite{Ayres:2004js} for details.}
1632  \label{fig:hierarchy}
1633\end{figure}
1634
1635In Fig.~\ref{fig:hierarchy} we show how the combination of ATM+LBL
1636data leads to a non-trivial sensitivity to the neutrino mass
1637hierarchy, i.e.\ to the sign of $\Delta m^2_{31}$. For LBL data alone
1638(dashed curves) there is practically no sensitivity for the
1639CERN--MEMPHYS experiments (because of the very small matter effects
1640due to the relatively short baseline), and the sensitivity of T2HK
1641depends strongly on the true value of $\delta_\mathrm{CP}$. However,
1642by including data from atmospheric neutrinos (solid curves) the mass
1643hierarchy can be identified at $2\sigma$~CL provided
1644$\sin^22\theta_{13} \gtrsim 0.02-0.03$. As an example we have chosen
1645in that figure a true value of $\theta_{23} = \pi/4$. Generically the
1646hierarchy sensitivity increases with increasing $\theta_{23}$, see
1647Ref.~\cite{Huber:2005ep} for a detailed discussion.
1648
1649The sensitivity to the neutrino mass hierarchy shown in
1650Fig.~\ref{fig:hierarchy} is significantly improved with respect to our
1651previous results obtained in Ref.~\cite{Huber:2005ep}. There are two
1652main reasons for this improved performance: First, we use now much
1653more bins in charged lepton energy for fully contained single-ring
1654events\footnote{The impact of energy binning on the hierarchy
1655determination with atmospheric neutrinos has been discussed recently
1656in Ref.~\cite{Petcov:2005rv} in the context of magnetized iron
1657detectors.}  (compare Sec.~\ref{sec:atm-details}), and second, we
1658implemented also information from multi-ring events. This latter point
1659is important since the relative contribution of neutrinos and
1660antineutrinos is different for single- and multi-ring
1661events. Therefore, combining single- and multi-ring data allows to
1662obtain a discrimination between neutrino and antineutrino events on a
1663statistical basis. This in turn contains crucial information on the
1664hierarchy, since the matter enhancement is visible either in neutrinos
1665or antineutrinos, depending on the hierarchy.
1666
1667Although \BB\ and SPL alone have no sensitivity to the hierarchy at
1668all, we find that the combination of them does provide rather good
1669sensitivity even without atmospheric data. The reason for this
1670interesting effect is the following. Because of the rather short
1671baseline the matter effect is too small to distinguish between NH and
1672IH given only neutrino and antineutrino information in one channel.
1673However, the tiny matter effect suffices to move the hierarchy
1674degenerate solution to slightly different locations in the ($\stheta$,
1675$\delCP$) plane for the $\stackrel{\scriptscriptstyle(-)}{\nu}_e \to
1676\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ (\BB) and
1677$\stackrel{\scriptscriptstyle(-)}{\nu}_\mu \to
1678\stackrel{\scriptscriptstyle (-)}{\nu}_e$ (SPL) channels (compare
1679Fig.~\ref{fig:degeneracies}). Hence, if all four CP and T conjugate
1680channels are available (as it is the case for the \BB+SPL combination)
1681already the small matter effect picked up along the 130~km
1682CERN--MEMPHYS distance provides sensitivity to the mass hierarchy for
1683$\sin^22\theta_{13} \gtrsim 0.03$, or $\sin^22\theta_{13} \gtrsim 0.015$
1684if also atmospheric neutrino data is included.
1685
1686For comparison we show in the right panel of Fig.~\ref{fig:hierarchy}
1687also the sensitivity of the NO$\nu$A~\cite{Ayres:2004js} experiment,
1688and of NO$\nu$A+T2K, where in the second case a beam upgrade by a
1689proton driver has been assumed for NO$\nu$A, and for T2K the
1690Super-Kamiokande detector has been used but the beam intensity has
1691been increased by assuming 4~MW power. More details on these
1692sensitivities can be found in Ref.~\cite{Ayres:2004js}.
1693%
1694Let us note that in general LBL experiments with two detectors (or the
1695combination of two different LBL experiments) are a competitive method
1696to atmospheric neutrinos for the hierarchy determination, see, e.g.,
1697Refs.~\cite{Ishitsuka:2005qi,MenaRequejo:2005hn,Hagiwara:2005pe} for
1698recent analyses.
1699%
1700We mention also the possibility to determine the neutrino mass
1701hierarchy by using neutrino events from a galactic Super Nova
1702explosion in mega ton \v{C}erenkov detectors such as MEMPHYS, see,
1703e.g., Ref.~\cite{Kachelriess:2004vs}.
1704
1705\begin{figure}[!t]
1706\centering
1707  \includegraphics[width=0.55\textwidth]{./fig17.eps}
1708%
1709  \mycaption{$\Delta\chi^2$ of the solution with the wrong octant of
1710  $\theta_{23}$ as a function of the true value of
1711  $\sin^2\theta_{23}$. We have assumed a true value of $\theta_{13} =
1712  0$.}
1713  \label{fig:octant}
1714\end{figure}
1715
1716Fig.~\ref{fig:octant} shows the potential of ATM+LBL data to exclude
1717the octant degenerate solution. Since this effect is based mainly on
1718oscillations with $\Delta m^2_{21}$ there is very good sensitivity
1719even for $\theta_{13} = 0$; a finite value of $\theta_{13}$ in general
1720improves the sensitivity~\cite{Huber:2005ep}.  From the figure one can
1721read off that atmospheric data alone can can resolve the correct
1722octant at $3\sigma$ if $|\sin^2\theta_{23} - 0.5| \gtrsim 0.085$. If
1723atmospheric data is combined with the LBL data from SPL or T2HK there
1724is sensitivity to the octant for $|\sin^2\theta_{23} - 0.5| \gtrsim
17250.05$. The improvement of the octant sensitivity with respect to
1726previous analyses~\cite{Huber:2005ep,Gonzalez-Garcia:2004cu} follows
1727from changes in the analysis of sub-GeV atmospheric events, where now
1728three bins in lepton momentum are used instead of one. Note that since
1729in Fig.~\ref{fig:octant} we have assumed a true value of $\theta_{13}
1730= 0$, combining the \BB\ with ATM does not improve the sensitivity
1731with respect to atmospheric data alone.
1732
1733%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1734\section{Summary}
1735%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1736\label{sec:conclusions}
1737
1738In this work we have studied the physics potential of the
1739CERN--MEMPHYS neutrino oscillation project. We consider a Beta Beam
1740(\BB) with $\gamma = 100$ for the stored ions, where existing
1741facilities at CERN can be used optimally, and a Super Beam based on an
1742optimized Super Proton Linac (SPL) with a beam energy of 3.5~GeV and
17434~MW power. As target we assume the MEMPHYS detector, a 440~kt water
1744\v{C}erenkov detector at Fr\'ejus, at a distance of 130~km from
1745CERN. The main characteristics of the experiments are summarized in
1746Tab.~\ref{tab:setups}.
1747%
1748The adopted neutrino fluxes are based on realistic calculations of ion
1749production and storage for the \BB, and a full simulation of the beam
1750line (particle production and decay of secondaries) for SPL. Special
1751care has be given to the issue of backgrounds, which we include by
1752means of detailed event simulations and applying Super-Kamiokande particle
1753identification algorithms.
1754
1755The physics potential of the \BB\ and SPL experiments in terms of
1756$\theta_{13}$ discovery reach and sensitivity to CP violation has been
1757addressed where parameter degeneracies are fully taken into account.
1758The main results on these performance indicators are summarized in
1759Figs.~\ref{fig:th13} and \ref{fig:CPV}.
1760%
1761We obtain a guaranteed discovery reach of $\stheta \simeq 5\times
176210^{-3}$ at $3\sigma$, irrespective of the actual value of \delCP. For
1763certain values of \delCP\ the sensitivity is significantly improved,
1764and for \BB\ (SPL) discovery limits around $\stheta \simeq 3\,(10)
1765\times 10^{-4}$ are possible for a large fraction of all possible
1766values of \delCP.
1767%
1768Maximal CP violation (for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$)
1769can be discovered at $3\sigma$ down to $\stheta \simeq 2\, (9)\times
177010^{-4}$ for \BB\ (SPL), whereas the best sensitivity to CP violation
1771is obtained for $\stheta \sim 10^{-2}$: For $\stheta = 10^{-2}$ CP
1772violation can be established at $3\sigma$ for 78\% (73\%) of all
1773possible true values of \delCP\ for \BB\ (SPL).
1774%
1775We stress that the \BB\ performance in general depends crucially on
1776the number of ion decays per year.
1777%
1778The impact of the value of systematical uncertainties on signal and
1779background on our results is discussed.
1780%
1781The \BB\ and SPL sensitivities are compared to the ones of the
1782phase~II of the T2K experiment in Japan (T2HK), which is a competing
1783proposal of similar size and timescale. In general we obtain rather
1784similar sensitivities for T2HK and SPL, and hence the CERN--MEMPHYS
1785experiments provide a viable alternative to T2HK. We find that \BB\
1786and SPL are less sensitive to systematical errors, whereas the
1787sensitivity of T2HK crucially depends on the systematical error on the
1788background.\footnote{Let us note that in the present study we have not
1789considered the recent ``T2KK'' proposal~\cite{Ishitsuka:2005qi}, where
1790one half of the Hyper-K detector mass is at Kamioka and the second
1791half in Korea. For such a setup our results do not apply and
1792especially the conclusion on systematical errors may be different.}
1793
1794Assuming that both \BB\ and SPL experiments are available, we point
1795out that one can benefit from the different oscillation channels
1796$\nu_e\to\nu_\mu$ for \BB\ and $\nu_\mu\to\nu_e$ for SPL, since by the
1797combination of these channels the time intensive antineutrino
1798measurements can be avoided. We show that 5 years of neutrino data from
1799\BB\ and SPL lead to similar results as 2 years of neutrino plus 8
1800years of antineutrino data from T2HK.
1801%
1802Furthermore, we discuss the use of atmospheric neutrinos in the
1803MEMPHYS detector to resolve parameter degeneracies in the
1804long-baseline data. This effect leads to a sensitivity to the neutrino
1805mass hierarchy at $2\sigma$~CL for $\sin^22\theta_{13} \gtrsim
18060.025$ for \BB\ and SPL, although these experiments alone (without
1807atmospheric data) have no sensitivity at all. The optimal hierarchy
1808sensitivity is obtained from combining \BB+SPL+atmospheric data.
1809Furthermore, the combination of atmospheric data with a Super Beam
1810provides a possibility to determine the octant of $\theta_{23}$.
1811
1812To conclude, we have shown that the CERN--MEMPHYS neutrino oscillation
1813project based on a Beta Beam and/or a Super Beam plus a mega ton scale
1814water \v{C}erenkov detector offers interesting and competitive physics
1815possibilities and is worth to be considered as a serious option in
1816the worldwide process of identifying future high precision neutrino
1817oscillation facilities~\cite{ISSpage}.
1818
1819\subsection*{Acknowledgment}
1820
1821We thank J.~Argyriades for communication on the Super-K atmospheric
1822neutrino analysis, A.~Cazes for his work on the SPL simulation, and
1823P.~Huber for his patience in answering questions concerning the use of
1824GLoBES. Furthermore, we thank D.~Casper for the help in installing and
1825running Nuance, and E.~Couce for discussions about the \BB\
1826backgrounds.  T.S.\ is supported by the $6^\mathrm{th}$~Framework
1827Program of the European Community under a Marie Curie Intra-European
1828Fellowship.
1829
1830
1831%\newpage
1832\begin{thebibliography}{99}
1833
1834\bibitem{solar}
1835  B.~T.~Cleveland {\it et al.},
1836  Astrophys.\ J.\  {\bf 496} (1998) 505;
1837  %%CITATION = ASJOA,496,505;%%
1838%
1839  J.N.~Abdurashitov {\it et al.}  [SAGE],
1840  J.\ Exp.\ Theor.\ Phys.\  {\bf 95} (2002) 181
1841  % [Zh.\ Eksp.\ Teor.\ Fiz.\  {\bf 122} (2002) 211].
1842  [astro-ph/0204245];
1843  %%CITATION = ASTRO-PH 0204245;%%
1844%
1845  T. Kirsten {\it et al.} [GALLEX and GNO],
1846  Nucl. Phys. B (Proc. Suppl.)  {\bf 118} (2003) 33;
1847%
1848  S.~Fukuda {\it et al.} [Super-Kamiokande],
1849  %``Determination of solar neutrino
1850  % oscillation parameters using 1496 days  of Super-Kamiokande-I data,''
1851  Phys. Lett. {\bf B539} (2002) 179;
1852%
1853%\bibitem{ahmad:2002ka}
1854  Q.R. Ahmad {\em et~al.} [SNO],
1855  Phys. Rev. Lett. {\bf 89}, 011302 (2002)
1856  [nucl-ex/0204009];
1857  %%CITATION = NUCL-EX 0204009;%%
1858%
1859%\bibitem{Aharmim:2005gt}
1860  B.~Aharmim {\it et al.}  [SNO],
1861  %``Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar
1862  %neutrinos from the 391-day salt phase SNO data set,''
1863  Phys.\ Rev.\ C {\bf 72} (2005) 055502
1864  [nucl-ex/0502021].
1865  %%CITATION = NUCL-EX 0502021;%%
1866
1867\bibitem{Fukuda:1998mi}
1868  Y.~Fukuda {\it et al.} [Super-Kamiokande Coll.],
1869  %``Evidence for oscillation of atmospheric neutrinos,''
1870  Phys.\ Rev.\ Lett.\  {\bf 81} (1998) 1562
1871  [hep-ex/9807003].
1872  %%CITATION = HEP-EX 9807003;%%
1873
1874\bibitem{Ashie:2005ik}
1875  Super-Kamiokande Coll.,
1876  Y.~Ashie {\it et al.}%[Super-Kamiokande Collaboration],
1877  %``A measurement of atmospheric neutrino oscillation parameters by
1878  %Super-Kamiokande I,''
1879  Phys.\ Rev.\ D {\bf 71}, 112005 (2005)
1880  [hep-ex/0501064];
1881  %%CITATION = HEP-EX 0501064;%%
1882%
1883%\bibitem{Hosaka:2006zd}
1884  J.~Hosaka {\it et al.},% [Super-Kamiokande Collaboration],
1885  %``Three flavor neutrino oscillation analysis of atmospheric neutrinos in
1886  %Super-Kamiokande,''
1887  Phys.\ Rev.\ D {\bf 74}, 032002 (2006)
1888  [hep-ex/0604011].
1889  %%CITATION = HEP-EX 0604011;%%
1890
1891
1892\bibitem{Araki:2004mb}
1893  T.~Araki {\it et al.} [KamLAND Coll.],
1894  %``Measurement of neutrino oscillation with KamLAND: Evidence of spectral
1895  %distortion,''
1896  Phys.\ Rev.\ Lett.\  {\bf 94}, 081801 (2005)
1897  [hep-ex/0406035].
1898  %%CITATION = HEP-EX 0406035;%%
1899
1900
1901\bibitem{Aliu:2004sq}
1902  E.~Aliu {\it et al.}  [K2K Coll.],
1903  %``Evidence for muon neutrino oscillation in an accelerator-based
1904  %experiment,''
1905  Phys.\ Rev.\ Lett.\  {\bf 94}, 081802 (2005)
1906  [hep-ex/0411038].
1907  %%CITATION = HEP-EX 0411038;%%
1908
1909\bibitem{MINOS} 
1910  D.G.~Micheal {\it et al.} [MINOS Coll.],
1911  %''Observation of muon neutrino disappearance with the {MINOS} detectors and
1912  %the {NuMI} neutrino beam,''
1913  hep-ex/0607088.
1914
1915\bibitem{OPERA}
1916  D. Autiero [OPERA Coll.],
1917  Nucl.\ Phys.\ B (Proc. Suppl.) {\bf 143}, 257 (2005);
1918  M. Guler  \etal, \textit{Experiment proposal},
1919  CERN/SPSC 2000-028 SPSC/P318 LNGS P25/2000.
1920
1921\bibitem{CNGS}
1922  G. Acquistapace \etal, CERN-98-02.
1923
1924\bibitem{LSND}
1925  A. Athanassopoulos \etal, Phys.\ Rev.\ Lett.\ {\bf 81}, 1774  (1998);
1926  A. Aguilar \etal, Phys.\ Rev.\ D {\bf 64}, 112007 (2001).
1927
1928\bibitem{MINIBOONE}
1929  I. Stancu \etal, FERMILAB-TM-2207.
1930
1931\bibitem{FOGLILISI05}
1932  G.~L.~Fogli, E.~Lisi, A.~Marrone and A.~Palazzo,
1933  %``Global analysis of three-flavor neutrino masses and mixings,''
1934  Prog.\ Part.\ Nucl.\ Phys.\  {\bf 57}, 742 (2006)
1935  [hep-ph/0506083].
1936  %%CITATION = HEP-PH 0506083;%%
1937
1938\bibitem{Maltoni:2004ei}
1939  M.~Maltoni, T.~Schwetz, M.~A.~Tortola and J.~W.~F.~Valle,
1940  %``Status of global fits to neutrino oscillations,''
1941  New J.\ Phys.\  {\bf 6}, 122 (2004)
1942  [hep-ph/0405172];
1943  %%CITATION = HEP-PH 0405172;%%
1944%
1945%\bibitem{Schwetz:2005jr}
1946  T.~Schwetz,
1947  %``Neutrino oscillations: Current status and prospects,''
1948  Acta Phys.\ Polon.\ B {\bf 36}, 3203 (2005)
1949  [hep-ph/0510331].
1950  %%CITATION = HEP-PH 0510331;%%
1951
1952\bibitem{PMNS}
1953  B.~Pontecorvo, Sov.\ Phys.--JETP {\bf 6}, 429 (1957)
1954  [Zh.\ Eksp.\ Teor.\ Fiz.\ \textbf{33}, 549 (1957)];
1955  Z.~Maki, M.~Nakagawa and S.~Sakata,
1956  Prog.\ Theor.\ Phys.\ \textbf{28}, 870 (1962);
1957  B.~Pontecorvo, Sov.\ Phys.--JETP \textbf{26}, 984 (1968)
1958  [Zh. Eksp. Teor. Fiz. \textbf{53}, 1717 (1967)];
1959  V.~N.~Gribov and B.~Pontecorvo,
1960  Phys.\ Lett.\ B \textbf{28}, 493 (1969).
1961
1962\bibitem{CHOOZ}
1963  Chooz Collaboration,
1964  M. Apollonio \etal, Phys.\ Lett.\ B {\bf 466}, 415 (1999);
1965%\bibitem{Apollonio:2002gd}
1966  M.~Apollonio {\it et al.},
1967  %``Search for neutrino oscillations on a long base-line at the CHOOZ  nuclear
1968  %power station,''
1969  Eur.\ Phys.\ J.\ C {\bf 27}, 331 (2003)
1970  [hep-ex/0301017].
1971  %%CITATION = HEP-EX 0301017;%%
1972
1973\bibitem{Wpaper}
1974  K.~Anderson \etal, White paper report on using nuclear
1975  reactors to search for a value of $\theta_{13}$,
1976  hep-ex/0402041;
1977%
1978  F.~Ardellier \etal, Letter of intent for Double-Chooz,
1979  hep-ex/0405032.
1980
1981\bibitem{T2K}
1982  Y.~Itow {\it et al.},
1983  The JHF-Kamioka neutrino project,
1984  hep-ex/0106019;
1985  %%CITATION = HEP-EX 0106019;%%
1986%
1987%\bibitem{Kobayashi:2005hu}
1988  T.~Kobayashi,
1989  %``Super beams,''
1990  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 303.
1991  %%CITATION = NUPHZ,143,303;%%
1992
1993\bibitem{Ayres:2004js}
1994  D.~S.~Ayres {\it et al.} [NOvA Coll.],
1995  %``NOvA proposal to build a 30-kiloton off-axis detector to study neutrino
1996  %oscillations in the Fermilab NuMI beamline,''
1997  hep-ex/0503053.
1998  %%CITATION = HEP-EX 0503053;%%
1999
2000\bibitem{Huber:2003pm}
2001  P.~Huber, M.~Lindner, T.~Schwetz and W.~Winter,
2002  %``Reactor neutrino experiments compared to superbeams,''
2003  Nucl.\ Phys.\ B {\bf 665} (2003) 487
2004  [hep-ph/0303232];
2005  %%CITATION = HEP-PH 0303232;%%
2006%
2007%\bibitem{Huber:2004ug}
2008  P.~Huber, M.~Lindner, M.~Rolinec, T.~Schwetz and W.~Winter,
2009  %``Prospects of accelerator and reactor neutrino oscillation experiments  for
2010  %the coming ten years,''
2011  Phys.\ Rev.\ D {\bf 70} (2004) 073014
2012  [hep-ph/0403068].
2013  %%CITATION = HEP-PH 0403068;%%
2014
2015\bibitem{Albrow:2005kw}
2016  M.~G.~Albrow {\it et al.},
2017  Physics at a Fermilab proton driver,
2018  hep-ex/0509019.
2019  %%CITATION = HEP-EX 0509019;%%
2020
2021\bibitem{SPL}
2022  M.~Baylac {\it et al.},
2023  Conceptual design of the SPL II: A high-power superconducting H- linac
2024  at CERN, CERN-2006-006.
2025
2026\bibitem{BNLHS}
2027%\bibitem{Diwan:2003bp}
2028  M.~V.~Diwan {\it et al.},
2029  %``Very long baseline neutrino oscillation experiments for precise
2030  %measurements of mixing parameters and CP violating effects,''
2031  Phys.\ Rev.\ D {\bf 68} (2003) 012002
2032  [hep-ph/0303081].
2033  %%CITATION = HEP-PH 0303081;%%
2034
2035\bibitem{zucchelli}
2036%\bibitem{Zucchelli:2002sa}
2037  P.~Zucchelli,
2038  %``A novel concept for a anti-nu/e / nu/e neutrino factory: The Beta Beam,''
2039  Phys.\ Lett.\ B {\bf 532} (2002) 166.
2040  %%CITATION = PHLTA,B532,166;%%
2041
2042\bibitem{Albright:2004iw}
2043  C.~Albright {\it et al.}  [Neutrino Factory/Muon Collider Coll.],
2044  %``The neutrino factory and Beta Beam experiments and development,''
2045  physics/0411123.
2046  %%CITATION = PHYS-ICS 0411123;%%
2047
2048\bibitem{Blondel:2004ae}
2049  A.~Blondel {\it et al.},
2050  ECFA/CERN studies of a European neutrino factory complex,
2051  CERN-2004-002
2052
2053\bibitem{Campagne:2004wt}
2054  J.~E.~Campagne and A.~Cazes,
2055  %``The theta(13) and delta(CP) sensitivities of the SPL-Frejus project
2056  %revisited,''
2057  Eur.\ Phys.\ J.\ C {\bf 45} (2006) 643
2058  [hep-ex/0411062].
2059  %%CITATION = HEP-EX 0411062;%%
2060
2061\bibitem{Mezzetto:2003ub}
2062  M.~Mezzetto,
2063  %``Physics reach of the beta beam,''
2064  J.\ Phys.\ G {\bf 29} (2003) 1771
2065  [hep-ex/0302007];
2066  %%CITATION = HEP-EX 0302007;%%
2067%
2068  J.~Bouchez, M.~Lindroos, M.~Mezzetto,
2069  %``Beta Beams: Present design and expected performances,''
2070  AIP Conf.\ Proc.\  {\bf 721} (2004) 37
2071  [hep-ex/0310059].
2072  %%CITATION = HEP-EX 0310059;%%
2073
2074\bibitem{memphys}
2075  A.~de Bellefon {\it et al.},
2076  MEMPHYS: A large scale water \v{C}erenkov detector
2077  at Fr\'ejus, Contribution to the CERN strategic committee,
2078  hep-ex/0607026,\\
2079  \verb!http://apc-p7.org/APC_CS/Experiences/MEMPHYS/!
2080
2081\bibitem{UNO} 
2082  C.~K.~Jung,
2083  Feasibility of a next generation underground water Cherenkov detector:
2084  UNO, hep-ex/0005046.
2085  %%CITATION = HEP-EX 0005046;%%
2086
2087\bibitem{Nakamura:2003hk}
2088  K.~Nakamura,
2089  %``Hyper-Kamiokande: A next generation water Cherenkov detector,''
2090  Int.\ J.\ Mod.\ Phys.\ A {\bf 18} (2003) 4053.
2091  %%CITATION = IMPAE,A18,4053;%%
2092
2093\bibitem{Huber:2005ep}
2094  P.~Huber, M.~Maltoni, T.~Schwetz,
2095  %``Resolving parameter degeneracies in long-baseline experiments by
2096  %atmospheric neutrino data,''
2097  Phys.\ Rev.\ D {\bf 71} (2005) 053006
2098  [hep-ph/0501037].
2099  %%CITATION = HEP-PH 0501037;%%
2100
2101\bibitem{Globes}
2102  P.~Huber, M.~Lindner and W.~Winter,
2103  %``Simulation of long-baseline neutrino oscillation experiments with
2104  %GLoBES,''
2105  Comput.\ Phys.\ Commun.\  {\bf 167} (2005) 195
2106  [hep-ph/0407333],
2107  \verb!http://www.ph.tum.de/~globes!
2108
2109\bibitem{Huber:2002mx}
2110  P.~Huber, M.~Lindner and W.~Winter,
2111  %``Superbeams versus neutrino factories,''
2112  Nucl.\ Phys.\ B {\bf 645} (2002) 3
2113  [hep-ph/0204352].
2114  %%CITATION = HEP-PH 0204352;%%
2115
2116\bibitem{Nuance}
2117  NUANCE event generator (v3),
2118  \verb!http://nuint.ps.uci.edu/nuance/!,
2119  D.~Casper,
2120  %``The nuance neutrino physics simulation, and the future,''
2121  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 112} (2002) 161
2122  [hep-ph/0208030].
2123
2124\bibitem{ISSpage}
2125  Webpage of the International Scoping Study physics working group:\\
2126  \verb!http://www.hep.ph.ic.ac.uk/iss/wg1-phys-phen/index.html!
2127
2128% BB %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2129
2130\bibitem{MyNufact04}
2131  M.~Mezzetto,
2132  %``SPL and Beta Beams to the Frejus,''
2133  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 149} (2005) 179.
2134
2135\bibitem{Donini:2004hu}
2136  A.~Donini, E.~Fernandez-Martinez, P.~Migliozzi, S.~Rigolin and L.~Scotto Lavina,
2137  %``Study of the eightfold degeneracy with a standard beta-beam and a
2138  %super-beam facility,''
2139  Nucl.\ Phys.\ B {\bf 710}, 402 (2005)
2140  [hep-ph/0406132].
2141  %%CITATION = HEP-PH 0406132;%%
2142
2143\bibitem{JJHigh2} 
2144%\bibitem{Burguet-Castell:2005pa}
2145  J.~Burguet-Castell, D.~Casper, E.~Couce, J.~J.~Gomez-Cadenas and P.~Hernandez,
2146  %``Optimal beta-beam at the CERN-SPS,''
2147  Nucl.\ Phys.\ B {\bf 725} (2005) 306
2148  [hep-ph/0503021].
2149  %%CITATION = HEP-PH 0503021;%%
2150
2151\bibitem{LindnerBB}
2152%\bibitem{Huber:2005jk}
2153  P.~Huber, M.~Lindner, M.~Rolinec and W.~Winter,
2154  %``Physics and optimization of beta-beams: From low to very high gamma,''
2155  Phys.\ Rev.\ D {\bf 73}, 053002 (2006)
2156  [hep-ph/0506237].
2157  %%CITATION = HEP-PH 0506237;%%
2158
2159\bibitem{JJHigh1}
2160 J.~Burguet-Castell, D.~Casper, J.~J.~Gomez-Cadenas, P.~Hernandez and F.~Sanchez,
2161 Nucl.\ Phys.\ B {\bf 695} (2004) 217
2162 [hep-ph/0312068].
2163
2164\bibitem{Terranova}
2165  F.~Terranova, A.~Marotta, P.~Migliozzi and M.~Spinetti,
2166  %``High energy beta beams without massive detectors,''
2167  Eur.\ Phys.\ J.\ C {\bf 38}, 69 (2004)
2168  [hep-ph/0405081].
2169  %%CITATION = HEP-PH 0405081;%%
2170
2171\bibitem{BB-Reviews}
2172  M.~Mezzetto, %``Beta Beams,''
2173  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 309
2174  [hep-ex/0410083];
2175%
2176  C.~Volpe,
2177  %``Topical review on 'beta-beams',''
2178  hep-ph/0605033.
2179
2180\bibitem{Volpe}
2181  C.~Volpe,
2182  %``What about a Beta Beam facility for low energy neutrinos?,''
2183  J.\ Phys.\ G {\bf 30} (2004) L1
2184  [hep-ph/0303222].
2185
2186\bibitem{Lindroos}
2187%\bibitem{Autin:2002ms}
2188  B.~Autin {\it et al.},
2189  %``The acceleration and storage of radioactive ions for a neutrino  factory,''
2190  J.\ Phys.\ G {\bf 29}, 1785 (2003)
2191  [physics/0306106];
2192  %%CITATION = PHYS-ICS 0306106;%%
2193%
2194  M.~Benedikt, S.~Hancock and M.~Lindroos,
2195  % ``Baseline Design for a Beta-Beam Neutrino Factory'',
2196  Proceedings of EPAC, 2004,
2197  \verb!http://accelconf.web.cern.ch/AccelConf/e04!;
2198%
2199  M.~Lindroos, EURISOL DS/TASK12/TN-05-02.
2200
2201\bibitem{Eurisol}
2202  Eurisol Beta Beam webpage: \verb!http://beta-beam.web.cern.ch/beta-beam/!.
2203
2204\bibitem{Lindroos-Optimization}
2205  M.~Benedikt, A.~Fabich, S.~Hancock and M.~Lindroos,
2206  %``Optimization Of The Beta-Beam Baseline,''
2207  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 211.
2208
2209\bibitem{MezzettoNuFact05}
2210  M.~Mezzetto,
2211  %``Physics potential of the gamma = 100,100 beta beam,''
2212  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 214
2213  [hep-ex/0511005].
2214
2215% SPL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2216
2217\bibitem{Neugen}
2218  The NEUGEN neutrino event generator,
2219  \verb!http://minos.phy.tufts.edu/gallag/neugen/!.
2220
2221\bibitem{FLUKA}
2222A.~Fasso \etal, Proceedings of the MonteCarlo 2000 conference,
2223Lisbon, October 26 2000,
2224A.~Kling \etal\ (eds.), Springer-Verlag Berlin (2001), 159-164 and 955-960.
2225
2226\bibitem{GEANT}
2227Application Software group, Computing and Network Division \etal,
2228GEANT Description and Simulation Tool, CERN Geneva, Switzerland
2229
2230\bibitem{HARP-MINERVA}
2231  C. Catanesi \etal\ [HARP Coll.], CERN-SPSC 2002/019;
2232%
2233%\bibitem{Drakoulakos:2004gn}
2234  D.~Drakoulakos {\it et al.}  [Minerva Coll.],
2235  %``Proposal to perform a high-statistics neutrino scattering experiment  using
2236  %a fine-grained detector in the NuMI beam,''
2237  hep-ex/0405002.
2238  %%CITATION = HEP-EX 0405002;%%
2239
2240\bibitem{Mezzetto:2003mm}
2241  M.~Mezzetto,
2242  %``Physics potential of the SPL super beam,''
2243  J.\ Phys.\ G {\bf 29}, 1781 (2003)
2244  [hep-ex/0302005].
2245  %%CITATION = HEP-EX 0302005;%%
2246
2247% ATM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2248
2249\bibitem{Honda:2004yz}
2250  M.~Honda, T.~Kajita, K.~Kasahara and S.~Midorikawa,
2251  %``A new calculation of the atmospheric neutrino flux in a 3-dimensional
2252  %scheme,''
2253  Phys.\ Rev.\ D {\bf 70} (2004) 043008
2254  [astro-ph/0404457].
2255  %%CITATION = ASTRO-PH 0404457;%%
2256
2257\bibitem{Lipari:1991ut}
2258  P.~Lipari and T.~Stanev,
2259  %``Propagation of multi - TeV muons,''
2260  Phys.\ Rev.\ D {\bf 44} (1991) 3543.
2261  %%CITATION = PHRVA,D44,3543;%%
2262
2263\bibitem{Gonzalez-Garcia:2004wg}
2264  M.~C.~Gonzalez-Garcia and M.~Maltoni,
2265  %``Atmospheric neutrino oscillations and new physics,''
2266  Phys.\ Rev.\ D {\bf 70} (2004) 033010
2267  [hep-ph/0404085].
2268  %%CITATION = HEP-PH 0404085;%%
2269
2270% DEGENERACIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2271
2272\bibitem{Burguet-Castell:2001ez}
2273  J.~Burguet-Castell, M.~B.~Gavela, J.~J.~Gomez-Cadenas, P.~Hernandez and O.~Mena,
2274  %``On the measurement of leptonic CP violation,''
2275  Nucl.\ Phys.\ B {\bf 608} (2001) 301
2276  [hep-ph/0103258].
2277  %%CITATION = HEP-PH 0103258;%%
2278
2279\bibitem{Minakata:2001qm}
2280  H.~Minakata and H.~Nunokawa,
2281  %``Exploring neutrino mixing with low energy superbeams,''
2282  JHEP {\bf 0110}, 001 (2001)
2283  [hep-ph/0108085].
2284  %%CITATION = HEP-PH 0108085;%%
2285
2286\bibitem{Fogli:1996pv}
2287  G.~L.~Fogli and E.~Lisi,
2288  %``Tests of three-flavor mixing in long-baseline neutrino oscillation
2289  %experiments,''
2290  Phys.\ Rev.\ D {\bf 54}, 3667 (1996)
2291  [hep-ph/9604415].
2292  %%CITATION = HEP-PH 9604415;%%
2293
2294\bibitem{Barger:2001yr}
2295  V.~Barger, D.~Marfatia and K.~Whisnant,
2296  %``Breaking eight-fold degeneracies in neutrino CP violation, mixing, and
2297  %mass hierarchy,''
2298  Phys.\ Rev.\ D {\bf 65}, 073023 (2002)
2299  [hep-ph/0112119].
2300  %%CITATION = HEP-PH 0112119;%%
2301
2302\bibitem{Yasuda:2004gu}
2303  O.~Yasuda,
2304  %``New plots and parameter degeneracies in neutrino oscillations,''
2305  New J.\ Phys.\  {\bf 6}, 83 (2004)
2306  [hep-ph/0405005].
2307  %%CITATION = HEP-PH 0405005;%%
2308
2309\bibitem{Ishitsuka:2005qi}
2310  M.~Ishitsuka, T.~Kajita, H.~Minakata and H.~Nunokawa,
2311  %``Resolving neutrino mass hierarchy and CP degeneracy by two identical
2312  %detectors with different baselines,''
2313  Phys.\ Rev.\ D {\bf 72} (2005) 033003
2314  [hep-ph/0504026].
2315  %%CITATION = HEP-PH 0504026;%%
2316
2317\bibitem{Antusch:2004yx}
2318  S.~Antusch, P.~Huber, J.~Kersten, T.~Schwetz and W.~Winter,
2319  %``Is there maximal mixing in the lepton sector?,''
2320  Phys.\ Rev.\ D {\bf 70}, 097302 (2004)
2321  [hep-ph/0404268].
2322  %%CITATION = HEP-PH 0404268;%%
2323
2324\bibitem{Minakata:2004pg}
2325  H.~Minakata, M.~Sonoyama and H.~Sugiyama,
2326  %``Determination of theta(23) in long-baseline neutrino oscillation
2327  %experiments with three-flavor mixing effects,''
2328  Phys.\ Rev.\ D {\bf 70} (2004) 113012
2329  [hep-ph/0406073].
2330  %%CITATION = HEP-PH 0406073;%%
2331
2332\bibitem{Donini:2005db}
2333  A.~Donini, E.~Fernandez-Martinez, D.~Meloni and S.~Rigolin,
2334  %``nu/mu disappearance at the SPL, T2K-I, NOnuA and the neutrino factory,''
2335  Nucl.\ Phys.\ B {\bf 743}, 41 (2006)
2336  [hep-ph/0512038].
2337  %%CITATION = HEP-PH 0512038;%%
2338
2339\bibitem{Peres:2003wd}
2340  O.L.G.~Peres, A.Y.~Smirnov,
2341  %``Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and
2342  %CP-violation,''
2343  Nucl.\ Phys.\ B {\bf 680} (2004) 479
2344  [hep-ph/0309312].
2345  %%CITATION = HEP-PH 0309312;%%
2346
2347\bibitem{Gonzalez-Garcia:2004cu}
2348  M.C.~Gonzalez-Garcia, M.~Maltoni, A.Y. Smirnov,
2349  %``Measuring the deviation of the 2-3 lepton mixing from maximal with
2350  %atmospheric neutrinos,''
2351  Phys.\ Rev.\ D {\bf 70} (2004) 093005
2352  [hep-ph/0408170].
2353  %%CITATION = HEP-PH 0408170;%%
2354
2355\bibitem{Petcov:1998su}
2356  S.~T.~Petcov,
2357  %``Diffractive-like (or parametric-resonance-like?) enhancement of the  earth
2358  %(day-night) effect for solar neutrinos crossing the earth core,''
2359  Phys.\ Lett.\ B {\bf 434} (1998) 321
2360  [hep-ph/9805262];
2361  %%CITATION = HEP-PH 9805262;%%
2362%
2363%\bibitem{Chizhov:1998ug}
2364  M.~Chizhov, M.~Maris and S.~T.~Petcov,
2365  %``On the oscillation length resonance in the transitions of solar and
2366  %atmospheric neutrinos crossing the earth core,''
2367  hep-ph/9810501;
2368  %%CITATION = HEP-PH 9810501;%%
2369%
2370%\bibitem{Chizhov:1999az}
2371  M.~V.~Chizhov and S.~T.~Petcov,
2372  %``New conditions for a total neutrino conversion in a medium,''
2373  Phys.\ Rev.\ Lett.\  {\bf 83} (1999) 1096
2374  [hep-ph/9903399].
2375  %%CITATION = HEP-PH 9903399;%%
2376
2377\bibitem{Akhmedov:1998ui}
2378  E.~K.~Akhmedov,
2379  %``Parametric resonance of neutrino oscillations and passage of solar and
2380  %atmospheric neutrinos through the earth,''
2381  Nucl.\ Phys.\ B {\bf 538}, 25 (1999)
2382  [hep-ph/9805272];
2383  %%CITATION = HEP-PH 9805272;%%
2384%
2385%\bibitem{Akhmedov:1998xq}
2386  E.~K.~Akhmedov, A.~Dighe, P.~Lipari and A.~Y.~Smirnov,
2387  %``Atmospheric neutrinos at Super-Kamiokande and parametric resonance in
2388  %neutrino oscillations,''
2389  Nucl.\ Phys.\ B {\bf 542}, 3 (1999)
2390  [hep-ph/9808270].
2391  %%CITATION = HEP-PH 9808270;%%
2392
2393\bibitem{Bernabeu:2003yp}
2394  J.~Bernabeu, S.~Palomares-Ruiz and S.~T.~Petcov,
2395  %``Atmospheric neutrino oscillations, theta(13) and neutrino mass
2396  %hierarchy,''
2397  Nucl.\ Phys.\ B {\bf 669}, 255 (2003)
2398  [hep-ph/0305152].
2399  %%CITATION = HEP-PH 0305152;%%
2400
2401\bibitem{Kim:1998bv}
2402  C.~W.~Kim and U.~W.~Lee,
2403  %``Comment on the possible electron-neutrino excess in the  Super-Kamiokande
2404  %atmospheric neutrino experiment,''
2405  Phys.\ Lett.\ B {\bf 444}, 204 (1998)
2406  [hep-ph/9809491].
2407  %%CITATION = HEP-PH 9809491;%%
2408
2409\bibitem{Kajita}
2410  T.~Kajita, Talk at NNN05, 7--9 April 2005, Aussois, Savoie, France,\\
2411  \verb!http://nnn05.in2p3.fr/!
2412
2413\bibitem{Petcov:2005rv}
2414  S.~T.~Petcov and T.~Schwetz,
2415  %``Determining the neutrino mass hierarchy with atmospheric neutrinos,''
2416  Nucl.\ Phys.\ B {\bf 740}, 1 (2006)
2417  [hep-ph/0511277].
2418  %%CITATION = HEP-PH 0511277;%%
2419
2420\bibitem{MenaRequejo:2005hn}
2421  O.~Mena-Requejo, S.~Palomares-Ruiz and S.~Pascoli,
2422  %``Super-NOvA: A long-baseline neutrino experiment with two off-axis
2423  %detectors,''
2424  Phys.\ Rev.\ D {\bf 72} (2005) 053002
2425  [hep-ph/0504015];
2426  %%CITATION = HEP-PH 0504015;%%
2427%
2428%\bibitem{Mena:2005ri}
2429  %O.~Mena, S.~Palomares-Ruiz and S.~Pascoli,
2430  %``Determining the neutrino mass hierarchy and CP violation in NOnuA with a
2431  %second off-axis detector,''
2432  Phys.\ Rev.\ D {\bf 73} (2006) 073007
2433  [hep-ph/0510182].
2434  %%CITATION = HEP-PH 0510182;%%
2435
2436\bibitem{Hagiwara:2005pe}
2437  K.~Hagiwara, N.~Okamura and K.~Senda,
2438  %``Solving the neutrino parameter degeneracy by measuring the T2K off-axis
2439  %beam in Korea,''
2440  Phys.\ Lett.\ B {\bf 637}, 266 (2006)
2441  [hep-ph/0504061].
2442  %%CITATION = HEP-PH 0504061;%%
2443
2444\bibitem{Kachelriess:2004vs}
2445  M.~Kachelriess and R.~Tomas,
2446  %``Identifying the neutrino mass hierarchy with supernova neutrinos,''
2447  hep-ph/0412100.
2448  %%CITATION = HEP-PH 0412100;%%
2449
2450\end{thebibliography}
2451\end{document}
2452%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2453
2454
Note: See TracBrowser for help on using the repository browser.