source: Backup NB/Talks/MEMPHYSetal/CERN-Frejus/TS-8sept06/CERN-MEMPHYS.tex

Last change on this file was 385, checked in by campagne, 16 years ago
File size: 99.6 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2\NeedsTeXFormat{LaTeX2e}
3\documentclass[12pt,a4paper]{article}
4
5%-- used packages ------------------------------------------------------
6
7\usepackage{cite}
8\usepackage{graphicx}
9\usepackage{epsfig}
10\usepackage{amssymb}
11\usepackage{amsmath}
12\usepackage{latexsym}
13
14
15%-- page parameters -------------------------------------------------
16
17\jot = 1.5ex
18\parskip 5pt plus 1pt
19%\parindent 0pt
20\evensidemargin -0.1in   \oddsidemargin  -0.1in
21\textwidth  6.5in       \textheight 9.4in
22\topmargin -.8cm        \headsep    1.0cm
23
24%-- command (re)definitions -----------------------------------------
25
26\newcommand{\capdef}{}
27%\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
28%       \caption[#1]{{\itshape #2}}}
29\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
30       \caption[#1]{{\footnotesize #2}}}
31\makeatletter
32\renewcommand{\fnum@table}{\textbf{\tablename~\thetable}}
33\renewcommand{\fnum@figure}{\textbf{\figurename~\thefigure}}
34\makeatother
35\def\ltap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$<$}\ }
36\def\gtap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$>$}\ }
37
38\newcounter{myenumi}
39\newcommand{\myitem}{\refstepcounter{myenumi}\item}
40\renewcommand{\themyenumi}{\roman{myenumi}}
41\newenvironment{mylist}{%
42        \setcounter{myenumi}{0}
43        \begin{list}{\textit{\themyenumi)}}{%
44        \setlength{\topsep}{0.2\baselineskip}%
45        \setlength{\partopsep}{-\topsep}%
46        \setlength{\itemsep}{\topsep}%
47        \setlength{\parsep}{0\baselineskip}%
48        \setlength{\leftmargin}{0em}%
49        \setlength{\listparindent}{\parindent}%
50        \setlength{\itemindent}{2.5em}%
51        \setlength{\labelwidth}{1.5em}%
52        \setlength{\labelsep}{0.75em}}}%
53{\end{list}}
54
55\newlength{\myem}
56\settowidth{\myem}{m}
57\newcommand{\sep}[1]{#1}
58\newcounter{mysubequation}[equation]
59\renewcommand{\themysubequation}{\alph{mysubequation}}
60\newcommand{\mytag}{\stepcounter{mysubequation}%
61\tag{\theequation\protect\sep{\themysubequation}}}
62\newcommand{\globallabel}[1]{\refstepcounter{equation}\label{#1}}
63
64\makeatletter
65\renewcommand{\section}{\@startsection{section}{1}{0em}{-\baselineskip}%
66{\baselineskip}{\normalfont\large\bfseries}}
67\renewcommand{\subsection}%
68{\@startsection{subsection}{2}{0em}{-0.7\baselineskip}%
69{0.7\baselineskip}{\normalfont\bfseries}}
70\makeatother
71
72
73%%%%%%%%%%%%%%%%%%%%%%%%
74% definitions
75%%%%%%%%%%%%%%%%%%%%%%%%
76\newcommand{\centre}[2]{\multispan{#1}{\hfill #2\hfill}}
77\newcommand{\etal}{\textit{et al.}}
78\newcommand{\stheta}{\ensuremath{\sin^22\theta_{13}}}
79\newcommand{\BB}{$\beta$B}
80\newcommand{\sigdm}{\ensuremath{{\rm sign}(\Delta m^2_{31})}}
81\newcommand{\delCP}{\ensuremath{\delta_{\rm CP}}}
82\newcommand{\thetatt}{\ensuremath{\theta_{23}}}
83
84\def\nubar{$\overline{\nu}\ $}
85\def\nue{\ensuremath{\nu_{e}}}
86\def\nubare{\ensuremath{\overline{\nu}_{e}}}
87\def\nubarecc{$\overline{\nu}_{e}^{CC}\ $}
88\def\numu{\ensuremath{\nu_{\mu}\ }}
89\def\nubarmu{\ensuremath{\overline{\nu}_{\mu}}}
90\def\nubarmucc{$\overline{\nu}_{\mu}^{CC}\ $}
91\def\nutau{\ensuremath{\nu_{\tau}\ }}
92\def\nubartau{\ensuremath{\overline{\nu}_{\tau}}}
93\newcommand{\nuenumu}{\ensuremath{\nue \rightarrow \numu\,}}
94\newcommand{\numunutau}{\ensuremath{\numu \rightarrow \nutau\,}}
95\newcommand{\nuenutau}{\ensuremath{\nue \rightarrow \nutau}}
96\newcommand{\nubarenubarmu}{\ensuremath{\overline{\nu}_e \rightarrow \overline{\nu}_\mu\,}}
97\newcommand{\nubarmunubare}{\ensuremath{\overline{\nu}_\mu \rightarrow \overline{\nu}_e\,}}
98\newcommand{\dmot}{\ensuremath{\Delta m^2_{12}\,}}
99
100\newcommand{\He}{\ensuremath{^6{\mathrm{He}}}}
101\newcommand{\Ne}{\ensuremath{^{18}{\mathrm{Ne}}}}
102\def\Li{^6{\mathrm{Li}}}
103\def\anue{\overline{{\mathrm\nu}}_{\mathrm e}}
104\def\anumu{\overline{{\mathrm\nu}}_{\mathrm \mu}}
105\newcommand{\thetaot}{\ensuremath{\theta_{13}}\,}
106\newcommand{\numunue}{\ensuremath{\nu_\mu \rightarrow \nu_e}}
107\newcommand{\nueovernumu}{\ensuremath{\nue/\numu}}
108
109
110
111\begin{document}
112%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
113%%%%                     Title-page                              %%%%
114%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115
116%\begin{titlepage}
117
118% the footnote symbols are only redefined for the title page !
119\renewcommand{\thefootnote}{\alph{footnote}}
120
121\begin{flushright}
122LAL-06-35\\
123IC/2006/011\\
124SISSA 16/2006/EP\\
125\end{flushright}
126
127\vspace*{1cm}
128
129\renewcommand{\thefootnote}{\fnsymbol{footnote}}
130\setcounter{footnote}{-1}
131
132{\begin{center} 
133{\Large\textbf{
134Physics potential of the CERN--MEMPHYS\\[2mm] 
135neutrino oscillation project}
136}
137\end{center}}
138
139\vspace*{.8cm}
140
141\begin{center} {\bf
142J.-E.\ Campagne$^a$,
143M.\ Maltoni$^b$,
144M.\ Mezzetto$^c$, and
145T.\ Schwetz$^d$}
146\end{center}
147
148{\it
149\begin{center}
150  $^a$Laboratoire de l'Acc\'el\'erateur Lin\'eaire,
151  IN2P3-CNRS and Universit\'e PARIS-SUD 11\\
152  Centre Scientifique d'Orsay-B\^at.\ 200-B.P.\ 34,
153  91898 Orsay Cedex, France\\[2mm]
154
155  $^b$International Centre for Theoretical Physics,
156  Strada Costiera 11, 31014 Trieste, Italy\\[2mm]
157
158  $^c$Istituto Nazionale Fisica Nucleare, Sezione di Padova,
159  Via Marzolo 8, 35100 Padova, Italy\\[2mm]
160%
161  $^d$Scuola Internazionale Superiore di Studi Avanzati,
162  Via Beirut 2--4, 34014 Trieste, Italy
163\end{center}}
164
165\vspace*{0.5cm}
166
167
168\begin{abstract}
169We consider the physics potential of CERN based neutrino oscillation
170experiments consisting of a Beta Beam (\BB) and a Super Beam (SPL)
171sending neutrinos to MEMPHYS, a 440~kt water \v{C}erenkov detector at
172Fr\'ejus, at a distance of 130~km from CERN. The $\theta_{13}$
173discovery reach and the sensitivity to CP violation are investigated,
174including a detailed discussion of parameter degeneracies and
175systematical errors. For SPL sensitivities similar to the ones of the
176phase~II of the T2K experiment (T2HK) are obtained, whereas the \BB\
177may reach significantly better sensitivities, depending on the
178achieved number of total ion decays.  The results for the
179CERN--MEMPHYS experiments are less affected by systematical
180uncertainties than T2HK.
181%
182We point out that by a combination of data from \BB\ and SPL a
183measurement with antineutrinos is not necessary and hence the same
184physics results can be obtained within about half of the measurement time
185compared to one single experiment.
186%
187Furthermore, it is shown how including data from atmospheric neutrinos in
188the MEMPHYS detector allows to resolve parameter degeneracies and, in
189particular, provides sensitivity to the neutrino mass hierarchy and
190the octant of $\theta_{23}$.
191%\pacs{14.60.Pq, 14.60.Lm}
192\end{abstract}
193
194\renewcommand{\thefootnote}{\arabic{footnote}}
195\setcounter{footnote}{0}
196
197\newpage
198%\tableofcontents
199
200%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
201\section{Introduction}
202%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
203
204In recent years strong evidence for neutrino oscillations has been
205obtained in solar~\cite{solar}, atmospheric~\cite{sk-atm},
206reactor~\cite{Araki:2004mb}, and accelerator~\cite{Aliu:2004sq}
207neutrino experiments. The very near future of long-baseline (LBL)
208neutrino experiments is devoted to the study of the oscillation
209mechanism in the range of $\Delta m^2_{31} \approx 2.4\times10^{-3} \:
210\mathrm{eV}^2$ indicated by atmospheric neutrinos using conventional
211$\nu_\mu$ beams.  Similar as in the K2K experiment in
212Japan~\cite{Aliu:2004sq}, the presently running MINOS experiment in
213the USA~\cite{MINOS} uses a low energy beam to measure $\Delta m^2_{31}$ by
214observing the $\nu_\mu\rightarrow\nu_\mu$ disappearance probability,
215while the forthcoming OPERA~\cite{OPERA} experiment will be able to
216detect $\nu_\tau$ appearance within the high energy CERN--Gran Sasso
217beam~\cite{CNGS}.
218%
219If we do not consider the LSND anomaly~\cite{LSND} that will be
220further studied soon by the MiniBooNE experiment~\cite{MINIBOONE}, all
221data can be accommodated within the three flavor scenario (see
222Refs.~\cite{FOGLILISI05,Maltoni:2004ei} for recent global analyses),
223and neutrino oscillations are described by two neutrino mass-squared
224differences ($\Delta m^2_{21}$ and $\Delta m^2_{31}$) and the $3\times
2253$ unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing
226matrix~\cite{PMNS} with three angles
227($\theta_{12}$,$\theta_{13}$,$\theta_{23}$) and one Dirac CP phase
228$\delCP$.
229
230Future tasks of neutrino physics are an improved sensitivity to the
231last unknown mixing angle, $\theta_{13}$, to explore the CP violation
232mechanism in the leptonic sector, and to determine the sign of $\Delta
233m^2_{31}$ which describes the type of the neutrino mass hierarchy
234(normal, $\Delta m^2_{31} > 0$ or inverted, $\Delta m^2_{31} < 0$).
235%
236The present upper bound on $\theta_{13}$ is dominated by the
237constraint from the Chooz reactor experiment~\cite{CHOOZ}. A global
238analysis of all data yields $\sin^22\theta_{13}<0.082$ at
23990\%~CL~\cite{Maltoni:2004ei}. A main purpose of upcoming reactor and
240accelerator experiments is to improve this bound or to reveal a finite
241value of $\theta_{13}$. In reactor experiments, one uses $\bar{\nu}_e$
242in disappearance mode and the sensitivity is increased with respect to
243present experiments by the use of a near detector close to the
244reactor~\cite{Wpaper}. In accelerator experiments, the first
245generation of so-called Super Beams with sub-mega watt proton drivers
246such as T2K (phase-I)~\cite{T2K} and NO$\nu$A~\cite{Ayres:2004js}, the
247appearance channel $\nu_\mu\to\nu_e$ is explored. This next generation
248of reactor and Super Beam experiments will reach sensitivities of the
249order of $\sin^22\theta_{13} \lesssim 0.01$ ($90\%$~CL) within a time
250scale of several years~\cite{Huber:2003pm}.
251%
252Beyond this medium term program, there are several projects on how to
253enter the high precision age in neutrino oscillations and to attack
254the ultimate goals like the discovery of leptonic CP violation or the
255determination of the neutrino mass hierarchy. In accelerator
256experiments, one can extend the Super Beam concept by moving to
257multi-mega watt proton drivers~\cite{T2K,Albrow:2005kw,SPL,BNLHS} or
258apply novel technologies, such as neutrino beams from decaying ions
259(so-called Beta Beams)~\cite{zucchelli,Albright:2004iw} or from
260decaying muons (so-called Neutrino
261Factories)~\cite{Albright:2004iw,Blondel:2004ae}.
262
263In this work we focus on possible future neutrino oscillation
264facilities hosted at CERN, namely a multi-mega watt Super Beam
265experiment based on a Super Proton Linac (SPL)~\cite{Campagne:2004wt}
266and a $\gamma = 100$ Beta Beam
267(\BB)~\cite{Mezzetto:2003ub}. These experiments will search for
268$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
269\stackrel{\scriptscriptstyle(-)}{\nu}_e$ and
270$\stackrel{\scriptscriptstyle (-)}{\nu}_e \to
271\stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ appearance, respectively,
272by sending the neutrinos to a mega ton scale water \v{C}erenkov
273detector (MEMPHYS)~\cite{memphys}, located at a distance of 130~km from
274CERN under the Fr\'ejus mountain. Similar detectors are under
275consideration also in the US (UNO~\cite{UNO}) and in Japan
276(Hyper-K~\cite{T2K,Nakamura:2003hk}).
277%
278We perform a detailed analysis of the SPL and \BB\ physics
279potential, discussing the discovery reach for $\theta_{13}$ and
280leptonic CP violation. In addition we consider the possibility to
281resolve parameter degeneracies in the LBL data by using the
282atmospheric neutrinos available in the mega ton
283detector~\cite{Huber:2005ep}. This leads to a sensitivity to the
284neutrino mass hierarchy of the CERN--MEMPHYS experiments, despite the
285rather short baseline.
286%
287The physics performances of \BB\ and SPL are compared to the ones
288obtainable at the second phase of the T2K experiment in Japan, which
289is based on an upgraded version of the original T2K beam and the
290Hyper-K detector (T2HK)~\cite{T2K}.
291
292The outline of the paper is as follows.  In Sec.~\ref{sec:analysis} we
293summarize the main characteristics of the \BB, SPL, and T2HK
294experiments and give general details of the physics analysis methods,
295whereas in Sec.~\ref{sec:experiments} we describe in some detail the
296MEMPHYS detector, the \BB, and the SPL Super Beam. In
297Sec.~\ref{sec:degeneracies} we review the problem of parameter
298degeneracies and discuss its implications for the experiments under
299consideration. In Sec.~\ref{sec:sensitivities} we present the
300sensitivities to the ``atmospheric parameters'' $\theta_{23}$ and
301$\Delta m^2_{31}$, the $\theta_{13}$ discovery potential, and the
302sensitivity to CP violation. We also investigate in some detail the
303impact of systematical errors. In Sec.~\ref{sec:synergies} we discuss
304synergies which are offered by the CERN--MEMPHYS facilities.  We
305point out advantages of the case when \BB\ and SPL are available
306simultaneously, and we consider the use of atmospheric neutrino data in
307MEMPHYS in combination with the LBL experiments. Our results are
308summarized in Sec.~\ref{sec:conclusions}.
309
310
311
312%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
313\section{Experiments overview and analysis methods}
314%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
315\label{sec:analysis}
316
317In this section we give the most important experimental parameters
318which we adopt for the simulation of the CERN--MEMPHYS experiments
319\BB\ and SPL, as well as for the T2HK experiment in Japan. These
320parameters are summarized in Tab.~\ref{tab:setups}. For all
321experiments the detector mass is 440~kt, and the running time is 10
322years, with a division in neutrino and antineutrino running time in
323such a way that roughly an equal number of events is obtained. We
324always use the total available information from appearance as well as
325disappearance channels including the energy spectrum. For all three
326experiments we adopt rather optimistic values for the systematical
327uncertainties of 2\% as default values, but we also consider the case
328when systematics are increased to 5\%. These errors are uncorrelated
329between the various signal channels (neutrinos and antineutrinos), and
330between signals and backgrounds.
331
332\begin{table}
333  \centering
334  \begin{tabular}{lcc@{\qquad\qquad}c}
335  \hline\noalign{\smallskip}
336       & \BB & SPL & T2HK \\
337  \noalign{\smallskip}\hline\noalign{\smallskip}
338  Detector mass & 440~kt & 440~kt & 440~kt\\
339  Baseline      & 130 km & 130 km & 295 km \\
340  Running time ($\nu + \bar\nu$)
341                & 5 + 5 yr & 2 + 8 yr & 2 + 8 yr \\
342  Beam intensity  & $5.8\,(2.2) \cdot 10^{18}$ He (Ne) dcys/yr & 4 MW & 4 MW\\
343  Systematics on signal  & 2\% & 2\% & 2\%\\
344  Systematics on backgr. & 2\% & 2\% & 2\%\\
345  \noalign{\smallskip}\hline
346  \end{tabular}
347  \mycaption{Summary of default parameters used for the simulation of the
348  \BB, SPL, and T2HK experiments.\label{tab:setups}}
349\end{table}
350
351A more detailed description of the CERN--MEMPHYS experiments is given
352in Sec.~\ref{sec:experiments}. For the T2HK simulation we use the
353setup provided by GLoBES~\cite{Globes} based on
354Ref.~\cite{Huber:2002mx}, which follows closely the LOI~\cite{T2K}. In
355order to allow a fair comparison we introduce the following changes
356with respect to the configuration used in Ref.~\cite{Huber:2002mx}:
357The fiducial mass is set to 440~kt, the systematical errors on the
358background and on the $\nu_e$ and $\bar\nu_e$ appearance signals is
359set to 2\%, and we use a total running time of 10 years, divided into
3602 years of data taking with neutrinos and 8 years with
361antineutrinos. We include an additional background from the
362$\bar\nu_\mu \to \bar\nu_e$ ($\nu_\mu \to \nu_e$) channel in the
363neutrino (antineutrino) mode. Furthermore, we use
364the same CC detection cross section as for the \BB/SPL
365analysis~\cite{Nuance}. For more details see
366Refs.~\cite{T2K,Huber:2002mx}.
367
368\begin{table}
369  \centering
370  \begin{tabular}{lcccccc}
371  \hline\noalign{\smallskip}
372       & \centre{2}{\BB} & \centre{2}{SPL} & \centre{2}{T2HK} \\
373  \noalign{\smallskip}\hline\noalign{\smallskip}
374  & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$\\
375  \noalign{\smallskip}\hline\noalign{\smallskip}
376%
377  appearance $\nu$ & & & & & & \\
378  background       & \centre{2}{143} &\centre{2}{622} &\centre{2}{898}\\
379  $\stheta=0$      & \centre{2}{28}  &\centre{2}{51}  &\centre{2}{83}  \\
380  $\stheta=10^{-3}$&    76  &   88   &   105  &   14  &   178 &    17  \\ 
381  $\stheta=10^{-2}$&   326  &  365   &   423  &  137  &   746 &   238  \\
382
383  \noalign{\smallskip}\hline\noalign{\smallskip}
384%
385  appearance $\bar\nu$ & & & & & & \\
386  background       & \centre{2}{157} &\centre{2}{640} &\centre{2}{1510}\\
387  $\stheta=0$      & \centre{2}{31}  &\centre{2}{57}  &\centre{2}{93}  \\
388  $\stheta=10^{-3}$&    83  &   12   &   102  &  146  &   192 &   269  \\ 
389  $\stheta=10^{-2}$&   351  &  126   &   376  &  516  &   762 &  1007  \\
390
391  \noalign{\smallskip}\hline\noalign{\smallskip}
392%
393  disapp. $\nu$ &\centre{2}{100315}&\centre{2}{21653}&\centre{2}{24949}\\
394  background    & \centre{2}{6}   &\centre{2}{1}    &\centre{2}{444}\\
395  disapp. $\bar\nu$&\centre{2}{84125}&\centre{2}{18321}&\centre{2}{34650}\\
396  background       &\centre{2}{5}    &\centre{2}{1}    &\centre{2}{725}\\
397  \noalign{\smallskip}\hline
398
399  \end{tabular}
400  \mycaption{Number of events for appearance and disappearance signals
401  and backgrounds for the \BB, SPL, and T2HK experiments as
402  defined in Tab.~\ref{tab:setups}. For the appearance signals the
403  event numbers are given for several values of $\stheta$ and $\delCP
404  = 0$ and $\pi/2$. The background as well as the disappearance event
405  numbers correspond to $\theta_{13}=0$. For the other oscillation
406  parameters the values of Eq.~(\ref{eq:default-params}) are
407  used.\label{tab:events}}
408\end{table}
409
410In Tab.~\ref{tab:events} we give the number of signal and background
411events for the experiment setups as defined in Tab.~\ref{tab:setups}.
412For the appearance channels ($\stackrel{\scriptscriptstyle (-)}{\nu}_e
413\to \stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ for the \BB\ and
414$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
415\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for SPL and T2HK) we give the
416signal events for various values of $\theta_{13}$ and $\delCP$. The
417``signal'' events for $\theta_{13} = 0$ are appearance events induced by
418the oscillations with $\Delta m^2_{21}$. The value $\stheta = 10^{-3}$
419corresponds roughly to the sensitivity limit for the considered
420experiments, whereas $\stheta = 10^{-2}$ gives a good sensitivity
421to CP violation. This can be appreciated by comparing the values of
422$\nu$ and $\bar\nu$ appearance events for $\delCP = 0$ and $\pi/2$. In
423the table the background to the appearance signal is given for
424$\theta_{13} = 0$. Note that in general the number of background
425events depends also on the oscillation parameters, since also the
426background neutrinos in the beam oscillate. This effect is
427consistently taken into account in the analysis, however, for the
428parameter values in the table the change in the background events due
429to oscillations is only of the order of a few events.
430
431The physics analysis is performed with the GLoBES open source
432software~\cite{Globes}, which provides a convenient tool to simulate
433long-baseline experiments and compare different facilities in a
434unified framework. The experiment definition (AEDL) files for the \BB\
435and SPL simulation with GLoBES are available at Ref.~\cite{ISSpage}
436{\bf *** to be updated! ***}. In the analysis parameter degeneracies
437and correlations are fully taken into account and in general all
438oscillation parameters are varied in the fit.
439%
440To simulate the ``data'' we adopt the following
441set of ``true values'' for the oscillation parameters:
442%
443\begin{equation}\label{eq:default-params}
444\begin{array}{l@{\qquad}l}
445  \Delta m^2_{31} = +2.4 \times 10^{-3}~\mathrm{eV}^2\,, & 
446  \sin^2\theta_{23} = 0.5\,,\\ 
447  \Delta m^2_{21} = 7.9 \times 10^{-5}~\mathrm{eV}^2 \,,&
448  \sin^2\theta_{12} = 0.3 \,,
449\end{array}
450\end{equation} 
451%
452and we include a prior knowledge of these values with an accuracy of
45310\% for $\theta_{12}$, $\theta_{23}$, $\Delta m^2_{31}$, and 4\% for
454$\Delta m^2_{21}$ at 1$\sigma$. These values and accuracies are
455motivated by recent global fits to neutrino oscillation
456data~\cite{FOGLILISI05,Maltoni:2004ei}, and they are always used
457except where explicitly stated otherwise.
458
459
460%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
461\section{The CERN--MEMPHYS experiments}
462%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
463\label{sec:experiments}
464
465%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
466\subsection{The MEMPHYS detector}
467%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
468
469MEMPHYS (MEgaton Mass PHYSics)~\cite{memphys} is a mega ton class
470water \v{C}erenkov detector in the straight extrapolation of
471Super-Kamiokande, located at Fr\'ejus, at a distance of 130~km from
472CERN. It is an alternative design of the UNO~\cite{UNO} and
473Hyper-Kamiokande~\cite{Nakamura:2003hk} detectors and shares the same
474physics case, both from the non-accelerator domain (nucleon decay,
475super nova neutrino detection, solar neutrinos, atmospheric neutrinos)
476and from the accelerator domain which is the subject of this paper. A
477recent civil engineering pre-study to envisage the possibly of large
478cavity excavation located under the Fr\'ejus mountain (4800~m.e.w.)
479near the present Modane underground laboratory has been undertaken.
480The main result of this pre-study is that MEMPHYS may be built with
481present techniques as a modular detector consisting of several shafts,
482each with 65~m in diameter, 65~m in height for the total water
483containment. A schematic view of the layout is shown in
484Fig.~\ref{fig:MEMPHYS}. For the present study we have chosen a
485fiducial mass of 440~kt which means 3 shafts and an inner detector of
48657~m in diameter and 57~m in height.  Each inner detector may be
487equipped with photo detectors (81000 per shaft) with a 30\%
488geometrical coverage and the same photo-statistics of Super-Kamiokande
489(with a 40\% coverage). In principle up to 5 shafts are possible,
490corresponding to a fiducial mass of 730~kt.
491%
492The Fr\'ejus site offers a natural protection against cosmic rays by a
493factor $10^6$. If not mentioned otherwise, the event selection and
494particle identification are the Super-Kamiokande algorithms results.
495
496\begin{figure}
497\centering
498\includegraphics[width=0.65\textwidth]{./fig1.eps}
499\mycaption{\label{fig:MEMPHYS}Sketch of the MEMPHYS detector under the
500Fr\'ejus mountain.}     
501\end{figure}
502
503
504%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
505\subsection{The $\gamma = 100\times100$ baseline Beta Beam}
506%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
507
508The concept of a Beta Beam (\BB) has been introduced by P.~Zucchelli
509in Ref.~\cite{zucchelli}. Neutrinos are produced by the decay of
510radioactive isotopes which are stored in a decay ring. An important
511parameter is the relativistic gamma factor of the ions, which
512determines the energy of the emitted neutrinos. \BB\ performances have
513been computed previously for $\gamma(\He)= 66$~\cite{Mezzetto:2003ub},
514100~\cite{MyNufact04,Donini:2004hu,JJHigh2}, 150~\cite{JJHigh2},
515200~\cite{LindnerBB}, 350~\cite{JJHigh2},
516500~\cite{JJHigh1,LindnerBB}, 1000~\cite{LindnerBB},
5172000~\cite{JJHigh1}, 2488~\cite{Terranova}. Reviews can be found in
518Ref.~\cite{BB-Reviews}, the physics potential of a very low gamma \BB\
519has been studied in Ref.~\cite{Volpe}. Performances of a \BB\ with
520$\gamma > 150$ are extremely promising, however, they are neither
521based on an existing accelerator complex nor on a robust estimation of
522the ion decay rates. For a CERN based \BB, fluxes have been estimated
523in Ref.~\cite{Lindroos} and a design study is in progress for the
524facility \cite{Eurisol}. In this work we assume an integrated flux of
525neutrinos in 10 years, corresponding to $5.8\cdot 10^{19}$ useful \He\
526decays and $2.2 \cdot 10^{19}$ useful \Ne\ decays. These fluxes have
527been assumed in all the physics papers quoted above, and they are two
528times higher than the baseline fluxes computed in
529Ref.~\cite{Lindroos}. These latter fluxes suffer for the known
530limitations of the PS and SPS synchrotrons at CERN, ways to improve
531them have been delineated in Ref.~\cite{Lindroos-Optimization}.
532
533The infrastructure available at CERN as well as the MEMPHYS
534location at a distance of 130~km suggest a $\gamma$-factor of about
535$100$. Such a value implies a mean neutrino energy of 400~MeV, which
536leads to the oscillation maximum at about 200~km for $\Delta m^2_{31}
537= 2.4\times 10^{-3}$~eV$^2$.  We have checked that the performance at
538the somewhat shorter baseline of 130~km is rather similar to the one
539at the oscillation maximum. Moreover, the purpose of this paper is to
540estimate the physics potential for a realistic set-up and not to study
541the optimization of the \BB\ regardless of any logistic consideration
542(see, e.g., Refs.~\cite{LindnerBB,JJHigh2} for such optimization
543studies).
544
545\begin{figure}[!t]
546  \centering
547  \includegraphics[width=0.65\textwidth]{./fig2.eps}
548  \mycaption{\label{fig:QE-Energy} Energy resolution for \nue\
549  interactions in the 200--300~MeV energy range. The quantitiy
550  displayed is the difference between the reconstructed and the true
551  neutrino energy.}
552\end{figure}
553
554The signal events from the $\nu_e \to \nu_\mu$ neutrino and
555antineutrino appearance channels in the \BB\ are \numu charged current
556(CC) events. The Nuance v3r503 Monte Carlo code~\cite{Nuance} is used
557to generate signal events. The selection for these events is based on
558standard Super-Kamiokande particle identification algorithms.  The
559muon identification is reinforced by asking for the detection of the
560Michel decay electron.
561%
562The neutrino energy is reconstructed by smearing momentum and
563direction of the charged lepton with the Super-Kamiokande resolution
564functions, and applying quasi-elastic (QE) kinematics assuming the
565known incoming neutrino direction. Energy reconstruction in the \BB\
566energy range is remarkably powerful, and the contamination of non-QE
567events very small, as shown in Fig.~\ref{fig:QE-Energy}.
568%
569As pointed out in Ref.~\cite{JJHigh2}, it is necessary to use a
570migration matrix for the neutrino energy reconstruction to properly
571handle Fermi motion smearing and the non-QE event contamination.  We
572use 100 MeV bins for the reconstructed energy and 40 MeV bins for the
573true neutrino energy.  Four migration matrices (for
574$\nu_e,\bar\nu_e,\nu_\mu,\bar\nu_\mu$) are applied to signal events as
575well as backgrounds.  As shown in Ref.~\cite{MezzettoNuFact05} the
576migration matrix approximation has a visible (though small) effect for
577example in the leptonic CP violation discovery potential.
578
579\begin{table}[t]
580     \centering
581     \begin{tabular}{l@{\qquad}rrr@{\qquad}rrr}
582     \hline\noalign{\smallskip}
583       & \multicolumn{3}{ c }{\Ne} & \multicolumn{3}{c}{\He} \\
584     \hline\noalign{\smallskip}
585       & \numu CC & $\pi^+$ & $\pi^-$ & \nubarmu CC & $\pi^+$ & $\pi^-$ \\
586     \hline\noalign{\smallskip}
587      Generated ev.\ & 115367   &  557   &  341 & 101899 &  674   &  400 \\
588      Particle ID    &  95717   &  204   &  100 & 85285  &  240   &  118 \\
589      Decay          &  61347   &  107   &    8 & 69242  &  120   &    8 \\
590\hline\noalign{\smallskip}
591    \end{tabular}
592    \mycaption{\label{tab:sigbck} Events for the \BB\ in a 4400~kt~yr
593    exposure.  \numu(\nubarmu) CC events are computed assuming full
594    oscillations ($P_{\nu_e\to\nu_\mu} = 1$), and pion backgrounds are
595    computed from \nue(\nubare) CC+NC events. In the rows we give the
596    number events generated within the fiducial volume (``Generated
597    ev.''), after muon particle identification (``Particle ID''), and
598    after applying a further identification requiring the detection of
599    the Michel electron (``Decay''). }
600\end{table}
601
602
603Backgrounds from charged pions and atmospheric neutrinos are computed
604with the identical analysis chain as signal events.
605Charged pions generated in NC events (or in NC-like events where the
606leading electron goes undetected) are the main source of background for
607the experiment. To compute this background inclusive NC and CC events
608have been generated with the \BB\ spectrum. Events have been selected
609where the only visible track is a charged pion above the \v{C}erenkov
610threshold. Particle identification efficiencies have been applied to
611those particles. The probability for a pion to survive in water until
612its decay has been computed with Geant~3.21 and cross-checked with a
613Fluka~2003 simulation. This probability is different for positive and
614negative pions, the latter having a higher probability to be absorbed
615before decaying. The surviving events are background, and the
616reconstructed neutrino energy is computed misidentifying these pions
617as muons. Event rates are reported in Tab.~\ref{tab:sigbck}. From
618these numbers it becomes evident that requiring the detection of the
619Michel electron provides an efficient cut to eliminate the pion
620background.
621%
622These background rates are significantly smaller than quoted in
623Ref.~\cite{MyNufact04}, where pion decays were computed with the
624same probabilities as for muons and they are slightly different
625from those quoted in Ref.~\cite{ MezzettoNuFact05}, where an
626older version of Nuance had been used.
627%
628The numbers of Tab.~\ref{tab:sigbck} have been cross-checked by
629comparing the Nuance and Neugen~\cite{Neugen} event
630generators, finding a fair agreement in background rates and energy shape.
631
632Also atmospheric neutrinos can constitute an important source of
633background~\cite{zucchelli,JJHigh2,JJHigh1,MezzettoNuFact05}. This
634background can be suppressed only by keeping a very short duty cycle
635($2.2 \cdot 10^{-3}$ is the target value for the \BB\ design study),
636and this in turn is one of the most challenging bounds on the design
637of the Beta Beam complex. Following Ref.~\cite{MezzettoNuFact05} we
638include the atmospheric neutrino background based on a Monte Carlo
639simulation using Nuance. Events are reconstructed as if they were
640signal neutrino events. We estimate that 5 events/year would survive
641the analysis chain in a full solar year (the \BB\ should run for about
6421/3 of this period) and include these events as backgrounds in the
643analysis. Under these circumstances, the present value of the \BB\
644duty cycle seems to be an overkill, it could be reduced by a factor 5
645at least, see also Ref.~\cite{MezzettoNuFact05} for a discussion of
646the effect of a higher duty cycle.
647
648
649%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
650\subsection{The $3.5$-GeV SPL Super Beam}
651%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
652
653In the Conceptual Design Report~1 (CDR1) the foreseen Super Proton
654Linac (SPL)~\cite{SPL} has been optimized to provide the protons
655for the muon production in the context of a Neutrino Factory.
656%
657Recently, in Ref.~\cite{Campagne:2004wt} a new optimization of the
658beam energy as well as the secondary particle focusing and decay has
659been undertaken considering a Super Beam searching for $\nu_\mu
660\rightarrow \nu_e$ and $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
661appearance as well as $\nu_\mu$, $\bar\nu_\mu$ disappearance in a mega
662ton scale water \v{C}erenkov detector. In particular, a full
663simulation of the beam line from the proton on target interaction up
664to the secondary particle decay tunnel has been performed. The proton
665on a liquid mercury target (30~cm long, $7.5$~mm radius, 13.546
666density) has been simulated with FLUKA~2002.4~\cite{FLUKA} while the
667horn focusing system and the decay tunnel simulation has been
668preformed with GEANT~3.21~\cite{GEANT}.\footnote{Although there are
669differences between the predicted pion and kaon productions as a
670function of proton kinetic energy with FLUKA~2002.4 and 2005.6, the
671results are consistent for the relevant energy of 3.5~GeV. We
672emphasize that the pion and the kaon production cross-sections are
673waiting for experimental confirmation~\cite{HARP-MINERVA} and a new
674optimization would be required if their is a disagreement with the
675present knowledge.}
676
677\begin{figure}[!t]
678  \centering 
679  \includegraphics[width=0.65\textwidth]{./fig3.eps}
680  \mycaption{\label{fig:fluxSPLContrib} Neutrino fluxes, at $130$~km
681  from the target with the horns focusing the positive particles
682  (top panel) or the negative particles (bottom panel). The fluxes are
683  computed for a SPL proton beam of $3.5$~GeV (4~MW), a decay tunnel
684  with a length of $40$~m and a radius of $2$~m.}
685\end{figure}
686
687Since the optimization requirements for a Neutrino Factory are rather
688different than for a Super Beam the new SPL configuration has a
689significant impact on the physics performance (see
690Ref.~\cite{Campagne:2004wt} for a detailed discussion).  The SPL
691fluxes of the four neutrino species ($\nu_\mu$, $\nu_e$,
692$\bar{\nu}_\mu$, $\bar{\nu}_e$) for the positive ($\nu_\mu$ beam) and
693the negative focusing ($\bar{\nu}_\mu$ beam) are show in
694Fig.~\ref{fig:fluxSPLContrib}.  The total number of $\nu_\mu$
695($\bar{\nu}_\mu$) in positive (negative) focusing is about
696$1.18\,(0.97) \times 10^{12}\:\mathrm{m}^{-2}\mathrm{y}^{-1}$ with an
697average energy of $300$~MeV. The $\nu_e$ ($\bar{\nu}_e$) contamination
698in the $\nu_\mu$ ($\bar\nu_\mu$) beam is around $0.7\%$
699($6.0\%$). Following Ref.~\cite{Mezzetto:2003mm}, the $\pi^o$
700background is reduced using a tighter PID cut compared to standard
701Super-Kamiokande analysis. The Michel electron is required for the
702$\mu$ identification.
703%
704For the $\nu_\mu \rightarrow \nu_e$ channel the background consists
705roughly of 90\% $\nu_e \rightarrow \nu_e$ CC interactions, 6\% $\pi^o$
706from NC interactions, 3\% miss identified muons from $\nu_\mu
707\rightarrow \nu_\mu$ CC, and 1\% $\bar{\nu}_e \rightarrow \bar{\nu}_e$
708CC interactions. For the $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
709channel the contributions to the background are 45\% $\bar{\nu}_e
710\rightarrow \bar{\nu}_e$ CC interactions, 35\% $\nu_e \rightarrow
711\nu_e$ CC interactions, 18\% $\pi^o$ from NC interactions and 2\% miss
712identified muons from $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ CC.
713In addition we include the events from the contamination of
714``wrong sign'' muon-neutrinos due to $\bar\nu_\mu \to \bar\nu_e$
715($\nu_\mu \to \nu_e$) oscillations in the neutrino (antineutrino)
716mode.
717
718\begin{figure}[!t]
719  \centering
720  \includegraphics[width=0.5\textwidth]{./fig4.eps}
721%
722  \mycaption{\label{fig:fluxComparison} 
723  Comparison of the fluxes from SPL and \BB.}
724\end{figure}
725
726Considering the signal over square-root of background
727ratio, the $3.5$~GeV beam energy is more favorable than the original
728$2.2$~GeV option. Compared to the fluxes used in
729Refs.~\cite{Mezzetto:2003mm,Donini:2004hu} the gain is at least a
730factor $2.5$ and this justifies to reconsider in detail the physics
731potential of the SPL Super Beam.
732%
733Both the appearance and the disappearance channels are used. For the
734spectral analysis we use 10 bins of 100~MeV in the interval $0 < E_\nu
735< 1$~GeV, applying the same migration matrices as for the \BB\ to take
736into account properly the neutrino energy reconstruction. As ultimate
737goal suggested in Ref.~\cite{T2K} a 2\% systematical error is used as
738default both for signal and background, this would be achieved by a
739special care of the design of the close position. However, we discuss
740also how a 5\% systematical error affects the sensitivities.
741%
742Using neutrino cross-sections on water from Ref.~\cite{Nuance}, the
743number of expected $\nu_\mu$ charged current is about $95$ per kt~yr
744{\bf *** does this number change using Nuance Xsects instead of
745Lipari? ***}. In Fig.~\ref{fig:fluxComparison} we compare the fluxes
746from the SPL to the one from the \BB.
747 
748
749%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
750\section{Degeneracies}
751%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
752\label{sec:degeneracies}
753
754
755A characteristic feature in the analysis of future LBL experiments is
756the presence of {\it parameter degeneracies}.  Due to the inherent
757three-flavor structure of the oscillation probabilities, for a given
758experiment in general several disconnected regions in the
759multi-dimensional space of oscillation parameters will be
760present. Traditionally these degeneracies are referred to in the
761following way:
762%
763\begin{itemize}
764\item
765The {\it intrinsic} or
766($\delCP,\theta_{13}$)-degeneracy~\cite{Burguet-Castell:2001ez}:
767For a measurement based on the $\nu_\mu \to \nu_e$ oscillation probability for
768neutrinos and antineutrinos two disconnected solutions appear in the
769($\delCP,\theta_{13}$) plane.
770\item
771The {\it hierarchy} or sign($\Delta
772m^2_{31}$)-degeneracy~\cite{Minakata:2001qm}: The two solutions
773corresponding to the two signs of $\Delta m^2_{31}$ appear in general
774at different values of $\delCP$ and $\theta_{13}$.
775\item
776The {\it octant} or $\theta_{23}$-degeneracy~\cite{Fogli:1996pv}:
777Since LBL experiments are sensitive mainly to $\sin^22\theta_{23}$ it
778is difficult to distinguish the two octants $\theta_{23} < \pi/4$ and
779$\theta_{23} > \pi/4$.  Again, the solutions corresponding to
780$\theta_{23}$ and $\pi/2 - \theta_{23}$ appear in general at different
781values of $\delCP$ and $\theta_{13}$.
782\end{itemize}
783%
784This leads to an eight-fold ambiguity in $\theta_{13}$ and
785$\delCP$~\cite{Barger:2001yr}, and hence degeneracies provide a
786serious limitation for the determination of $\theta_{13}$, $\delCP$,
787and the sign of $\Delta m^2_{31}$. Recent discussions of degeneracies
788can be found for example in
789Refs.~\cite{Huber:2002mx,Huber:2005ep,Yasuda:2004gu,Ishitsuka:2005qi};
790degeneracies in the context of CERN--Fr\'ejus \BB\ and SPL have been
791considered previously in Ref.~\cite{Donini:2004hu}.
792%
793In Fig.~\ref{fig:degeneracies} we illustrate the effect of
794degeneracies for the \BB, SPL, and T2HK experiments. Assuming the
795true parameter values $\delta_\mathrm{CP} = -0.85 \pi$,
796$\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$ we show the
797allowed regions in the plane of $\stheta$ and $\delCP$ taking into
798account the solutions with the wrong hierarchy and the wrong octant of
799$\theta_{23}$.
800
801\begin{figure}[!t]
802\centering
803\includegraphics[width=0.95\textwidth]{./fig5.eps}
804%
805  \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
806  $\delta_\mathrm{CP}$ for LBL data alone (contour lines) and LBL+ATM
807  data combined (colored regions). $\mathrm{H^{tr/wr} (O^{tr/wr})}$
808  refers to solutions with the true/wrong mass hierarchy (octant of
809  $\theta_{23}$). The true parameter values are $\delta_\mathrm{CP} =
810  -0.85 \pi$, $\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$,
811  and the values from Eq.~(\ref{eq:default-params}) for the other
812  parameters.}
813\label{fig:degeneracies}
814\end{figure}
815
816
817\begin{figure}[!t]
818\centering
819\includegraphics[width=0.9\textwidth]{./fig6.eps}
820%
821  \mycaption{Resolving degeneracies in SPL by successively using the
822  appearance rate measurement, disappearance channel rate and
823  spectrum, spectral information in the appearance channel, and
824  atmospheric neutrinos.  Allowed regions in $\sin^22\theta_{13}$ and
825  $\delta_\mathrm{CP}$ are shown at 95\%~CL, and $\mathrm{H^{tr/wr}
826  (O^{tr/wr})}$ refers to solutions with the true/wrong mass hierarchy
827  (octant of $\theta_{23}$). The true parameter values are
828  $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} = 0.03$,
829  $\sin^2\theta_{23} = 0.6$, and the values from
830  Eq.~(\ref{eq:default-params}) for the other parameters.}
831\label{fig:degeneracies_SPL}
832\end{figure}
833
834As visible in Fig.~\ref{fig:degeneracies} for the
835Super Beam experiments SPL and T2HK there is only a four-fold
836degeneracy related to sign($\Delta m^2_{31}$) and the octant of
837$\theta_{23}$, whereas the intrinsic degeneracy can be resolved.
838%
839Several pieces of information contribute to this effect, as we
840illustrate at the example of SPL in Fig.~\ref{fig:degeneracies_SPL}.
841The dashed curves in the left panel of this figure show the allowed
842regions for only the appearance measurement (for neutrinos and
843antineutrinos) without spectral information, i.e., just a counting
844experiment. In this case the eight-fold degeneracy is present in its
845full beauty, and one finds two solutions (corresponding to the
846intrinsic degeneracy) for each choice of sign($\Delta m^2_{31}$) and
847the octant of $\theta_{23}$. Moreover, the allowed regions are
848relatively large. For the thin solid curves the information from the
849disappearance rate is added. The main effect is to decrease the size
850of the allowed regions in $\stheta$. This is especially pronounced for
851the solutions involving the wrong octant of $\theta_{23}$, since these
852solutions are strongly affected by an uncertainty in $\theta_{23}$
853which gets reduced by the disappearance information. Using in addition
854to the disappearance rate also the spectrum again decreases the size
855of the allowed regions, however, still all eight solutions are present
856(compare dashed curves in the right panel).
857%
858The most relevant effect comes from the inclusion of spectral
859information in the appearance channel, as visible from the comparison
860of the dashed and thick-solid curves in the right panel of
861Fig.~\ref{fig:degeneracies_SPL}. The intrinsic degeneracy gets
862resolved and only four solutions corresponding to the sign and octant
863degeneracies are left.\footnote{The inclusion of spectral information
864might be the source of possible differences to previous studies, see
865e.g.\ Ref.~\cite{Donini:2004hu}.} Note that the thick curves in the
866right panel of Fig.~\ref{fig:degeneracies_SPL} correspond to the
867regions show in Fig.~\ref{fig:degeneracies} for the SPL.
868%
869Finally, by the inclusion of information from atmospheric neutrinos
870all degeneracies can be resolved in this example, and the true
871solution is identified at 95\%~CL (see Sec.~\ref{sec:atmospherics} and
872Ref.~\cite{Huber:2005ep} for further discussions of atmospheric
873neutrinos).
874
875Concerning the \BB\ one observes from Fig.~\ref{fig:degeneracies} that
876in this case the ($\delCP,\theta_{13}$)-degeneracy cannot be resolved
877and one has to deal with eight distinct solutions. One reason for this
878is the absence of precise information on $|\Delta m^2_{31}|$ and
879$\sin^22\theta_{23}$ which is provided by the $\nu_\mu$ disappearance
880in Super Beam experiments but is not available from the \BB. If
881external information on these parameters at the level of 3\% is
882included the allowed regions in Fig.~\ref{fig:degeneracies} are
883significantly reduced. However, still all eight solutions are present,
884which indicates that for the \BB\ spectral information is not
885efficient enough to resolve the ($\delCP,\theta_{13}$)-degeneracy, and
886in this case only the inclusion of atmospheric neutrino data allows a
887nearly complete resolution of the degeneracies.
888
889An important observation from Fig.~\ref{fig:degeneracies} is that
890degeneracies have only a very small impact on the CP violation
891discovery, in the sense that if the true solution is CP violating also
892the fake solutions are located at CP violating values of
893$\delCP$. Indeed, since for the relatively short baselines in the
894experiments under consideration matter effects are very small, the
895sign($\Delta m^2_{31}$)-degenerate solution is located within good
896approximation at $\delCP' \approx \pi -
897\delCP$~\cite{Minakata:2001qm}. Therefore, although degeneracies
898strongly affect the determination of $\theta_{13}$ and $\delCP$ they
899have only a small impact on the CP violation discovery potential.
900Furthermore, as clear from Fig.~\ref{fig:degeneracies} the sign($\Delta
901m^2_{31}$) degeneracy has practically no effect on the $\theta_{13}$
902measurement, whereas the octant degeneracy has very little impact on
903the determination of $\delCP$.
904
905\begin{figure}[!t]
906\centering
907\includegraphics[width=0.9\textwidth]{./fig7.eps}
908%
909  \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
910  $\delta_\mathrm{CP}$ for 5~years data (neutrinos only) from \BB,
911  SPL, and the combination. $\mathrm{H^{tr/wr} (O^{tr/wr})}$ refers to
912  solutions with the true/wrong mass hierarchy (octant of
913  $\theta_{23}$). For the colored regions in the left panel also
914  5~years of atmospheric data are included; the solution with the
915  wrong hierarchy has $\Delta\chi^2 = 4$. The true parameter
916  values are $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} =
917  0.03$, $\sin^2\theta_{23} = 0.6$, and the values from
918  Eq.~(\ref{eq:default-params}) for the other parameters. For the \BB\
919  only analysis (middle panel) an external accuracy of 2\% (3\%) for
920  $|\Delta m^2_{31}|$ ($\theta_{23}$) has been assumed, whereas for
921  the left and right panel the default value of 10\% has been used.}
922\label{fig:degeneracies_5yrs}
923\end{figure}
924
925Fig.~\ref{fig:degeneracies} shows also that the fake solutions occur
926at similar locations in the ($\stheta$, $\delCP$) plane for \BB\ and
927SPL. Therefore, as noted in Ref.~\cite{Donini:2004hu}, in this sense
928the two experiments are not complementary, and the combination of
92910~years of \BB\ and SPL data is not very effective in resolving
930degeneracies. This is obvious since the baseline is the same and the
931neutrino energies are similar.
932%
933Note however, that the \BB\ looks for $\nu_e\to\nu_\mu$ appearance,
934whereas in SPL the T-conjugate channel $\nu_\mu\to\nu_e$ is observed.
935Assuming CPT invariance the relation $P_{\nu_\alpha\to\nu_\beta} =
936P_{\bar\nu_\beta\to\bar\nu_\alpha}$ holds, which implies that the
937antineutrino measurement can be replaced by a measurement in the
938T-conjugate channel.  Hence, if \BB\ and SPL experiments are available
939simultaneously the full information can be obtained just from neutrino
940data, and in principle the (time consuming) antineutrino measurement
941is not necessary. As shown in Fig.~\ref{fig:degeneracies_5yrs} the
942combination of 5~yrs neutrino data from the \BB\ with 5~yrs of
943neutrino data from SPL leads to a result very close to the 10~yrs
944neutrino+antineutrino data from one experiment alone. Hence, if \BB\
945and SPL experiments are available simultaneously the data taking
946period is reduced approximately by a factor of 2 with respect to a
947single experiment. This synergy is discussed later in
948Sec.~\ref{sec:synergies-beams} in the context of the $\theta_{13}$ and
949CP violation discovery potentials.
950
951
952%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
953\section{Physics potential}
954%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
955\label{sec:sensitivities}
956
957\subsection{Sensitivity to the atmospheric parameters}
958\label{sec:atm}
959
960The $\nu_\mu$ disappearance channel available in the Super Beam
961experiments SPL and T2HK allows a precise determination of the
962atmospheric parameters $|\Delta m^2_{31}|$ and $\sin^22\theta_{23}$,
963see, e.g., Refs.~\cite{Antusch:2004yx,Minakata:2004pg,Donini:2005db}
964for recent analyses). Fig.~\ref{fig:atm-params} illustrates the
965improvement on these parameters by Super Beam experiments with respect
966to the present knowledge from SK atmospheric and K2K data. We show the
967allowed regions at 99\%~CL for T2K-I, SPL, and T2HK, where in all
968three cases 5~years of neutrino data are assumed. T2K-I corresponds to
969the phase~I of the T2K experiment with a beam power of 0.77~MW and the
970Super-Kamiokande detector as target~\cite{T2K}. In Tab.~\ref{tab:atm-params} we
971give the corresponding relative accuracies at 3$\sigma$ for $|\Delta
972m^2_{31}|$ and $\sin^2\theta_{23}$.
973
974\begin{figure}[!t]
975\centering
976  \includegraphics[width=0.55\textwidth]{./fig8.eps}
977  \mycaption{\label{fig:atm-params} Allowed regions of $\Delta
978  m^2_{31}$ and $\sin^2\theta_{23}$ at 99\%~CL (2 d.o.f.)  after 5~yrs
979  of neutrino data taking for SPL, T2K phase~I, T2HK, and the
980  combination of SPL with 5~yrs of atmospheric neutrino data in the
981  MEMPHYS detector. For the true parameter values we use $\Delta
982  m^2_{31} = 2.2\, (2.6) \times 10^{-3}~\mathrm{eV}^2$ and
983  $\sin^2\theta_{23} = 0.5 \, (0.37)$ for the test point 1 (2), and
984  $\theta_{13} = 0$ and the solar parameters as given in
985  Eq.~(\ref{eq:default-params}). The shaded region corresponds to the
986  99\%~CL region from present SK and K2K data~\cite{Maltoni:2004ei}.}
987\end{figure}
988
989
990\begin{table}[!t]
991  \centering
992  \begin{tabular}{lcrrr}
993  \hline\noalign{\smallskip}
994    & True values  & T2K-I & SPL & T2HK \\
995  \noalign{\smallskip}\hline\noalign{\smallskip}
996  $\Delta m^2_{31}$   & $2.2\cdot 10^{-3}$ eV$^2$ & 4.7\% & 3.2\% & 1.1\% \\
997  $\sin^2\theta_{23}$ & $0.5$                     & 20\%  & 20\%  & 6\%   \\
998  \noalign{\smallskip}\hline\noalign{\smallskip}
999  $\Delta m^2_{31}$   & $2.6\cdot 10^{-3}$ eV$^2$ & 4.4\% & 2.5\% & 0.7\% \\
1000  $\sin^2\theta_{23}$ & $0.37$                    & 8.9\% & 3.1\% & 0.8\% \\
1001  \noalign{\smallskip}\hline
1002  \end{tabular}
1003  \mycaption{Accuracies at $3\sigma$ on the atmospheric parameters
1004  $|\Delta m^2_{31}|$ and $\sin^2\theta_{23}$ for 5 years of neutrino
1005  data from T2K-I, SPL, and T2HK for the two test points shown in
1006  Fig.~\ref{fig:atm-params} ($\theta^\mathrm{true}_{13} = 0$). The
1007  accuracy for a parameter $x$ is defined as $(x^\mathrm{upper} -
1008  x^\mathrm{lower})/(2 x^\mathrm{true})$, where $x^\mathrm{upper}$
1009  ($x^\mathrm{lower}$) is the upper (lower) bound at 3$\sigma$ for
1010  1~d.o.f.\ obtained by projecting the contour $\Delta \chi^2 = 9$
1011  onto the $x$-axis. For the accuracies for test point~2 the octant
1012  degenerate solution is neglected.\label{tab:atm-params}}
1013\end{table}
1014
1015From the figure and the table it becomes evident that the T2K setups
1016are very good in measuring the atmospheric parameters, and only a
1017modest improvement is possible with SPL with respect to T2K phase~I.
1018T2HK provides an excellent sensitivity for these parameters, and for
1019the example of the test point~2 sub-percent accuracies are obtained at
10203$\sigma$. The disadvantage of SPL with respect to T2HK is the
1021limited spectral information. Because of the lower beam energy
1022nuclear Fermi motion is a severe limitation for energy reconstruction
1023in SPL, whereas in T2K the somewhat higher energy allows an efficient
1024use of spectral information of quasi-elastic events. Indeed, due to
1025the large number of events in the disappearance channel (cf.\
1026Tab.~\ref{tab:events}) the measurement is completely dominated by the
1027spectrum, and even increasing the normalization uncertainty up to
1028100\% has very little impact on the allowed regions. The effect of
1029spectral information on the disappearance measurement is
1030discussed in some detail in Ref.~\cite{Donini:2005db}.
1031
1032For the test point~1, with maximal mixing for $\theta_{23}$, rather
1033poor accuracies of $\sim20\%$ for T2K-I and SPL, and $6\%$ for T2HK
1034are obtained for $\sin^2\theta_{23}$. The reason is that in the
1035disappearance channel $\sin^22\theta_{23}$ is measured with high
1036precision, which translates to rather large errors for
1037$\sin^2\theta_{23}$ if $\theta_{23} = \pi/4$~\cite{Minakata:2004pg}.
1038%
1039For the same reason it is difficult to resolve the octant degeneracy,
1040and for the test point~2, with a non-maximal value of
1041$\sin^2\theta_{23} = 0.37$, for all three LBL experiments the
1042degenerate solution is present around $\sin^2\theta_{23} = 0.63$.
1043%
1044As pointed out in Refs.~\cite{Peres:2003wd,Gonzalez-Garcia:2004cu}
1045atmospheric neutrino data may allow to distinguish between the two
1046octants of $\theta_{23}$. If 5~years of atmospheric neutrino data in
1047MEMPHYS are added to the SPL data, the degenerate solution for the
1048test point~2 can be excluded at more than $5\sigma$ and hence the
1049octant degeneracy is resolved in this example, see
1050Sec.~\ref{sec:atmospherics} for a more detailed discussion.
1051
1052
1053%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1054\subsection{The $\theta_{13}$ discovery potential}
1055\label{sec:th13}
1056
1057If no finite value of $\theta_{13}$ is discovered by the next round of
1058experiments an important task of the experiments under consideration
1059here is to push further the sensitivity to this parameter. In this
1060section we address this problem, where we use to following definition
1061of the $\theta_{13}$ discovery potential: Data are simulated for a
1062finite true value of $\stheta$ and a given true value for $\delCP$. If
1063the $\Delta\chi^2$ of the fit to these data with $\theta_{13} = 0$ is
1064larger than 9 the corresponding true value of $\theta_{13}$ ``is
1065discovered at 3$\sigma$''. In other words, the $3\sigma$ discovery
1066limit as a function of the true $\delCP$ is given by the true value of
1067$\stheta$ for which $\Delta\chi^2(\theta_{13}=0) = 9$. In the fitting
1068process we minimize the $\Delta\chi^2$ with respect to $\theta_{12}$,
1069$\theta_{23}$, $\Delta m^2_{12}$, and $\Delta m^2_{31}$, and in
1070general one has to test also for degenerate solutions in sign($\Delta
1071m^2_{31}$) and the octant of $\theta_{23}$.
1072
1073\begin{figure}
1074  \centering \includegraphics[width=0.9\textwidth]{./fig9.eps}
1075  \mycaption{$3\sigma$ discovery sensitivity to $\stheta$ for \BB,
1076  SPL, and T2HK as a function of the true value of \delCP\ (left
1077  panel) and as a function of the fraction of all possible values of
1078  \delCP\ (right panel). The width of the bands corresponds to values
1079  for the systematical errors between 2\% and 5\%. The black curves
1080  correspond to the combination of \BB\ and SPL with 10~yrs of total
1081  data taking each for a systematical error of 2\%, and the dashed
1082  curves show the sensitivity of the \BB\ when the number of ion
1083  decays/yr are reduced by a factor of two with respect to the values
1084  given in Tab.~\ref{tab:setups}.\label{fig:th13}}
1085\end{figure}
1086
1087The discovery limits are shown for \BB, SPL, and T2HK in
1088Fig.~\ref{fig:th13}. One observes that SPL and T2HK are rather similar
1089in performance, whereas the \BB\ with our standard fluxes performs
1090significantly better. For all three facilities a guaranteed discovery
1091reach of $\stheta \simeq 5\times 10^{-3}$ is obtained, irrespective of
1092the actual value of \delCP, however, for certain values of \delCP\ the
1093sensitivity is significantly improved. For SPL and T2HK discovery
1094limits around $\stheta \simeq 10^{-3}$ are possible for a large
1095fraction of all possible values of \delCP, whereas for our standard
1096\BB\ a sensitivity below $\stheta = 4\times 10^{-4}$ is reached for
109780\% of all possible values of \delCP. If 10~years of data from \BB\
1098and SPL are combined the discovery limit is dominated by the \BB.
1099%
1100Let us stress that the \BB\ performance depends crucially on the
1101neutrino flux intensity, as can be seen from the dashed curves in
1102Fig.~\ref{fig:th13}, which has been obtained by reducing the number of
1103ion decays/yr by a factor of two with respect to our standard values
1104given in Tab.~\ref{tab:setups}. In this case the sensitivity decreases
1105significantly, but still values slightly better than from the
1106Super Beam experiments are reached.
1107
1108In Fig.~\ref{fig:th13} we illustrate also the effect of systematical
1109errors on the $\theta_{13}$ discovery reach. The lower boundary of the
1110band for each experiment corresponds to a systematical error of 2\%,
1111whereas the upper boundary is obtained for 5\%. These errors include
1112the (uncorrelated) normalization uncertainties on the signal as well
1113as on the background, where the crucial uncertainty is the error on
1114the background. We find that the \BB\ is basically not affected by
1115these errors, since the background has a rather different spectral
1116shape (strongly peaked at low energies) than the signal. The fact
1117that T2HK is relatively strongly affected by the actual value of the
1118systematics can by understood by considering the ratio of signal to
1119the square-root of the background using the numbers of
1120Tab.~\ref{tab:events}. We shall discuss this issue in more detail in
1121the next section in the context of the CP violation discovery reach.
1122
1123Let us remark that the $\theta_{13}$ sensitivities are practically not
1124affected by the sign($\Delta m^2_{31}$)-degeneracy. This is easy to
1125understand, since the data is fitted with $\theta_{13} = 0$, and in
1126this case both mass hierarchies lead to very similar event rates. If
1127the inverted hierarchy is used as the true hierarchy, the peak in the
1128discovery limit visible in the left panel of Fig.~\ref{fig:th13}
1129around $\delCP \sim \pi$ moves to $\delCP \sim 0$. However, the
1130characteristic shape of the curves, and in particular, the sensitivity
1131as a function of the \delCP-fraction shown in the right panel are
1132hardly affected by the sign of the true $\Delta m^2_{31}$.
1133%
1134In case of a non-maximal value of $\theta_{23}$ the octant-degeneracy
1135has a minor impact on the $\theta_{13}$ discovery potential, as
1136illustrated in Fig.~\ref{fig:SPLTheta13Disco} for the SPL. We show the
1137discovery limit obtained with the true and the fake octant of
1138$\theta_{23}$ for a true value of $\sin^2\theta_{23}= 0.6$. Let us
1139note that for true values of $\sin^2\theta_{23} > 0.5$ the
1140octant-degenerate solution leads to a worse sensitivity to
1141$\theta_{13}$ (see figure), whereas for $\sin^2\theta_{23} < 0.5$ the
1142fake solution does not affect the $\theta_{13}$ discovery, since in
1143this case the sensitivity is increased.
1144
1145\begin{figure}
1146  \centering
1147  \includegraphics[width=0.9\textwidth]{./fig10.eps}
1148  \mycaption{\label{fig:SPLTheta13Disco} $3\sigma$ discovery
1149  sensitivity to $\stheta$ for the SPL as a function of the true value
1150  of \delCP\ for $\sin^2\theta_{23}^\mathrm{true} = 0.6$ and true values for
1151  the other parameters as given in Eq.~(\ref{eq:default-params}).}
1152\end{figure}
1153
1154%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1155\subsection{Sensitivity to CP violation}
1156\label{sec:CPV}
1157
1158In case a finite value of $\theta_{13}$ is established it is important
1159to quantitatively assess the discovery potential for leptonic CP
1160violation (CPV). The CP symmetry is violated if the complex phase
1161\delCP\ is different from $0$ and $\pi$. Therefore, CPV is discovered
1162if these values for \delCP\ can be excluded.
1163%
1164We evaluate the discovery potential for CPV in the following way:
1165Data are calculated by scanning the true values of $\stheta$ and
1166$\delCP$. Then these data are fitted with the CP conserving values
1167$\delCP = 0$ and $\delCP = \pi$, where all parameters except \delCP\
1168are varied and the sign and octant degeneracies are taken into
1169account. If no fit with $\Delta \chi^2 < 9$ is found CP conserving
1170values of \delCP\ can be excluded at $3\sigma$ for the chosen values
1171of $\delta_\mathrm{CP}^\mathrm{true}$ and $\stheta^\mathrm{true}$.
1172
1173\begin{figure}[!t]
1174  \centering
1175   \includegraphics[width=0.65\textwidth]{./fig11.eps}
1176%   
1177   \mycaption{CPV discovery potential for \BB, SPL, and T2HK: For
1178   parameter values inside the ellipse-shaped curves CP conserving
1179   values of \delCP\ can be excluded at $3\sigma$ $(\Delta\chi^2>9)$.
1180   The width of the bands corresponds to values for the systematical
1181   errors from 2\% to 5\%. The dashed curves show the sensitivity of
1182   the \BB\ when the number of ion decays/yr are reduced by a factor
1183   of two with respect to the values given in Tab.~\ref{tab:setups}
1184   for 2\% systematics.\label{fig:CPV}}
1185\end{figure}
1186
1187The CPV discovery potential for \BB, SPL, and T2HK is shown in
1188Fig.~\ref{fig:CPV}. As in the case of the $\theta_{13}$ sensitivity we
1189find that SPL and T2HK perform rather similar, whereas the \BB\ has
1190significantly better sensitivity if our adopted numbers of ion decays
1191per year can be achieved. For systematical errors of 2\% maximal CPV
1192(for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$) can be discovered at
1193$3\sigma$ down to $\stheta \simeq 8.8 \,(6.6)\times 10^{-4}$ for SPL
1194(T2HK), and $\stheta \simeq 2\times 10^{-4}$ for the \BB. This number
1195for the \BB\ is increased by a factor 3 if the fluxes are reduced to
1196half of our nominal values.  The best sensitivity to CPV is obtained
1197for all three facilities around $\stheta \sim 10^{-2}$. For this value
1198CPV can be established for 78\%, 73\%, 75\% of all values of \delCP\
1199for \BB, SPL, T2HK, respectively (again for systematics of 2\%).
1200
1201The widths of the bands in Fig.~\ref{fig:CPV} corresponds to different
1202values for systematical errors. The curves which give the best
1203sensitivities are obtained for systematics of 2\%, the curves
1204corresponding to the worst sensitivity have been computed for
1205systematics of 5\%. We change the uncertainty on the signal as well as
1206on the background, however, it turns out that the most relevant
1207uncertainty is the background normalization. We find that the impact
1208of systematics is very small for the \BB. The reason for this is that
1209the spectral shape of the background in the \BB\ (from pions and
1210atmospheric neutrinos) is very different from the signal, and
1211therefore they can be disentangled by the fit of the energy spectrum.
1212For the Super Beams the background spectrum is more similar to the
1213signal, and therefore an uncertainty on the backgound normalization
1214might have a strong impact on the sensitivity, as visible from the SPL
1215and T2HK curves in Fig.~\ref{fig:CPV}. In particular T2HK is strongly
1216affected, and moving from 2\% to 5\% uncertainy decreases the
1217sensitivity to maximal CPV by a factor 3.
1218
1219This interesting feature can be understood in the following way. A
1220rough measure to estimate the sensitivity is given by the signal
1221compared to the error on the background. The latter receives
1222contributions from the statistical error $\sqrt{B}$ and from the
1223systematical uncertainty $\sigma_\mathrm{bkgr}B$, where $B$ is the
1224number of background events and $\sigma_\mathrm{bkgr}$ is the
1225(relative) systematical error. Hence the importance of the systematics
1226can be estimated by the ratio of systematical and statistical errors
1227$\sigma_\mathrm{bkgr} B / \sqrt{B} = \sigma_\mathrm{bkgr} \sqrt{B}$.
1228Summing the numbers for background events in the neutrino and
1229antineutrino channels given in Tab.~\ref{tab:events} one finds that
1230systematical errors dominate ($\sigma_\mathrm{bkgr} \sqrt{B} > 1$) if
1231$\sigma_\mathrm{bkgr} \gtrsim 6\%,\, 3\%, \, 2\%$ for \BB, SPL, T2HK,
1232respectively.
1233%
1234In the right panel Fig.~\ref{fig:systematics} we show the sensitivity
1235to maximal CPV (as defined in the figure caption) as a function of
1236$\sigma_\mathrm{bkgr}$. Indeed, the worsening of the sensitivity due
1237to systematics occurs roughly at the values of $\sigma_\mathrm{bkgr}$
1238as estimated above. For a more quantitative understanding of these
1239curves it is necessary to consider the number of signal and background
1240events for neutrinos and antineutrinos separately, as well as to take
1241into account spectral information.
1242
1243
1244\begin{figure}[!t]
1245  \centering
1246   \includegraphics[width=0.9\textwidth]{./fig12.eps}
1247%   
1248   \mycaption{Impact of total exposure and systematical errors on the
1249   CPV discovery potential of \BB, SPL, and T2HK. We show the
1250   smallest true value of $\stheta$ for which $\delCP = \pi/2$ can be
1251   distinguished from $\delCP = 0$ or $\delCP = \pi$ at $3\sigma$
1252   $(\Delta\chi^2>9)$ as a function of the exposure in kt~yrs (left)
1253   and as a function of the systematical error on the background
1254   $\sigma_\mathrm{bkgr}$ (right). The widths of the curves in the
1255   left panel corresponds to values of $\sigma_\mathrm{bkgr}$ from 2\%
1256   to 5\%. The thin solid curves in the left panel corresponds to no
1257   systematical errors. The right plot is calculated for the standard
1258   exposure of 4400~kt~yrs. No systematical error on the signal has
1259   been assumed. \label{fig:systematics}}
1260\end{figure}
1261
1262The left panel of Fig.~\ref{fig:systematics} shows the sensitivity to
1263maximal CPV as a function of the exposure\footnote{Note that the CPV
1264sensitivity for the \BB\ with reduced fluxes from Fig.~\ref{fig:CPV}
1265is worse than the value which follows from Fig.~\ref{fig:systematics}.
1266The reason is that in Fig.~\ref{fig:systematics} the total exposure is
1267scaled (mass~$\times$~time), i.e., signal and background are scaled in
1268the same way, whereas for the dashed curve in Fig.~\ref{fig:CPV} only
1269the fluxes are reduced but backgrounds are kept constant.} for values
1270of $\sigma_\mathrm{bkgr}$ from 2\% to 5\%. One can observe clearly
1271that for the standard exposure of 4400~kt~yrs T2HK is dominated by
1272systematics and changing $\sigma_\mathrm{bkgr}$ from 2\% to 5\% has a
1273big impact on the sensitivity. In contrast the CERN--MEMPHYS
1274experiments (especially the \BB) are rather stable with respect to
1275systematics and for the standard exposure they are still statistics
1276dominated. We conclude that in T2HK systematics have to be under very
1277good control\footnote{As a possible solution to this problem for T2HK
1278it has been proposed in Ref.~\cite{Ishitsuka:2005qi} to place one half
1279of the Hyper-K detector mass at Kamioka and the second half at the
1280same off-axis angle in Korea.}, whereas this issue is less important
1281for \BB\ and SPL.
1282%
1283We have checked explicitly that the systematical error on the signal
1284has negligible impact on these results. Therefore, we have set this
1285error to zero for calculating Fig.~\ref{fig:systematics} to highlight
1286the importance of the background error. In all other calculations also
1287the signal error is included, in particular also in Fig.~\ref{fig:CPV}.
1288
1289
1290\begin{figure}[!t]
1291  \centering
1292   \includegraphics[width=0.8\textwidth]{./fig13.eps}
1293%   
1294   \mycaption{Impact of degeneracies on the CPV discovery potential
1295   for the \BB. We show the sensitivity to CPV at $3\sigma$
1296   $(\Delta\chi^2>9)$ computed for 4 different combinations of the
1297   true values of the hierarchy (NH or IH) and $\theta_{23}$
1298   ($\sin^2\theta_{23} = 0.4$ or $0.6$). Dashed curves are computed
1299   neglecting degeneracies in the fit.\label{fig:deltacp}}
1300\end{figure}
1301
1302Finally, in Fig.~\ref{fig:deltacp} we illustrate the impact of
1303degeneracies, as well as the true hierarchy and \thetatt-octant on the
1304CPV sensitivity.  Curves of different colors correspond to the four
1305different choices for \sigdm\ and the \thetatt-octant of the true
1306parameters. For the solid curves the simulated data for each choice of
1307true \sigdm\ and \thetatt-octant are fitted by taking into account all
1308four degenerate solutions, i.e., also for the fit all four
1309combinations of \sigdm\ and \thetatt-octant are used. One observes
1310from the figure that the true hierarchy and octant have a rather small
1311impact on the \BB\ CPV sensitivity, in particular the sensitivity to
1312maximal CPV is completely independent.  The main effect of changing the
1313true hierarchy is to exchange the behavior between $0 < \delCP <
1314180^\circ$ and $180^\circ < \delCP < 360^\circ$. For $\stheta \lesssim
131510^{-2}$ the sensitivity gets slightly worse if
1316$\thetatt^\mathrm{true} > \pi/4$ compared to $\thetatt^\mathrm{true} <
1317\pi/4$.
1318
1319The dashed curves in Fig.~\ref{fig:deltacp} are computed without
1320taking into account the degeneracies, i.e., for each choice of true
1321\sigdm\ and \thetatt-octant the data are fitted only with this
1322particular choice. The effect of the degeneracies becomes visible for
1323large values of \thetaot. Note that this is just the region where they
1324can be reduced by a combined analysis with atmospheric neutrinos (see
1325Sec.~\ref{sec:atmospherics} or Ref.~\cite{Huber:2005ep}).
1326 
1327
1328%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1329\section{Synergies provided by the CERN--MEMPHYS facilities}
1330%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1331\label{sec:synergies}
1332
1333%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1334\subsection{Combining Beta Beam and Super Beam}
1335%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1336\label{sec:synergies-beams}
1337
1338In this section we discuss synergies which emerge if both \BB\ and SPL
1339are available. The main difference between these two beams is the
1340different initial neutrino flavor,
1341$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for \BB\ and
1342$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ for SPL. This implies
1343that at near detectors all relevant cross sections can be measured. In
1344particular, the near detector of the \BB\ will measure the cross
1345section for the SPL appearance search, and vice versa.
1346%
1347If both experiments run with neutrinos and antineutrinos all possible
1348transition probabilities are covered: $P_{\nu_e\to\nu_\mu}$,
1349$P_{\bar\nu_e\to\bar\nu_\mu}$, $P_{\nu_\mu\to\nu_e}$, and
1350$P_{\bar\nu_\mu\to\bar\nu_e}$. Together with the fact that matter
1351effects are very small because of the relatively short baseline, this
1352means that in addition to CP also direct tests of the T and CPT
1353symmetries are possible.
1354
1355\begin{figure}[!t]
1356  \centering
1357   \includegraphics[width=0.9\textwidth]{./fig14.eps}
1358%   
1359   \mycaption{Discovery potential of a finite value of $\stheta$ at
1360   $3\sigma$ $(\Delta\chi^2>9)$ for 5~yrs neutrino data from
1361   \BB, SPL, and the combination of \BB\ + SPL compared to
1362   10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
1363   \label{fig:th13-5yrs}}
1364\end{figure}
1365
1366\begin{figure}[!t]
1367  \centering
1368   \includegraphics[width=0.6\textwidth]{./fig15.eps}
1369%   
1370   \mycaption{Sensitivity to CPV at $3\sigma$ $(\Delta\chi^2>9)$ for
1371   combining 5~yrs neutrino data from \BB\ and SPL compared to
1372   10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
1373   \label{fig:CP-5yrs}}
1374\end{figure}
1375
1376However, if the CPT symmetry is assumed in principle all information
1377can be obtained just from neutrino data because of the relations
1378$P_{\bar\nu_e\to\bar\nu_\mu} = P_{\nu_\mu\to\nu_e}$ and
1379$P_{\bar\nu_\mu\to\bar\nu_e} = P_{\nu_e\to\nu_\mu}$. As mentioned
1380already in Sec.~\ref{sec:degeneracies} this implies that (time
1381consuming) antineutrino running can be avoided. We illustrate this
1382synergy in Figs.~\ref{fig:th13-5yrs} and \ref{fig:CP-5yrs}. In
1383Fig.~\ref{fig:th13-5yrs} we show the $\theta_{13}$ discovery potential
1384of 5 years of neutrino data from \BB\ and SPL. From the left panel the
1385complementarity of the two experiments is obvious, since each of them
1386is most sensitive in a different region of \delCP. (As expected from
1387general properties of the oscillation probabilities the sensitivity
1388curves of \BB\ and SPL are approximately related by the transformation
1389$\delCP \to 2\pi - \delCP$.) Combining these two data sets results in
1390a sensitivity slightly better than from 10 years (2$\nu$+8$\bar\nu$)
1391of T2HK data.
1392%
1393As visible in Fig.~\ref{fig:CP-5yrs} also for the CPV discovery this
1394synergy works and 5 years of neutrino data from \BB\ and SPL lead to a
1395similar sensitivity as 10 years of T2HK.
1396
1397
1398%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1399\subsection{Resolving degeneracies with atmospheric neutrinos}
1400%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1401\label{sec:atmospherics}
1402
1403It was pointed out in Ref.~\cite{Huber:2005ep} that for LBL
1404experiments based on mega ton scale water \v{C}erenkov detectors data
1405from atmospheric neutrinos (ATM) provide an attractive method to
1406resolve degeneracies. Atmospheric neutrinos are sensitive to the
1407neutrino mass hierarchy if $\theta_{13}$ is sufficiently large due to
1408Earth matter effects, mainly in multi-GeV $e$-like
1409events~\cite{Petcov:1998su,Akhmedov:1998ui,Bernabeu:2003yp}. Moreover,
1410sub-GeV $e$-like events provide sensitivity to the octant of
1411$\theta_{23}$~\cite{Kim:1998bv,Peres:2003wd,Gonzalez-Garcia:2004cu}
1412due to oscillations with $\Delta m^2_{21}$ (see also
1413Ref.~\cite{Kajita} for a discussion of atmospheric neutrinos in the
1414context of Hyper-K).
1415%
1416Following Ref.~\cite{Huber:2005ep} we investigate here the synergy
1417from a combination of LBL data from \BB\ and SPL with ATM data in the
1418MEMPHYS detector. A general three-flavor analysis of ATM data is
1419performed based on Ref.~\cite{Gonzalez-Garcia:2004cu} and references
1420therein.
1421%
1422We include fully-contained $e$-like and $\mu$-like events (further
1423divided into sub-GeV $p_l<400$~MeV, sub-GeV $p_l > 400$~MeV, and
1424Multi-GeV events), partially-contained $\mu$-like events, stopping
1425muons, and through-going muons. Each of these data samples is divided
1426into 10 zenith bins, so we have a total of 90 data points. The
1427simulation of the atmospheric event rates has been adapted to the
1428actual geometry of the MEMPHYS detector proposal (see
1429Fig.~\ref{fig:MEMPHYS}). Details of the statistical analysis can be
1430found in Ref.~\cite{Gonzalez-Garcia:2004wg}. Note that our analysis of
1431atmospheric data is conservative, since there is room for improvement
1432by including multi-ring events as well as by optimizing the energy
1433binning.\footnote{The impact of energy binning on the hierarchy
1434determination with atmospheric neutrinos has been discussed recently
1435in Ref.~\cite{Petcov:2005rv} in the context of magnetized iron
1436detectors.}
1437 
1438\begin{figure}[!t]
1439\centering
1440  \includegraphics[width=0.9\textwidth]{./fig16.eps}
1441%
1442  \mycaption{Sensitivity to the mass hierarchy at $2\sigma$
1443  $(\Delta\chi^2 = 4)$ as a function of the true values of
1444  $\sin^22\theta_{13}$ and $\delta_\mathrm{CP}$ (left), and the
1445  fraction of true values of $\delCP$ (right). The solid curves are
1446  the sensitivities from the combination of long-baseline and
1447  atmospheric neutrino data, the dashed curves correspond to
1448  long-baseline data only. For comparison we show in the right panel
1449  also the sensitivities of NO$\nu$A and NO$\nu$A+T2K extracted from
1450  Fig.~13.14 of Ref.~\cite{Ayres:2004js}. For the curve labeled
1451  ``NO$\nu$A (p.dr.)+T2K@4~MW'' a proton driver has been assumed for
1452  NO$\nu$A and the T2K beam has been up-graded to 4~MW, see
1453  Ref.~\cite{Ayres:2004js} for details.}
1454  \label{fig:hierarchy}
1455\end{figure}
1456
1457The effect of degeneracies in LBL data has been discussed in
1458Sec.~\ref{sec:degeneracies}, see Figs.~\ref{fig:degeneracies} and
1459\ref{fig:degeneracies_SPL}. As discussed there, for given true
1460parameter values the data can be fitted with the wrong hierarchy
1461and/or with the wrong octant of $\theta_{23}$. Hence, from LBL data
1462alone the hierarchy and the octant cannot be determined and
1463ambiguities exist in the determination of $\theta_{13}$ and
1464$\delta_\mathrm{CP}$.
1465%
1466If the LBL data are combined with ATM data only the colored regions in
1467Fig.~\ref{fig:degeneracies} survive, i.e., in this particular example
1468for SPL and T2HK the degeneracies are completely lifted at 95\%~CL,
1469the mass hierarchy and the octant of $\theta_{23}$ can be identified,
1470and the ambiguities in $\theta_{13}$ and $\delta_\mathrm{CP}$ are
1471resolved. For the \BB\ an island corresponding to the wrong hierarchy
1472does survive at the 95\%~CL for 2~dof. Still, the solution with the
1473wrong sign of $\Delta m^2_{31}$ is disfavored with $\Delta\chi^2 =
14745.1$ with respect to the true solution, which corresponds to
14752.4$\sigma$ for 1~dof.
1476%
1477Let us note that in Fig.~\ref{fig:degeneracies} we have chosen a
1478favorable value of $\sin^2\theta_{23} = 0.6$; for values
1479$\sin^2\theta_{23} < 0.5$ in general the sensitivity of ATM data is
1480weaker~\cite{Huber:2005ep}.
1481
1482In Fig.~\ref{fig:hierarchy} we show how the combination of ATM+LBL
1483data leads to a non-trivial sensitivity to the neutrino mass
1484hierarchy, i.e.\ to the sign of $\Delta m^2_{31}$. For LBL data alone
1485(dashed curves) there is practically no sensitivity for the
1486CERN--MEMPHYS experiments (because of the very small matter effects
1487due to the relatively short baseline), and the sensitivity of T2HK
1488depends strongly on the true value of $\delta_\mathrm{CP}$. However,
1489by including data from atmospheric neutrinos (solid curves) the mass
1490hierarchy can be identified at $2\sigma$~CL provided
1491$\sin^22\theta_{13} \gtrsim 0.03-0.05$ for \BB\ and SPL, and
1492$\sin^22\theta_{13} \gtrsim 0.02-0.03$ for T2HK, where for the CERN
1493experiments the sensitivity shows somewhat more dependence on the true
1494value of $\delta_\mathrm{CP}$. As an example we have chosen in that
1495figure a true value of $\theta_{23} = \pi/4$. Generically the
1496hierarchy sensitivity increases with increasing $\theta_{23}$, see
1497Ref.~\cite{Huber:2005ep} for a detailed discussion.
1498
1499Although \BB\ and SPL alone have no sensitivity to the hierarchy at
1500all, we find that the combination of them does provide rather good
1501sensitivity even without atmosheric data. The reason for this
1502interesting effect is the following. Because of the rather short
1503baseline the matter effect is too small to distinguish between NH and
1504IH given only neutrino and antineutrino information in one channel.
1505However, the tiny matter effect suffices to move the hierarchy
1506degenerate solution to slightly different locations in the ($\stheta$,
1507$\delCP$) plane for the $\stackrel{\scriptscriptstyle(-)}{\nu}_e \to
1508\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ (\BB) and
1509$\stackrel{\scriptscriptstyle(-)}{\nu}_\mu \to
1510\stackrel{\scriptscriptstyle (-)}{\nu}_e$ (SPL) channels (compare
1511Fig.~\ref{fig:degeneracies}). Hence, if all four CP and T conjugate
1512channels are available (as it is the case for the \BB+SPL combination)
1513already the small matter effect picked up allong the 130~km
1514CERN--MEMPHYS distance provides sensitivity to the mass hierarchy for
1515$\sin^22\theta_{13} \gtrsim 0.03$, or $\sin^22\theta_{13} \gtrsim 0.02$
1516if also atmospheric neutrino data is included.
1517
1518For comparison we show in the right panel of Fig.~\ref{fig:hierarchy}
1519also the sensitivity of the NO$\nu$A~\cite{Ayres:2004js} experiment,
1520and of NO$\nu$A+T2K, where in the second case a beam upgrade by a
1521proton driver has been assumed for NO$\nu$A, and for T2K the
1522Super-Kamiokande detector has been used but the beam intensity has
1523been increased by assuming 4~MW power. More details on these
1524sensitivities can be found in Ref.~\cite{Ayres:2004js}.
1525%
1526Let us note that in general LBL experiments with two detectors (or the
1527combination of two different LBL experiments) are a competitive method
1528to atmospheric neutrinos for the hierarchy determination, see, e.g.,
1529Refs.~\cite{Ishitsuka:2005qi,MenaRequejo:2005hn,Hagiwara:2005pe} for
1530recent analyses.
1531%
1532We mention also the possibility to determine the neutrino mass
1533hierarchy by using neutrino events from a galactic Super Nova
1534explosion in mega ton \v{C}erenkov detectors such as MEMPHYS, see,
1535e.g., Ref.~\cite{Kachelriess:2004vs}.
1536
1537\begin{figure}[!t]
1538\centering
1539  \includegraphics[width=0.55\textwidth]{./fig17.eps}
1540%
1541  \mycaption{$\Delta\chi^2$ of the solution with the wrong octant of
1542  $\theta_{23}$ as a function of the true value of
1543  $\sin^2\theta_{23}$. We have assumed a true value of $\theta_{13} =
1544  0$.}
1545  \label{fig:octant}
1546\end{figure}
1547
1548Fig.~\ref{fig:octant} shows the potential of ATM+LBL data to exclude
1549the octant degenerate solution. Since this effect is based mainly on
1550oscillations with $\Delta m^2_{21}$ there is very good sensitivity
1551even for $\theta_{13} = 0$; a finite value of $\theta_{13}$ in general
1552improves the sensitivity~\cite{Huber:2005ep}.  From the figure one can
1553read off that atmospheric data alone can can resolve the correct
1554octant at $3\sigma$ if $|\sin^2\theta_{23} - 0.5| \gtrsim 0.085$. If
1555atmospheric data is combined with the LBL data from SPL or T2HK there
1556is sensitivity to the octant for $|\sin^2\theta_{23} - 0.5| \gtrsim
15570.05$. The improvement of the octant sensitivity with respect to
1558previous analyses~\cite{Huber:2005ep,Gonzalez-Garcia:2004cu} follows
1559from changes in the analysis of sub-GeV atmospheric events, where now
1560three bins {\bf *** to be confirmed ***} in lepton momentum are used
1561instead of one. Note that since in Fig.~\ref{fig:octant} we have
1562assumed a true value of $\theta_{13} = 0$, combining the \BB\ with ATM
1563does not improve the sensitivity with respect to atmospheric data
1564alone.
1565
1566%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1567\section{Summary}
1568%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1569\label{sec:conclusions}
1570
1571In this work we have studied the physics potential of the
1572CERN--MEMPHYS neutrino oscillation project. We consider a Beta Beam
1573(\BB) with $\gamma = 100$ for the stored ions, where existing
1574facilities at CERN can be used optimally, and a Super Beam based on an
1575optimized Super Proton Linac (SPL) with a beam energy of 3.5~GeV and
15764~MW power. As target we assume the MEMPHYS detector, a 440~kt water
1577\v{C}erenkov detector at Fr\'ejus, at a distance of 130~km from
1578CERN. The main characteristics of the experiments are summarized in
1579Tab.~\ref{tab:setups}.
1580%
1581The adopted neutrino fluxes are based on realistic calculations of ion
1582production and storage for the \BB, and a full simulation of the beam
1583line (particle production and decay of secondaries) for SPL. Special
1584care has be given to the issue of backgrounds, which we include by
1585means of detailed event simulations and applying Super-Kamiokande particle
1586identification algorithms.
1587
1588The physics potential of the \BB\ and SPL experiments in terms of
1589$\theta_{13}$ discovery reach and sensitivity to CP violation has been
1590addressed where parameter degeneracies are fully taken into account.
1591The main results on these performance indicators are summarized in
1592Figs.~\ref{fig:th13} and \ref{fig:CPV}.
1593%
1594We obtain a guaranteed discovery reach of $\stheta \simeq 5\times
159510^{-3}$ at $3\sigma$, irrespective of the actual value of \delCP. For
1596certain values of \delCP\ the sensitivity is significantly improved,
1597and for \BB\ (SPL) discovery limits arround $\stheta \simeq 3\,(10)
1598\times 10^{-4}$ are possible for a large fraction of all possible
1599values of \delCP.
1600%
1601Maximal CP violation (for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$)
1602can be discovered at $3\sigma$ down to $\stheta \simeq 2\, (9)\times
160310^{-4}$ for \BB\ (SPL), whereas the best sensitivity to CP violation
1604is obtained for $\stheta \sim 10^{-2}$: For $\stheta = 10^{-2}$ CP
1605violation can be established at $3\sigma$ for 78\% (73\%) of all
1606possible true values of \delCP\ for \BB\ (SPL).
1607%
1608We stress that the \BB\ performance in general depends crucially on
1609the number of ion decays per year.
1610%
1611The impact of the value of systematical uncertainties on signal and
1612background on our results is discussed.
1613%
1614The \BB\ and SPL sensitivities are compared to the ones of the
1615phase~II of the T2K experiment in Japan (T2HK), which is a competing
1616proposal of similar size and timescale. In general we obtain rather
1617similar sensitivities for T2HK and SPL, and hence the CERN--MEMPHYS
1618experiments provide a viable alternative to T2HK. We find that \BB\
1619and SPL are less sensitive to systematical errors, whereas the
1620sensitivity of T2HK crucially depends on the systematical error on the
1621background.\footnote{Let us note that in the present study we have not
1622considered the recent ``T2KK'' proposal~\cite{Ishitsuka:2005qi}, where
1623one half of the Hyper-K detector mass is at Kamioka and the second
1624half in Korea. For such a setup our results do not apply and
1625especially the conclusion on systematical errors may be different.}
1626
1627Assuming that both \BB\ and SPL experiments are available, we point
1628out that one can benefit from the different oscillation channels
1629$\nu_e\to\nu_\mu$ for \BB\ and $\nu_\mu\to\nu_e$ for SPL, since by the
1630combination of these channels the time intensive antineutrino
1631measurements can be avoided. We show that 5 years of neutrino data from
1632\BB\ and SPL lead to similar results as 2 years of neutrino plus 8
1633years of antineutrino data from T2HK.
1634%
1635Furthermore, we discuss the use of atmospheric neutrinos in the
1636MEMPHYS detector to resolve parameter degeneracies in the
1637long-baseline data. This effect leads to a sensitivity to the neutrino
1638mass hierarchy at $2\sigma$~CL for $\sin^22\theta_{13} \gtrsim
16390.03-0.05$ for \BB\ and SPL, although these experiments alone (without
1640atmospheric data) have no sensitivity at all. The optimal hierarchy
1641sensitivity is obtained from combining \BB+SPL+atmospheric data.
1642Furthermore, the combination of atmospheric data with a Super Beam
1643provides a possibility to determine the octant of $\theta_{23}$.
1644
1645To conclude, we have shown that the CERN--MEMPHYS neutrino oscillation
1646project based on a Beta Beam and/or a Super Beam plus a mega ton scale
1647water \v{C}erenkov detector offers interesting and competitive physics
1648possibilities and is worth to be considered as a serious option in
1649the worldwide process of identifying future high precision neutrino
1650oscillation facilities~\cite{ISSpage}.
1651
1652\subsection*{Acknowledgment}
1653
1654We thank J.~Argyriades for communication on the Super-K atmospheric
1655neutrino analysis, A.~Cazes for his work on the SPL simulation, and
1656P.~Huber for his patience in answering questions concerning the use of
1657GLoBES. T.S.\ is supported by the $6^\mathrm{th}$~Framework Program
1658of the European Community under a Marie Curie Intra-European
1659Fellowship.
1660
1661
1662%\newpage
1663\begin{thebibliography}{99}
1664
1665\bibitem{solar}
1666  B.~T.~Cleveland {\it et al.},
1667  Astrophys.\ J.\  {\bf 496} (1998) 505;
1668  %%CITATION = ASJOA,496,505;%%
1669%
1670  J.N.~Abdurashitov {\it et al.}  [SAGE],
1671  J.\ Exp.\ Theor.\ Phys.\  {\bf 95} (2002) 181
1672  % [Zh.\ Eksp.\ Teor.\ Fiz.\  {\bf 122} (2002) 211].
1673  [astro-ph/0204245];
1674  %%CITATION = ASTRO-PH 0204245;%%
1675%
1676  T. Kirsten {\it et al.} [GALLEX and GNO],
1677  Nucl. Phys. B (Proc. Suppl.)  {\bf 118} (2003) 33;
1678%
1679  S.~Fukuda {\it et al.} [Super-Kamiokande],
1680  %``Determination of solar neutrino
1681  % oscillation parameters using 1496 days  of Super-Kamiokande-I data,''
1682  Phys. Lett. {\bf B539} (2002) 179;
1683%
1684%\bibitem{ahmad:2002ka}
1685  Q.R. Ahmad {\em et~al.} [SNO],
1686  Phys. Rev. Lett. {\bf 89}, 011302 (2002)
1687  [nucl-ex/0204009];
1688  %%CITATION = NUCL-EX 0204009;%%
1689%
1690%\bibitem{Aharmim:2005gt}
1691  B.~Aharmim {\it et al.}  [SNO],
1692  %``Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar
1693  %neutrinos from the 391-day salt phase SNO data set,''
1694  Phys.\ Rev.\ C {\bf 72} (2005) 055502
1695  [nucl-ex/0502021].
1696  %%CITATION = NUCL-EX 0502021;%%
1697
1698\bibitem{sk-atm}
1699%\bibitem{Fukuda:1998mi}
1700  Super-Kamiokande Coll.,
1701  Y.~Fukuda {\it et al.},
1702  %``Evidence for oscillation of atmospheric neutrinos,''
1703  Phys.\ Rev.\ Lett.\  {\bf 81} (1998) 1562
1704  [hep-ex/9807003];
1705  %%CITATION = HEP-EX 9807003;%%
1706%
1707%\bibitem{Ashie:2005ik}
1708  Y.~Ashie {\it et al.},%  [Super-Kamiokande Collaboration],
1709  %``A measurement of atmospheric neutrino oscillation parameters by
1710  %Super-Kamiokande I,''
1711  Phys.\ Rev.\ D {\bf 71}, 112005 (2005)
1712  [hep-ex/0501064].
1713  %%CITATION = HEP-EX 0501064;%%
1714
1715\bibitem{Araki:2004mb}
1716  T.~Araki {\it et al.} [KamLAND Coll.],
1717  %``Measurement of neutrino oscillation with KamLAND: Evidence of spectral
1718  %distortion,''
1719  Phys.\ Rev.\ Lett.\  {\bf 94}, 081801 (2005)
1720  [hep-ex/0406035].
1721  %%CITATION = HEP-EX 0406035;%%
1722
1723
1724\bibitem{Aliu:2004sq}
1725  E.~Aliu {\it et al.}  [K2K Coll.],
1726  %``Evidence for muon neutrino oscillation in an accelerator-based
1727  %experiment,''
1728  Phys.\ Rev.\ Lett.\  {\bf 94}, 081802 (2005)
1729  [hep-ex/0411038].
1730  %%CITATION = HEP-EX 0411038;%%
1731
1732\bibitem{MINOS} 
1733  T. Thomson [MINOS Coll.],
1734  Nucl.\ Phys.\ B (Proc. Suppl.) {\bf 143}, 249 (2005);
1735  P. Adamson \etal, NuMi-L-337.
1736
1737\bibitem{OPERA}
1738  D. Autiero [OPERA Coll.],
1739  Nucl.\ Phys.\ B (Proc. Suppl.) {\bf 143}, 257 (2005);
1740  M. Guler  \etal, \textit{Experiment proposal},
1741  CERN/SPSC 2000-028 SPSC/P318 LNGS P25/2000.
1742
1743\bibitem{CNGS}
1744  G. Acquistapace \etal, CERN-98-02.
1745
1746\bibitem{LSND}
1747  A. Athanassopoulos \etal, Phys.\ Rev.\ Lett.\ {\bf 81}, 1774  (1998);
1748  A. Aguilar \etal, Phys.\ Rev.\ D {\bf 64}, 112007 (2001).
1749
1750\bibitem{MINIBOONE}
1751  I. Stancu \etal, FERMILAB-TM-2207.
1752
1753\bibitem{FOGLILISI05}
1754  G.~L.~Fogli, E.~Lisi, A.~Marrone and A.~Palazzo,
1755  %``Global analysis of three-flavor neutrino masses and mixings,''
1756  hep-ph/0506083;
1757
1758\bibitem{Maltoni:2004ei}
1759  M.~Maltoni, T.~Schwetz, M.~A.~Tortola and J.~W.~F.~Valle,
1760  %``Status of global fits to neutrino oscillations,''
1761  New J.\ Phys.\  {\bf 6}, 122 (2004)
1762  [hep-ph/0405172];
1763  %%CITATION = HEP-PH 0405172;%%
1764%
1765%\bibitem{Schwetz:2005jr}
1766  T.~Schwetz,
1767  %``Neutrino oscillations: Current status and prospects,''
1768  Acta Phys.\ Polon.\ B {\bf 36}, 3203 (2005)
1769  [hep-ph/0510331].
1770  %%CITATION = HEP-PH 0510331;%%
1771
1772\bibitem{PMNS}
1773  B.~Pontecorvo, Sov.\ Phys.--JETP {\bf 6}, 429 (1957)
1774  [Zh.\ Eksp.\ Teor.\ Fiz.\ \textbf{33}, 549 (1957)];
1775  Z.~Maki, M.~Nakagawa and S.~Sakata,
1776  Prog.\ Theor.\ Phys.\ \textbf{28}, 870 (1962);
1777  B.~Pontecorvo, Sov.\ Phys.--JETP \textbf{26}, 984 (1968)
1778  [Zh. Eksp. Teor. Fiz. \textbf{53}, 1717 (1967)];
1779  V.~N.~Gribov and B.~Pontecorvo,
1780  Phys.\ Lett.\ B \textbf{28}, 493 (1969).
1781
1782\bibitem{CHOOZ}
1783  Chooz Collaboration,
1784  M. Apollonio \etal, Phys.\ Lett.\ B {\bf 466}, 415 (1999);
1785%\bibitem{Apollonio:2002gd}
1786  M.~Apollonio {\it et al.},
1787  %``Search for neutrino oscillations on a long base-line at the CHOOZ  nuclear
1788  %power station,''
1789  Eur.\ Phys.\ J.\ C {\bf 27}, 331 (2003)
1790  [hep-ex/0301017].
1791  %%CITATION = HEP-EX 0301017;%%
1792
1793\bibitem{Wpaper}
1794  K.~Anderson \etal, White paper report on using nuclear
1795  reactors to search for a value of $\theta_{13}$,
1796  hep-ex/0402041;
1797%
1798  F.~Ardellier \etal, Letter of intent for Double-Chooz,
1799  hep-ex/0405032.
1800
1801\bibitem{T2K}
1802  Y.~Itow {\it et al.},
1803  The JHF-Kamioka neutrino project,
1804  hep-ex/0106019;
1805  %%CITATION = HEP-EX 0106019;%%
1806%
1807%\bibitem{Kobayashi:2005hu}
1808  T.~Kobayashi,
1809  %``Super beams,''
1810  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 303.
1811  %%CITATION = NUPHZ,143,303;%%
1812
1813\bibitem{Ayres:2004js}
1814  D.~S.~Ayres {\it et al.} [NOvA Coll.],
1815  %``NOvA proposal to build a 30-kiloton off-axis detector to study neutrino
1816  %oscillations in the Fermilab NuMI beamline,''
1817  hep-ex/0503053.
1818  %%CITATION = HEP-EX 0503053;%%
1819
1820\bibitem{Huber:2003pm}
1821  P.~Huber, M.~Lindner, T.~Schwetz and W.~Winter,
1822  %``Reactor neutrino experiments compared to superbeams,''
1823  Nucl.\ Phys.\ B {\bf 665} (2003) 487
1824  [hep-ph/0303232];
1825  %%CITATION = HEP-PH 0303232;%%
1826%
1827%\bibitem{Huber:2004ug}
1828  P.~Huber, M.~Lindner, M.~Rolinec, T.~Schwetz and W.~Winter,
1829  %``Prospects of accelerator and reactor neutrino oscillation experiments  for
1830  %the coming ten years,''
1831  Phys.\ Rev.\ D {\bf 70} (2004) 073014
1832  [hep-ph/0403068].
1833  %%CITATION = HEP-PH 0403068;%%
1834
1835\bibitem{Albrow:2005kw}
1836  M.~G.~Albrow {\it et al.},
1837  Physics at a Fermilab proton driver,
1838  hep-ex/0509019.
1839  %%CITATION = HEP-EX 0509019;%%
1840
1841\bibitem{SPL}
1842%\bibitem{Autin:2000mn}
1843  B.~Autin {\it et al.},
1844  Conceptual design of the SPL, a high-power superconducting H- linac at
1845  CERN, CERN-2000-012.
1846
1847\bibitem{BNLHS}
1848%\bibitem{Diwan:2003bp}
1849  M.~V.~Diwan {\it et al.},
1850  %``Very long baseline neutrino oscillation experiments for precise
1851  %measurements of mixing parameters and CP violating effects,''
1852  Phys.\ Rev.\ D {\bf 68} (2003) 012002
1853  [hep-ph/0303081].
1854  %%CITATION = HEP-PH 0303081;%%
1855
1856\bibitem{zucchelli}
1857%\bibitem{Zucchelli:2002sa}
1858  P.~Zucchelli,
1859  %``A novel concept for a anti-nu/e / nu/e neutrino factory: The Beta Beam,''
1860  Phys.\ Lett.\ B {\bf 532} (2002) 166.
1861  %%CITATION = PHLTA,B532,166;%%
1862
1863\bibitem{Albright:2004iw}
1864  C.~Albright {\it et al.}  [Neutrino Factory/Muon Collider Coll.],
1865  %``The neutrino factory and Beta Beam experiments and development,''
1866  physics/0411123.
1867  %%CITATION = PHYS-ICS 0411123;%%
1868
1869\bibitem{Blondel:2004ae}
1870  A.~Blondel {\it et al.},
1871  ECFA/CERN studies of a European neutrino factory complex,
1872  CERN-2004-002
1873
1874\bibitem{Campagne:2004wt}
1875  J.~E.~Campagne and A.~Cazes,
1876  %``The theta(13) and delta(CP) sensitivities of the SPL-Frejus project
1877  %revisited,''
1878  Eur.\ Phys.\ J.\ C {\bf 45} (2006) 643
1879  [hep-ex/0411062].
1880  %%CITATION = HEP-EX 0411062;%%
1881
1882\bibitem{Mezzetto:2003ub}
1883  M.~Mezzetto,
1884  %``Physics reach of the beta beam,''
1885  J.\ Phys.\ G {\bf 29} (2003) 1771
1886  [hep-ex/0302007];
1887  %%CITATION = HEP-EX 0302007;%%
1888%
1889  J.~Bouchez, M.~Lindroos, M.~Mezzetto,
1890  %``Beta Beams: Present design and expected performances,''
1891  AIP Conf.\ Proc.\  {\bf 721} (2004) 37
1892  [hep-ex/0310059].
1893  %%CITATION = HEP-EX 0310059;%%
1894
1895\bibitem{memphys}
1896  A.~de Bellefon {\it et al.},
1897  MEMPHYS: A large scale water \v{C}erenkov detector
1898  at Fr\'ejus, Contribution to the CERN strategic committee,\\
1899  \verb!http://apc-p7.org/APC_CS/Experiences/MEMPHYS/!
1900
1901\bibitem{UNO} 
1902  C.~K.~Jung,
1903  Feasibility of a next generation underground water Cherenkov detector:
1904  UNO, hep-ex/0005046.
1905  %%CITATION = HEP-EX 0005046;%%
1906
1907\bibitem{Nakamura:2003hk}
1908  K.~Nakamura,
1909  %``Hyper-Kamiokande: A next generation water Cherenkov detector,''
1910  Int.\ J.\ Mod.\ Phys.\ A {\bf 18} (2003) 4053.
1911  %%CITATION = IMPAE,A18,4053;%%
1912
1913\bibitem{Huber:2005ep}
1914  P.~Huber, M.~Maltoni, T.~Schwetz,
1915  %``Resolving parameter degeneracies in long-baseline experiments by
1916  %atmospheric neutrino data,''
1917  Phys.\ Rev.\ D {\bf 71} (2005) 053006
1918  [hep-ph/0501037].
1919  %%CITATION = HEP-PH 0501037;%%
1920
1921\bibitem{Globes}
1922  P.~Huber, M.~Lindner and W.~Winter,
1923  %``Simulation of long-baseline neutrino oscillation experiments with
1924  %GLoBES,''
1925  Comput.\ Phys.\ Commun.\  {\bf 167} (2005) 195
1926  [hep-ph/0407333],
1927  \verb!http://www.ph.tum.de/~globes!
1928
1929\bibitem{Huber:2002mx}
1930  P.~Huber, M.~Lindner and W.~Winter,
1931  %``Superbeams versus neutrino factories,''
1932  Nucl.\ Phys.\ B {\bf 645} (2002) 3
1933  [hep-ph/0204352].
1934  %%CITATION = HEP-PH 0204352;%%
1935
1936\bibitem{Nuance}
1937  NUANCE event generator (v3),
1938  \verb!http://nuint.ps.uci.edu/nuance/!,
1939  D.~Casper,
1940  %``The nuance neutrino physics simulation, and the future,''
1941  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 112} (2002) 161
1942  [hep-ph/0208030].
1943
1944\bibitem{ISSpage}
1945  Webpage of the International Scoping Study physics working group:\\
1946  \verb!http://www.hep.ph.ic.ac.uk/iss/wg1-phys-phen/index.html!
1947
1948\bibitem{MyNufact04}
1949  M.~Mezzetto,
1950  %``SPL and Beta Beams to the Frejus,''
1951  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 149} (2005) 179.
1952
1953\bibitem{Donini:2004hu}
1954  A.~Donini, E.~Fernandez-Martinez, P.~Migliozzi, S.~Rigolin and L.~Scotto Lavina,
1955  %``Study of the eightfold degeneracy with a standard beta-beam and a
1956  %super-beam facility,''
1957  Nucl.\ Phys.\ B {\bf 710}, 402 (2005)
1958  [hep-ph/0406132].
1959  %%CITATION = HEP-PH 0406132;%%
1960
1961\bibitem{JJHigh2} 
1962%\bibitem{Burguet-Castell:2005pa}
1963  J.~Burguet-Castell, D.~Casper, E.~Couce, J.~J.~Gomez-Cadenas and P.~Hernandez,
1964  %``Optimal beta-beam at the CERN-SPS,''
1965  Nucl.\ Phys.\ B {\bf 725} (2005) 306
1966  [hep-ph/0503021].
1967  %%CITATION = HEP-PH 0503021;%%
1968
1969\bibitem{LindnerBB}
1970%\bibitem{Huber:2005jk}
1971  P.~Huber, M.~Lindner, M.~Rolinec and W.~Winter,
1972  %``Physics and optimization of beta-beams: From low to very high gamma,''
1973  hep-ph/0506237.
1974  %%CITATION = HEP-PH 0506237;%%
1975
1976\bibitem{JJHigh1}
1977 J.~Burguet-Castell, D.~Casper, J.~J.~Gomez-Cadenas, P.~Hernandez and F.~Sanchez,
1978 Nucl.\ Phys.\ B {\bf 695} (2004) 217
1979 [hep-ph/0312068].
1980
1981\bibitem{Terranova}
1982  F.~Terranova, A.~Marotta, P.~Migliozzi and M.~Spinetti,
1983  %``High energy beta beams without massive detectors,''
1984  Eur.\ Phys.\ J.\ C {\bf 38}, 69 (2004)
1985  [hep-ph/0405081].
1986  %%CITATION = HEP-PH 0405081;%%
1987
1988\bibitem{BB-Reviews}
1989  M.~Mezzetto, %``Beta Beams,''
1990  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 309
1991  [hep-ex/0410083];
1992%
1993  C.~Volpe,
1994  %``Topical review on 'beta-beams',''
1995  hep-ph/0605033.
1996
1997\bibitem{Volpe}
1998  C.~Volpe,
1999  %``What about a Beta Beam facility for low energy neutrinos?,''
2000  J.\ Phys.\ G {\bf 30} (2004) L1
2001  [hep-ph/0303222].
2002
2003\bibitem{Lindroos}
2004%\bibitem{Autin:2002ms}
2005  B.~Autin {\it et al.},
2006  %``The acceleration and storage of radioactive ions for a neutrino  factory,''
2007  J.\ Phys.\ G {\bf 29}, 1785 (2003)
2008  [physics/0306106];
2009  %%CITATION = PHYS-ICS 0306106;%%
2010%
2011  M.~Benedikt, S.~Hancock and M.~Lindroos,
2012  % ``Baseline Design for a Beta-Beam Neutrino Factory'',
2013  Proceedings of EPAC, 2004,
2014  \verb!http://accelconf.web.cern.ch/AccelConf/e04!;
2015%
2016  M.~Lindroos, EURISOL DS/TASK12/TN-05-02.
2017
2018\bibitem{Eurisol}
2019  Eurisol Beta Beam webpage: \verb!http://beta-beam.web.cern.ch/beta-beam/!.
2020
2021\bibitem{Lindroos-Optimization}
2022  M.~Benedikt, A.~Fabich, S.~Hancock and M.~Lindroos,
2023  %``Optimization Of The Beta-Beam Baseline,''
2024  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 211.
2025
2026\bibitem{Neugen}
2027  The NEUGEN neutrino event generator,
2028  \verb!http://minos.phy.tufts.edu/gallag/neugen/!.
2029
2030\bibitem{MezzettoNuFact05}
2031  M.~Mezzetto,
2032  %``Physics potential of the gamma = 100,100 beta beam,''
2033  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 214
2034  [hep-ex/0511005].
2035
2036\bibitem{FLUKA}
2037A.~Fasso \etal, Proceedings of the MonteCarlo 2000 conference,
2038Lisbon, October 26 2000,
2039A.~Kling \etal\ (eds.), Springer-Verlag Berlin (2001), 159-164 and 955-960.
2040
2041\bibitem{GEANT}
2042Application Software group, Computing and Network Division \etal,
2043GEANT Description and Simulation Tool, CERN Geneva, Switzerland
2044
2045\bibitem{HARP-MINERVA}
2046  C. Catanesi \etal\ [HARP Coll.], CERN-SPSC 2002/019;
2047%
2048%\bibitem{Drakoulakos:2004gn}
2049  D.~Drakoulakos {\it et al.}  [Minerva Coll.],
2050  %``Proposal to perform a high-statistics neutrino scattering experiment  using
2051  %a fine-grained detector in the NuMI beam,''
2052  hep-ex/0405002.
2053  %%CITATION = HEP-EX 0405002;%%
2054
2055\bibitem{Mezzetto:2003mm}
2056  M.~Mezzetto,
2057  %``Physics potential of the SPL super beam,''
2058  J.\ Phys.\ G {\bf 29}, 1781 (2003)
2059  [hep-ex/0302005].
2060  %%CITATION = HEP-EX 0302005;%%
2061
2062\bibitem{Burguet-Castell:2001ez}
2063  J.~Burguet-Castell, M.~B.~Gavela, J.~J.~Gomez-Cadenas, P.~Hernandez and O.~Mena,
2064  %``On the measurement of leptonic CP violation,''
2065  Nucl.\ Phys.\ B {\bf 608} (2001) 301
2066  [hep-ph/0103258].
2067  %%CITATION = HEP-PH 0103258;%%
2068
2069\bibitem{Minakata:2001qm}
2070  H.~Minakata and H.~Nunokawa,
2071  %``Exploring neutrino mixing with low energy superbeams,''
2072  JHEP {\bf 0110}, 001 (2001)
2073  [hep-ph/0108085].
2074  %%CITATION = HEP-PH 0108085;%%
2075
2076\bibitem{Fogli:1996pv}
2077  G.~L.~Fogli and E.~Lisi,
2078  %``Tests of three-flavor mixing in long-baseline neutrino oscillation
2079  %experiments,''
2080  Phys.\ Rev.\ D {\bf 54}, 3667 (1996)
2081  [hep-ph/9604415].
2082  %%CITATION = HEP-PH 9604415;%%
2083
2084\bibitem{Barger:2001yr}
2085  V.~Barger, D.~Marfatia and K.~Whisnant,
2086  %``Breaking eight-fold degeneracies in neutrino CP violation, mixing, and
2087  %mass hierarchy,''
2088  Phys.\ Rev.\ D {\bf 65}, 073023 (2002)
2089  [hep-ph/0112119].
2090  %%CITATION = HEP-PH 0112119;%%
2091
2092\bibitem{Yasuda:2004gu}
2093  O.~Yasuda,
2094  %``New plots and parameter degeneracies in neutrino oscillations,''
2095  New J.\ Phys.\  {\bf 6}, 83 (2004)
2096  [hep-ph/0405005].
2097  %%CITATION = HEP-PH 0405005;%%
2098
2099\bibitem{Ishitsuka:2005qi}
2100  M.~Ishitsuka, T.~Kajita, H.~Minakata and H.~Nunokawa,
2101  %``Resolving neutrino mass hierarchy and CP degeneracy by two identical
2102  %detectors with different baselines,''
2103  Phys.\ Rev.\ D {\bf 72} (2005) 033003
2104  [hep-ph/0504026].
2105  %%CITATION = HEP-PH 0504026;%%
2106
2107\bibitem{Antusch:2004yx}
2108  S.~Antusch, P.~Huber, J.~Kersten, T.~Schwetz and W.~Winter,
2109  %``Is there maximal mixing in the lepton sector?,''
2110  Phys.\ Rev.\ D {\bf 70}, 097302 (2004)
2111  [hep-ph/0404268].
2112  %%CITATION = HEP-PH 0404268;%%
2113
2114\bibitem{Minakata:2004pg}
2115  H.~Minakata, M.~Sonoyama and H.~Sugiyama,
2116  %``Determination of theta(23) in long-baseline neutrino oscillation
2117  %experiments with three-flavor mixing effects,''
2118  Phys.\ Rev.\ D {\bf 70} (2004) 113012
2119  [hep-ph/0406073].
2120  %%CITATION = HEP-PH 0406073;%%
2121
2122\bibitem{Donini:2005db}
2123  A.~Donini, E.~Fernandez-Martinez, D.~Meloni and S.~Rigolin,
2124  %``nu/mu disappearance at the SPL, T2K-I, NOnuA and the neutrino factory,''
2125  hep-ph/0512038.
2126  %%CITATION = HEP-PH 0512038;%%
2127
2128\bibitem{Peres:2003wd}
2129  O.L.G.~Peres, A.Y.~Smirnov,
2130  %``Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and
2131  %CP-violation,''
2132  Nucl.\ Phys.\ B {\bf 680} (2004) 479
2133  [hep-ph/0309312].
2134  %%CITATION = HEP-PH 0309312;%%
2135
2136\bibitem{Gonzalez-Garcia:2004cu}
2137  M.C.~Gonzalez-Garcia, M.~Maltoni, A.Y. Smirnov,
2138  %``Measuring the deviation of the 2-3 lepton mixing from maximal with
2139  %atmospheric neutrinos,''
2140  Phys.\ Rev.\ D {\bf 70} (2004) 093005
2141  [hep-ph/0408170].
2142  %%CITATION = HEP-PH 0408170;%%
2143
2144\bibitem{Petcov:1998su}
2145  S.~T.~Petcov,
2146  %``Diffractive-like (or parametric-resonance-like?) enhancement of the  earth
2147  %(day-night) effect for solar neutrinos crossing the earth core,''
2148  Phys.\ Lett.\ B {\bf 434} (1998) 321
2149  [hep-ph/9805262];
2150  %%CITATION = HEP-PH 9805262;%%
2151%
2152%\bibitem{Chizhov:1998ug}
2153  M.~Chizhov, M.~Maris and S.~T.~Petcov,
2154  %``On the oscillation length resonance in the transitions of solar and
2155  %atmospheric neutrinos crossing the earth core,''
2156  hep-ph/9810501;
2157  %%CITATION = HEP-PH 9810501;%%
2158%
2159%\bibitem{Chizhov:1999az}
2160  M.~V.~Chizhov and S.~T.~Petcov,
2161  %``New conditions for a total neutrino conversion in a medium,''
2162  Phys.\ Rev.\ Lett.\  {\bf 83} (1999) 1096
2163  [hep-ph/9903399].
2164  %%CITATION = HEP-PH 9903399;%%
2165
2166\bibitem{Akhmedov:1998ui}
2167  E.~K.~Akhmedov,
2168  %``Parametric resonance of neutrino oscillations and passage of solar and
2169  %atmospheric neutrinos through the earth,''
2170  Nucl.\ Phys.\ B {\bf 538}, 25 (1999)
2171  [hep-ph/9805272];
2172  %%CITATION = HEP-PH 9805272;%%
2173%
2174%\bibitem{Akhmedov:1998xq}
2175  E.~K.~Akhmedov, A.~Dighe, P.~Lipari and A.~Y.~Smirnov,
2176  %``Atmospheric neutrinos at Super-Kamiokande and parametric resonance in
2177  %neutrino oscillations,''
2178  Nucl.\ Phys.\ B {\bf 542}, 3 (1999)
2179  [hep-ph/9808270].
2180  %%CITATION = HEP-PH 9808270;%%
2181
2182\bibitem{Bernabeu:2003yp}
2183  J.~Bernabeu, S.~Palomares-Ruiz and S.~T.~Petcov,
2184  %``Atmospheric neutrino oscillations, theta(13) and neutrino mass
2185  %hierarchy,''
2186  Nucl.\ Phys.\ B {\bf 669}, 255 (2003)
2187  [hep-ph/0305152].
2188  %%CITATION = HEP-PH 0305152;%%
2189
2190\bibitem{Kim:1998bv}
2191  C.~W.~Kim and U.~W.~Lee,
2192  %``Comment on the possible electron-neutrino excess in the  Super-Kamiokande
2193  %atmospheric neutrino experiment,''
2194  Phys.\ Lett.\ B {\bf 444}, 204 (1998)
2195  [hep-ph/9809491].
2196  %%CITATION = HEP-PH 9809491;%%
2197
2198\bibitem{Kajita}
2199  T.~Kajita, Talk at NNN05, 7--9 April 2005, Aussois, Savoie, France,\\
2200  \verb!http://nnn05.in2p3.fr/!
2201
2202\bibitem{Gonzalez-Garcia:2004wg}
2203  M.~C.~Gonzalez-Garcia and M.~Maltoni,
2204  %``Atmospheric neutrino oscillations and new physics,''
2205  Phys.\ Rev.\ D {\bf 70} (2004) 033010
2206  [hep-ph/0404085].
2207  %%CITATION = HEP-PH 0404085;%%
2208
2209\bibitem{Petcov:2005rv}
2210  S.~T.~Petcov and T.~Schwetz,
2211  %``Determining the neutrino mass hierarchy with atmospheric neutrinos,''
2212  Nucl.\ Phys.\ B {\bf 740}, 1 (2006)
2213  [hep-ph/0511277].
2214  %%CITATION = HEP-PH 0511277;%%
2215
2216\bibitem{MenaRequejo:2005hn}
2217  O.~Mena-Requejo, S.~Palomares-Ruiz and S.~Pascoli,
2218  %``Super-NOvA: A long-baseline neutrino experiment with two off-axis
2219  %detectors,''
2220  Phys.\ Rev.\ D {\bf 72} (2005) 053002
2221  [hep-ph/0504015];
2222  %%CITATION = HEP-PH 0504015;%%
2223%
2224%\bibitem{Mena:2005ri}
2225  %O.~Mena, S.~Palomares-Ruiz and S.~Pascoli,
2226  %``Determining the neutrino mass hierarchy and CP violation in NOnuA with a
2227  %second off-axis detector,''
2228  hep-ph/0510182.
2229  %%CITATION = HEP-PH 0510182;%%
2230
2231\bibitem{Hagiwara:2005pe}
2232  K.~Hagiwara, N.~Okamura and K.~Senda,
2233  %``Solving the neutrino parameter degeneracy by measuring the T2K off-axis
2234  %beam in Korea,''
2235  hep-ph/0504061.
2236  %%CITATION = HEP-PH 0504061;%%
2237
2238\bibitem{Kachelriess:2004vs}
2239  M.~Kachelriess and R.~Tomas,
2240  %``Identifying the neutrino mass hierarchy with supernova neutrinos,''
2241  hep-ph/0412100.
2242  %%CITATION = HEP-PH 0412100;%%
2243
2244\end{thebibliography}
2245\end{document}
2246%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2247
2248
Note: See TracBrowser for help on using the repository browser.