source: Backup NB/Talks/MEMPHYSetal/CERN-Frejus/c2m.tar/CERN-MEMPHYS.tex @ 392

Last change on this file since 392 was 385, checked in by campagne, 16 years ago
File size: 113.9 KB
Line 
1%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2\NeedsTeXFormat{LaTeX2e}
3\documentclass[12pt,a4paper]{article}
4
5%-- used packages ------------------------------------------------------
6
7\usepackage{cite}
8\usepackage{graphicx}
9\usepackage{epsfig}
10\usepackage{amssymb}
11\usepackage{amsmath}
12\usepackage{latexsym}
13
14
15%-- page parameters -------------------------------------------------
16
17\jot = 1.5ex
18\parskip 5pt plus 1pt
19%\parindent 0pt
20\evensidemargin -0.1in   \oddsidemargin  -0.1in
21\textwidth  6.5in       \textheight 9.4in
22\topmargin -.8cm        \headsep    1.0cm
23
24%-- command (re)definitions -----------------------------------------
25
26\newcommand{\capdef}{}
27%\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
28%       \caption[#1]{{\itshape #2}}}
29\newcommand{\mycaption}[2][\capdef]{\renewcommand{\capdef}{#2}%
30       \caption[#1]{{\footnotesize #2}}}
31\makeatletter
32\renewcommand{\fnum@table}{\textbf{\tablename~\thetable}}
33\renewcommand{\fnum@figure}{\textbf{\figurename~\thefigure}}
34\makeatother
35\def\ltap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$<$}\ }
36\def\gtap{\ \raisebox{-.4ex}{\rlap{$\sim$}} \raisebox{.4ex}{$>$}\ }
37
38\newcounter{myenumi}
39\newcommand{\myitem}{\refstepcounter{myenumi}\item}
40\renewcommand{\themyenumi}{\roman{myenumi}}
41\newenvironment{mylist}{%
42        \setcounter{myenumi}{0}
43        \begin{list}{\textit{\themyenumi)}}{%
44        \setlength{\topsep}{0.2\baselineskip}%
45        \setlength{\partopsep}{-\topsep}%
46        \setlength{\itemsep}{\topsep}%
47        \setlength{\parsep}{0\baselineskip}%
48        \setlength{\leftmargin}{0em}%
49        \setlength{\listparindent}{\parindent}%
50        \setlength{\itemindent}{2.5em}%
51        \setlength{\labelwidth}{1.5em}%
52        \setlength{\labelsep}{0.75em}}}%
53{\end{list}}
54
55\newlength{\myem}
56\settowidth{\myem}{m}
57\newcommand{\sep}[1]{#1}
58\newcounter{mysubequation}[equation]
59\renewcommand{\themysubequation}{\alph{mysubequation}}
60\newcommand{\mytag}{\stepcounter{mysubequation}%
61\tag{\theequation\protect\sep{\themysubequation}}}
62\newcommand{\globallabel}[1]{\refstepcounter{equation}\label{#1}}
63
64\makeatletter
65\renewcommand{\section}{\@startsection{section}{1}{0em}{-\baselineskip}%
66{\baselineskip}{\normalfont\large\bfseries}}
67\renewcommand{\subsection}%
68{\@startsection{subsection}{2}{0em}{-0.7\baselineskip}%
69{0.7\baselineskip}{\normalfont\bfseries}}
70\makeatother
71
72
73%%%%%%%%%%%%%%%%%%%%%%%%
74% definitions
75%%%%%%%%%%%%%%%%%%%%%%%%
76\newcommand{\centre}[2]{\multispan{#1}{\hfill #2\hfill}}
77\newcommand{\etal}{\textit{et al.}}
78\newcommand{\stheta}{\ensuremath{\sin^22\theta_{13}}}
79\newcommand{\BB}{$\beta$B}
80\newcommand{\sigdm}{\ensuremath{{\rm sign}(\Delta m^2_{31})}}
81\newcommand{\delCP}{\ensuremath{\delta_{\rm CP}}}
82\newcommand{\thetatt}{\ensuremath{\theta_{23}}}
83
84\def\nubar{$\overline{\nu}\ $}
85\def\nue{\ensuremath{\nu_{e}}}
86\def\nubare{\ensuremath{\overline{\nu}_{e}}}
87\def\nubarecc{$\overline{\nu}_{e}^{CC}\ $}
88\def\numu{\ensuremath{\nu_{\mu}\ }}
89\def\nubarmu{\ensuremath{\overline{\nu}_{\mu}}}
90\def\nubarmucc{$\overline{\nu}_{\mu}^{CC}\ $}
91\def\nutau{\ensuremath{\nu_{\tau}\ }}
92\def\nubartau{\ensuremath{\overline{\nu}_{\tau}}}
93\newcommand{\nuenumu}{\ensuremath{\nue \rightarrow \numu\,}}
94\newcommand{\numunutau}{\ensuremath{\numu \rightarrow \nutau\,}}
95\newcommand{\nuenutau}{\ensuremath{\nue \rightarrow \nutau}}
96\newcommand{\nubarenubarmu}{\ensuremath{\overline{\nu}_e \rightarrow \overline{\nu}_\mu\,}}
97\newcommand{\nubarmunubare}{\ensuremath{\overline{\nu}_\mu \rightarrow \overline{\nu}_e\,}}
98\newcommand{\dmot}{\ensuremath{\Delta m^2_{12}\,}}
99
100\newcommand{\He}{\ensuremath{^6{\mathrm{He}}}}
101\newcommand{\Ne}{\ensuremath{^{18}{\mathrm{Ne}}}}
102\def\Li{^6{\mathrm{Li}}}
103\def\anue{\overline{{\mathrm\nu}}_{\mathrm e}}
104\def\anumu{\overline{{\mathrm\nu}}_{\mathrm \mu}}
105\newcommand{\thetaot}{\ensuremath{\theta_{13}}\,}
106\newcommand{\numunue}{\ensuremath{\nu_\mu \rightarrow \nu_e}}
107\newcommand{\nueovernumu}{\ensuremath{\nue/\numu}}
108
109\newcommand{\Efin}{E^\text{fin}}
110\newcommand{\Emin}{E_\text{min}}
111
112
113\begin{document}
114%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115%%%%                     Title-page                              %%%%
116%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
117
118%\begin{titlepage}
119
120% the footnote symbols are only redefined for the title page !
121\renewcommand{\thefootnote}{\alph{footnote}}
122
123\begin{flushright}
124LAL-06-35\\
125IC/2006/011\\
126SISSA 16/2006/EP\\
127\end{flushright}
128
129\vspace*{0.5cm}
130
131\renewcommand{\thefootnote}{\fnsymbol{footnote}}
132\setcounter{footnote}{-1}
133
134{\begin{center} 
135{\Large\textbf{
136Physics potential of the CERN--MEMPHYS\\[2mm] 
137neutrino oscillation project}
138}
139\end{center}}
140
141\vspace*{0.5cm}
142
143\begin{center} {\bf
144J.-E.\ Campagne$^a$,
145M.\ Maltoni$^b$,
146M.\ Mezzetto$^c$, and
147T.\ Schwetz$^d$}
148\end{center}
149
150{\it
151\begin{center}
152  $^a$Laboratoire de l'Acc\'el\'erateur Lin\'eaire,
153  Universit\'e Paris-Sud, IN2P3/CNRS\\
154  B.P.\ 34, 91898 Orsay Cedex, France\\[2mm]
155
156  $^b$International Centre for Theoretical Physics,
157  Strada Costiera 11, I-31014 Trieste, Italy\\ 
158  {\rm and}\\
159  Departamento de F\'isica Te\'orica \& Instituto de F\'isica Te\'orica,
160  Facultad de Ciencias C-XI,\\ 
161  Universidad Aut\'onoma de Madrid, Cantoblanco, E-28049 Madrid, Spain\\[2mm]
162
163  $^c$Istituto Nazionale Fisica Nucleare, Sezione di Padova,
164  Via Marzolo 8, 35100 Padova, Italy\\[2mm]
165%
166  $^d$Scuola Internazionale Superiore di Studi Avanzati,
167  Via Beirut 2--4, 34014 Trieste, Italy\\ 
168  {\rm and}\\
169  CERN, Physics Department, Theory Division, CH-1211 Geneva 23, Switzerland
170\end{center}}
171
172\vspace*{0.5cm}
173
174
175\begin{abstract}
176We consider the physics potential of CERN based neutrino oscillation
177experiments consisting of a Beta Beam (\BB) and a Super Beam (SPL)
178sending neutrinos to MEMPHYS, a 440~kt water \v{C}erenkov detector at
179Fr\'ejus, at a distance of 130~km from CERN. The $\theta_{13}$
180discovery reach and the sensitivity to CP violation are investigated,
181including a detailed discussion of parameter degeneracies and
182systematical errors. For SPL sensitivities similar to the ones of the
183phase~II of the T2K experiment (T2HK) are obtained, whereas the \BB\
184may reach significantly better sensitivities, depending on the
185achieved number of total ion decays.  The results for the
186CERN--MEMPHYS experiments are less affected by systematical
187uncertainties than T2HK.
188%
189We point out that by a combination of data from \BB\ and SPL a
190measurement with antineutrinos is not necessary and hence the same
191physics results can be obtained within about half of the measurement time
192compared to one single experiment.
193%
194Furthermore, it is shown how including data from atmospheric neutrinos in
195the MEMPHYS detector allows to resolve parameter degeneracies and, in
196particular, provides sensitivity to the neutrino mass hierarchy and
197the octant of $\theta_{23}$.
198%\pacs{14.60.Pq, 14.60.Lm}
199\end{abstract}
200
201\renewcommand{\thefootnote}{\arabic{footnote}}
202\setcounter{footnote}{0}
203
204\newpage
205%\tableofcontents
206
207%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
208\section{Introduction}
209%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
210
211In recent years strong evidence for neutrino oscillations has been
212obtained in solar~\cite{solar},
213atmospheric~\cite{Fukuda:1998mi,Ashie:2005ik},
214reactor~\cite{Araki:2004mb}, and accelerator~\cite{Aliu:2004sq}
215neutrino experiments. The very near future of long-baseline (LBL)
216neutrino experiments is devoted to the study of the oscillation
217mechanism in the range of $\Delta m^2_{31} \approx 2.4\times10^{-3} \:
218\mathrm{eV}^2$ indicated by atmospheric neutrinos using conventional
219$\nu_\mu$ beams.  Similar as in the K2K experiment in
220Japan~\cite{Aliu:2004sq}, the presently running MINOS experiment in
221the USA~\cite{MINOS} uses a low energy beam to measure $\Delta
222m^2_{31}$ by observing the $\nu_\mu\rightarrow\nu_\mu$ disappearance
223probability, while the OPERA~\cite{OPERA} experiment will be able to
224detect $\nu_\tau$ appearance within the high energy CERN--Gran Sasso
225beam~\cite{CNGS}.
226%
227If we do not consider the LSND anomaly~\cite{LSND} that will be
228further studied soon by the MiniBooNE experiment~\cite{MINIBOONE}, all
229data can be accommodated within the three flavor scenario (see
230Refs.~\cite{FOGLILISI05,Maltoni:2004ei} for recent global analyses),
231and neutrino oscillations are described by two neutrino mass-squared
232differences ($\Delta m^2_{21}$ and $\Delta m^2_{31}$) and the $3\times
2333$ unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing
234matrix~\cite{PMNS} with three angles
235($\theta_{12}$,$\theta_{13}$,$\theta_{23}$) and one Dirac CP phase
236$\delCP$.
237
238Future tasks of neutrino physics are an improved sensitivity to the
239last unknown mixing angle, $\theta_{13}$, to explore the CP violation
240mechanism in the leptonic sector, and to determine the sign of $\Delta
241m^2_{31}$ which describes the type of the neutrino mass hierarchy
242(normal, $\Delta m^2_{31} > 0$ or inverted, $\Delta m^2_{31} < 0$).
243%
244The present upper bound on $\theta_{13}$ is dominated by the
245constraint from the Chooz reactor experiment~\cite{CHOOZ}. A global
246analysis of all data yields $\sin^22\theta_{13}<0.082$ at
24790\%~CL~\cite{Maltoni:2004ei}. A main purpose of upcoming reactor and
248accelerator experiments is to improve this bound or to reveal a finite
249value of $\theta_{13}$. In reactor experiments, one uses $\bar{\nu}_e$
250in disappearance mode and the sensitivity is increased with respect to
251present experiments by the use of a near detector close to the
252reactor~\cite{Wpaper}. In accelerator experiments, the first
253generation of so-called Super Beams with sub-mega watt proton drivers
254such as T2K (phase-I)~\cite{T2K} and NO$\nu$A~\cite{Ayres:2004js}, the
255appearance channel $\nu_\mu\to\nu_e$ is explored. This next generation
256of reactor and Super Beam experiments will reach sensitivities of the
257order of $\sin^22\theta_{13} \lesssim 0.01$ ($90\%$~CL) within a time
258scale of several years~\cite{Huber:2003pm}.
259%
260Beyond this medium term program, there are several projects on how to
261enter the high precision age in neutrino oscillations and to attack
262the ultimate goals like the discovery of leptonic CP violation or the
263determination of the neutrino mass hierarchy. In accelerator
264experiments, one can extend the Super Beam concept by moving to
265multi-mega watt proton drivers~\cite{T2K,Albrow:2005kw,SPL,BNLHS} or
266apply novel technologies, such as neutrino beams from decaying ions
267(so-called Beta Beams)~\cite{zucchelli,Albright:2004iw} or from
268decaying muons (so-called Neutrino
269Factories)~\cite{Albright:2004iw,Blondel:2004ae}.
270
271In this work we focus on possible future neutrino oscillation
272facilities hosted at CERN, namely a multi-mega watt Super Beam
273experiment based on a Super Proton Linac (SPL)~\cite{Campagne:2004wt}
274and a $\gamma = 100$ Beta Beam
275(\BB)~\cite{Mezzetto:2003ub}. These experiments will search for
276$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
277\stackrel{\scriptscriptstyle(-)}{\nu}_e$ and
278$\stackrel{\scriptscriptstyle (-)}{\nu}_e \to
279\stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ appearance, respectively,
280by sending the neutrinos to a mega ton scale water \v{C}erenkov
281detector (MEMPHYS)~\cite{memphys}, located at a distance of 130~km from
282CERN under the Fr\'ejus mountain. Similar detectors are under
283consideration also in the US (UNO~\cite{UNO}) and in Japan
284(Hyper-K~\cite{T2K,Nakamura:2003hk}).
285%
286We perform a detailed analysis of the SPL and \BB\ physics
287potential, discussing the discovery reach for $\theta_{13}$ and
288leptonic CP violation. In addition we consider the possibility to
289resolve parameter degeneracies in the LBL data by using the
290atmospheric neutrinos available in the mega ton
291detector~\cite{Huber:2005ep}. This leads to a sensitivity to the
292neutrino mass hierarchy of the CERN--MEMPHYS experiments, despite the
293rather short baseline.
294%
295The physics performances of \BB\ and SPL are compared to the ones
296obtainable at the second phase of the T2K experiment in Japan, which
297is based on an upgraded version of the original T2K beam and the
298Hyper-K detector (T2HK)~\cite{T2K}.
299
300The outline of the paper is as follows.  In Sec.~\ref{sec:analysis} we
301summarize the main characteristics of the \BB, SPL, and T2HK
302experiments and give general details of the physics analysis methods,
303whereas in Sec.~\ref{sec:experiments} we describe in some detail the
304MEMPHYS detector, the \BB, the SPL Super Beam, and our atmospheric
305neutrino analysis. In Sec.~\ref{sec:degeneracies} we review the
306problem of parameter degeneracies and discuss its implications for the
307experiments under consideration. In Sec.~\ref{sec:sensitivities} we
308present the sensitivities to the ``atmospheric parameters''
309$\theta_{23}$ and $\Delta m^2_{31}$, the $\theta_{13}$ discovery
310potential, and the sensitivity to CP violation. We also investigate in
311some detail the impact of systematical errors. In
312Sec.~\ref{sec:synergies} we discuss synergies which are offered by the
313CERN--MEMPHYS facilities.  We point out advantages of the case when
314\BB\ and SPL are available simultaneously, and we consider the use of
315atmospheric neutrino data in MEMPHYS in combination with the LBL
316experiments. Our results are summarized in Sec.~\ref{sec:conclusions}.
317
318
319
320%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
321\section{Experiments overview and analysis methods}
322%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
323\label{sec:analysis}
324
325In this section we give the most important experimental parameters
326which we adopt for the simulation of the CERN--MEMPHYS experiments
327\BB\ and SPL, as well as for the T2HK experiment in Japan. These
328parameters are summarized in Tab.~\ref{tab:setups}. For all
329experiments the detector mass is 440~kt, and the running time is 10
330years, with a division in neutrino and antineutrino running time in
331such a way that roughly an equal number of events is obtained. We
332always use the total available information from appearance as well as
333disappearance channels including the energy spectrum. For all three
334experiments we adopt rather optimistic values for the systematical
335uncertainties of 2\% as default values, but we also consider the case
336when systematics are increased to 5\%. These errors are uncorrelated
337between the various signal channels (neutrinos and antineutrinos), and
338between signals and backgrounds.
339
340\begin{table}
341  \centering
342  \begin{tabular}{lcc@{\qquad\qquad}c}
343  \hline\noalign{\smallskip}
344       & \BB & SPL & T2HK \\
345  \noalign{\smallskip}\hline\noalign{\smallskip}
346  Detector mass & 440~kt & 440~kt & 440~kt\\
347  Baseline      & 130 km & 130 km & 295 km \\
348  Running time ($\nu + \bar\nu$)
349                & 5 + 5 yr & 2 + 8 yr & 2 + 8 yr \\
350  Beam intensity  & $5.8\,(2.2) \cdot 10^{18}$ He (Ne) dcys/yr & 4 MW & 4 MW\\
351  Systematics on signal  & 2\% & 2\% & 2\%\\
352  Systematics on backgr. & 2\% & 2\% & 2\%\\
353  \noalign{\smallskip}\hline
354  \end{tabular}
355  \mycaption{Summary of default parameters used for the simulation of the
356  \BB, SPL, and T2HK experiments.\label{tab:setups}}
357\end{table}
358
359A more detailed description of the CERN--MEMPHYS experiments is given
360in Sec.~\ref{sec:experiments}. For the T2HK simulation we use the
361setup provided by GLoBES~\cite{Globes} based on
362Ref.~\cite{Huber:2002mx}, which follows closely the LOI~\cite{T2K}. In
363order to allow a fair comparison we introduce the following changes
364with respect to the configuration used in Ref.~\cite{Huber:2002mx}:
365The fiducial mass is set to 440~kt, the systematical errors on the
366background and on the $\nu_e$ and $\bar\nu_e$ appearance signals is
367set to 2\%, and we use a total running time of 10 years, divided into
3682 years of data taking with neutrinos and 8 years with
369antineutrinos. We include an additional background from the
370$\bar\nu_\mu \to \bar\nu_e$ ($\nu_\mu \to \nu_e$) channel in the
371neutrino (antineutrino) mode. Furthermore, we use
372the same CC detection cross section as for the \BB/SPL
373analysis~\cite{Nuance}. For more details see
374Refs.~\cite{T2K,Huber:2002mx}.
375
376Recently the idea was put forward to observe the T2K beam with a
377second detector placed in
378Korea~\cite{Ishitsuka:2005qi,Kajita:2006bt,Hagiwara:2005pe}.  In the
379so-called T2KK setup the Hyper-Kamiokande detector is split into two
380detectors of 270~kt each, one of them is located in Korea at a
381distance of about 1050~km from the source, and the other is placed at
382Kamioka at a distance of 295~km. Here we will confine ourselves to the
383standard T2HK setup, since the purpose of our work is not a T2HK
384optimization study investigating various configurations for that
385experiment. In contrast, here T2HK mainly serves as a point of
386reference to which we compare the CERN--MEMPHYS experiments. For this
387aim we prefer to stick to the ``minimal'' one-detector configuration
388at a relatively short baseline, since two-detector setups with very
389long baselines clearly represent a different class of experiments
390whose consideration goes beyond the scope of the present
391work. Nevertheless we will comment briefly also on T2KK performances
392obtained in Refs.~\cite{Ishitsuka:2005qi,Kajita:2006bt}.
393
394
395\begin{table}
396  \centering
397  \begin{tabular}{lcccccc}
398  \hline\noalign{\smallskip}
399       & \centre{2}{\BB} & \centre{2}{SPL} & \centre{2}{T2HK} \\
400  \noalign{\smallskip}\hline\noalign{\smallskip}
401  & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$ & $\delCP=0$ & $\delCP=\pi/2$\\
402  \noalign{\smallskip}\hline\noalign{\smallskip}
403%
404  appearance $\nu$ & & & & & & \\
405  background       & \centre{2}{143} &\centre{2}{622} &\centre{2}{898}\\
406  $\stheta=0$      & \centre{2}{28}  &\centre{2}{51}  &\centre{2}{83}  \\
407  $\stheta=10^{-3}$&    76  &   88   &   105  &   14  &   178 &    17  \\ 
408  $\stheta=10^{-2}$&   326  &  365   &   423  &  137  &   746 &   238  \\
409
410  \noalign{\smallskip}\hline\noalign{\smallskip}
411%
412  appearance $\bar\nu$ & & & & & & \\
413  background       & \centre{2}{157} &\centre{2}{640} &\centre{2}{1510}\\
414  $\stheta=0$      & \centre{2}{31}  &\centre{2}{57}  &\centre{2}{93}  \\
415  $\stheta=10^{-3}$&    83  &   12   &   102  &  146  &   192 &   269  \\ 
416  $\stheta=10^{-2}$&   351  &  126   &   376  &  516  &   762 &  1007  \\
417
418  \noalign{\smallskip}\hline\noalign{\smallskip}
419%
420  disapp. $\nu$ &\centre{2}{100315}&\centre{2}{21653}&\centre{2}{24949}\\
421  background    & \centre{2}{6}   &\centre{2}{1}    &\centre{2}{444}\\
422  disapp. $\bar\nu$&\centre{2}{84125}&\centre{2}{18321}&\centre{2}{34650}\\
423  background       &\centre{2}{5}    &\centre{2}{1}    &\centre{2}{725}\\
424  \noalign{\smallskip}\hline
425
426  \end{tabular}
427  \mycaption{Number of events for appearance and disappearance signals
428  and backgrounds for the \BB, SPL, and T2HK experiments as
429  defined in Tab.~\ref{tab:setups}. For the appearance signals the
430  event numbers are given for several values of $\stheta$ and $\delCP
431  = 0$ and $\pi/2$. The background as well as the disappearance event
432  numbers correspond to $\theta_{13}=0$. For the other oscillation
433  parameters the values of Eq.~(\ref{eq:default-params}) are
434  used.\label{tab:events}}
435\end{table}
436
437In Tab.~\ref{tab:events} we give the number of signal and background
438events for the experiment setups as defined in Tab.~\ref{tab:setups}.
439For the appearance channels ($\stackrel{\scriptscriptstyle (-)}{\nu}_e
440\to \stackrel{\scriptscriptstyle(-)}{\nu}_\mu$ for the \BB\ and
441$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu \to
442\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for SPL and T2HK) we give the
443signal events for various values of $\theta_{13}$ and $\delCP$. The
444``signal'' events for $\theta_{13} = 0$ are appearance events induced by
445the oscillations with $\Delta m^2_{21}$. The value $\stheta = 10^{-3}$
446corresponds roughly to the sensitivity limit for the considered
447experiments, whereas $\stheta = 10^{-2}$ gives a good sensitivity
448to CP violation. This can be appreciated by comparing the values of
449$\nu$ and $\bar\nu$ appearance events for $\delCP = 0$ and $\pi/2$. In
450the table the background to the appearance signal is given for
451$\theta_{13} = 0$. Note that in general the number of background
452events depends also on the oscillation parameters, since also the
453background neutrinos in the beam oscillate. This effect is
454consistently taken into account in the analysis, however, for the
455parameter values in the table the change in the background events due
456to oscillations is only of the order of a few events.
457
458The physics analysis is performed with the GLoBES open source
459software~\cite{Globes}, which provides a convenient tool to simulate
460long-baseline experiments and compare different facilities in a
461unified framework. The experiment definition (AEDL) files for the \BB\
462and SPL simulation with GLoBES are available at Ref.~\cite{Globes}.
463In the analysis parameter degeneracies and correlations are fully
464taken into account and in general all oscillation parameters are
465varied in the fit.
466%
467To simulate the ``data'' we adopt the following
468set of ``true values'' for the oscillation parameters:
469%
470\begin{equation}\label{eq:default-params}
471\begin{array}{l@{\qquad}l}
472  \Delta m^2_{31} = +2.4 \times 10^{-3}~\mathrm{eV}^2\,, & 
473  \sin^2\theta_{23} = 0.5\,,\\ 
474  \Delta m^2_{21} = 7.9 \times 10^{-5}~\mathrm{eV}^2 \,,&
475  \sin^2\theta_{12} = 0.3 \,,
476\end{array}
477\end{equation} 
478%
479and we include a prior knowledge of these values with an accuracy of
48010\% for $\theta_{12}$, $\theta_{23}$, $\Delta m^2_{31}$, and 4\% for
481$\Delta m^2_{21}$ at 1$\sigma$. These values and accuracies are
482motivated by recent global fits to neutrino oscillation
483data~\cite{FOGLILISI05,Maltoni:2004ei}, and they are always used
484except where explicitly stated otherwise.
485
486
487%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
488\section{The CERN--MEMPHYS experiments}
489%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
490\label{sec:experiments}
491
492%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
493\subsection{The MEMPHYS detector}
494%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
495
496MEMPHYS (MEgaton Mass PHYSics)~\cite{memphys} is a mega ton class
497water \v{C}erenkov detector in the straight extrapolation of
498Super-Kamiokande, located at Fr\'ejus, at a distance of 130~km from
499CERN. It is an alternative design of the UNO~\cite{UNO} and
500Hyper-Kamiokande~\cite{Nakamura:2003hk} detectors and shares the same
501physics case, both from the non-accelerator domain (nucleon decay,
502super nova neutrino detection, solar neutrinos, atmospheric neutrinos)
503and from the accelerator domain which is the subject of this paper. A
504recent civil engineering pre-study to envisage the possibly of large
505cavity excavation located under the Fr\'ejus mountain (4800~m.e.w.)
506near the present Modane underground laboratory has been undertaken.
507The main result of this pre-study is that MEMPHYS may be built with
508present techniques as a modular detector consisting of several shafts,
509each with 65~m in diameter, 65~m in height for the total water
510containment. A schematic view of the layout is shown in
511Fig.~\ref{fig:MEMPHYS}. For the present study we have chosen a
512fiducial mass of 440~kt which means 3 shafts and an inner detector of
51357~m in diameter and 57~m in height.  Each inner detector may be
514equipped with photo detectors (81000 per shaft) with a 30\%
515geometrical coverage and the same photo-statistics as Super-Kamiokande
516(with a 40\% coverage). In principle up to 5 shafts are possible,
517corresponding to a fiducial mass of 730~kt.
518%
519The Fr\'ejus site offers a natural protection against cosmic rays by a
520factor $10^6$. If not mentioned otherwise, the event selection and
521particle identification are the Super-Kamiokande algorithms results.
522
523\begin{figure}
524\centering
525\includegraphics[width=0.65\textwidth]{./fig1.eps}
526\mycaption{\label{fig:MEMPHYS}Sketch of the MEMPHYS detector under the
527Fr\'ejus mountain.}     
528\end{figure}
529
530
531%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
532\subsection{The $\gamma = 100\times100$ baseline Beta Beam}
533%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
534
535The concept of a Beta Beam (\BB) has been introduced by P.~Zucchelli
536in Ref.~\cite{zucchelli}. Neutrinos are produced by the decay of
537radioactive isotopes which are stored in a decay ring. An important
538parameter is the relativistic gamma factor of the ions, which
539determines the energy of the emitted neutrinos. \BB\ performances have
540been computed previously for $\gamma(\He)= 66$~\cite{Mezzetto:2003ub},
541100~\cite{MyNufact04,Donini:2004hu,JJHigh2}, 150~\cite{JJHigh2},
542200~\cite{LindnerBB}, 350~\cite{JJHigh2},
543500~\cite{JJHigh1,LindnerBB}, 1000~\cite{LindnerBB},
5442000~\cite{JJHigh1}, 2488~\cite{Terranova}. Reviews can be found in
545Ref.~\cite{BB-Reviews}, the physics potential of a very low gamma \BB\
546has been studied in Ref.~\cite{Volpe}. Performances of a \BB\ with
547$\gamma > 150$ are extremely promising, however, they are neither
548based on an existing accelerator complex nor on detailed calculations
549of the ion decay rates. For a CERN based \BB, fluxes have been
550estimated in Ref.~\cite{Lindroos} and a design study is in progress
551for the facility \cite{Eurisol}. In this work we assume an integrated
552flux of neutrinos in 10 years corresponding to $2.9\cdot 10^{19}$
553useful \He\ decays and $1.1 \cdot 10^{19}$ useful \Ne\ decays. These
554fluxes have been assumed in all the physics papers quoted above, and
555they are two times higher than the baseline fluxes computed in
556Ref.~\cite{Lindroos}. These latter fluxes suffer for the known
557limitations of the PS and SPS synchrotrons at CERN, ways to improve
558them have been delineated in Ref.~\cite{Lindroos-Optimization}.
559
560The infrastructure available at CERN as well as the MEMPHYS
561location at a distance of 130~km suggest a $\gamma$-factor of about
562$100$. Such a value implies a mean neutrino energy of 400~MeV, which
563leads to the oscillation maximum at about 200~km for $\Delta m^2_{31}
564= 2.4\times 10^{-3}$~eV$^2$.  We have checked that the performance at
565the somewhat shorter baseline of 130~km is rather similar to the one
566at the oscillation maximum. Moreover, the purpose of this paper is to
567estimate the physics potential for a realistic set-up and not to study
568the optimization of the \BB\ regardless of any logistic consideration
569(see, e.g., Refs.~\cite{LindnerBB,JJHigh2} for such optimization
570studies).
571
572The signal events from the $\nu_e \to \nu_\mu$ neutrino and
573antineutrino appearance channels in the \BB\ are \numu charged current
574(CC) events. The Nuance v3r503 Monte Carlo code~\cite{Nuance} is used
575to generate signal events. The selection for these events is based on
576standard Super-Kamiokande particle identification algorithms.  The
577muon identification is reinforced by asking for the detection of the
578Michel decay electron.
579%
580The neutrino energy is reconstructed by smearing momentum and
581direction of the charged lepton with the Super-Kamiokande resolution
582functions, and applying quasi-elastic (QE) kinematics assuming the
583known incoming neutrino direction. Energy reconstruction in the \BB\
584energy range is remarkably powerful, and the contamination of non-QE
585events very small, as shown in Fig.~\ref{fig:QE-Energy}.
586%
587As pointed out in Ref.~\cite{JJHigh2}, it is necessary to use a
588migration matrix for the neutrino energy reconstruction to properly
589handle Fermi motion smearing and the non-QE event contamination.  We
590use 100~MeV bins for the reconstructed energy and 40~MeV bins for the
591true neutrino energy.  Four migration matrices (for
592$\nu_e,\bar\nu_e,\nu_\mu,\bar\nu_\mu$) are applied to signal events as
593well as backgrounds. As suggested from Fig.~\ref{fig:QE-Energy} the
594results using migration matrices are very similar to a Gaussian
595energy resolution.
596
597\begin{figure}[!t]
598  \centering
599  \includegraphics[width=0.65\textwidth]{./fig2.eps}
600  \mycaption{\label{fig:QE-Energy} Energy resolution for \nue\
601  interactions in the 200--300~MeV energy range. The quantity
602  displayed is the difference between the reconstructed and the true
603  neutrino energy.}
604\end{figure}
605
606Backgrounds from charged pions and atmospheric neutrinos are computed
607with the identical analysis chain as signal events.
608Charged pions generated in NC events (or in NC-like events where the
609leading electron goes undetected) are the main source of background for
610the experiment. To compute this background inclusive NC and CC events
611have been generated with the \BB\ spectrum. Events have been selected
612where the only visible track is a charged pion above the \v{C}erenkov
613threshold. Particle identification efficiencies have been applied to
614those particles. The probability for a pion to survive in water until
615its decay has been computed with Geant~3.21 and cross-checked with a
616Fluka~2003 simulation. This probability is different for positive and
617negative pions, the latter having a higher probability to be absorbed
618before decaying. The surviving events are background, and the
619reconstructed neutrino energy is computed misidentifying these pions
620as muons. Event rates are reported in Tab.~\ref{tab:sigbck}. From
621these numbers it becomes evident that requiring the detection of the
622Michel electron provides an efficient cut to eliminate the pion
623background.
624%
625These background rates are significantly smaller than quoted in
626Ref.~\cite{MyNufact04}, where pion decays were computed with the
627same probabilities as for muons and they are slightly different
628from those quoted in Ref.~\cite{ MezzettoNuFact05}, where an
629older version of Nuance had been used.
630%
631The numbers of Tab.~\ref{tab:sigbck} have been cross-checked by
632comparing the Nuance and Neugen~\cite{Neugen} event
633generators, finding a fair agreement in background rates and energy shape.
634
635\begin{table}[t]
636     \centering
637     \begin{tabular}{l@{\qquad}rrr@{\qquad}rrr}
638     \hline\noalign{\smallskip}
639       & \multicolumn{3}{ c }{\Ne} & \multicolumn{3}{c}{\He} \\
640     \hline\noalign{\smallskip}
641       & \numu CC & $\pi^+$ & $\pi^-$ & \nubarmu CC & $\pi^+$ & $\pi^-$ \\
642     \hline\noalign{\smallskip}
643      Generated ev.\ & 115367   &  557   &  341 & 101899 &  674   &  400 \\
644      Particle ID    &  95717   &  204   &  100 & 85285  &  240   &  118 \\
645      Decay          &  61347   &  107   &    8 & 69242  &  120   &    8 \\
646\hline\noalign{\smallskip}
647    \end{tabular}
648    \mycaption{\label{tab:sigbck} Events for the \BB\ in a 4400~kt~yr
649    exposure.  \numu(\nubarmu) CC events are computed assuming full
650    oscillations ($P_{\nu_e\to\nu_\mu} = 1$), and pion backgrounds are
651    computed from \nue(\nubare) CC+NC events. In the rows we give the
652    number events generated within the fiducial volume (``Generated
653    ev.''), after muon particle identification (``Particle ID''), and
654    after applying a further identification requiring the detection of
655    the Michel electron (``Decay''). }
656\end{table}
657
658Also atmospheric neutrinos can constitute an important source of
659background~\cite{zucchelli,JJHigh2,JJHigh1,MezzettoNuFact05}. This
660background can be suppressed only by keeping a very short duty cycle
661($2.2 \cdot 10^{-3}$ is the target value for the \BB\ design study),
662and this in turn is one of the most challenging bounds on the design
663of the Beta Beam complex. Following Ref.~\cite{MezzettoNuFact05} we
664include the atmospheric neutrino background based on a Monte Carlo
665simulation using Nuance. Events are reconstructed as if they were
666signal neutrino events. We estimate that 5 events/year would survive
667the analysis chain in a full solar year (the \BB\ should run for about
6681/3 of this period) and include these events as backgrounds in the
669analysis. Under these circumstances, the present value of the \BB\
670duty cycle seems to be an overkill, it could be reduced by a factor 5
671at least, see also Ref.~\cite{MezzettoNuFact05} for a discussion of
672the effect of a higher duty cycle.
673
674
675%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
676\subsection{The $3.5$-GeV SPL Super Beam}
677%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
678
679
680In the recent Conceptual Design Report 2 (CDR2) the foreseen Super
681Proton Linac (SPL)~\cite{SPL} will provide the protons for the muon
682production in the context of a Neutrino Factory, and at a first stage
683will feed protons to a fixed target experiment to produce an intense
684conventional neutrino beam (``Super Beam''). The parameters of the
685beam line take into account the optimization~\cite{Campagne:2004wt} of
686the beam energy as well as the secondary particle focusing and decay
687to search for $\nu_\mu \rightarrow \nu_e$ and $\bar{\nu}_\mu
688\rightarrow \bar{\nu}_e$ appearance as well as $\nu_\mu$,
689$\bar\nu_\mu$ disappearance in a mega ton scale water \v{C}erenkov
690detector. In particular, a full simulation of the beam line from the
691proton on target interaction up to the secondary particle decay tunnel
692has been performed. The proton on a liquid mercury target (30~cm long,
693$7.5$~mm radius, 13.546 density) has been simulated with
694FLUKA~2002.4~\cite{FLUKA} while the horn focusing system and the decay
695tunnel simulation has been preformed with
696GEANT~3.21~\cite{GEANT}.\footnote{Although there are differences
697between the predicted pion and kaon productions as a function of
698proton kinetic energy with FLUKA~2002.4 and 2005.6, the results are
699consistent for the relevant energy of 3.5~GeV. We emphasize that the
700pion and the kaon production cross-sections are waiting for
701experimental confirmation~\cite{HARP-MINERVA} and a new optimization
702would be required if their is a disagreement with the present
703knowledge.}
704
705\begin{figure}[!t]
706  \centering 
707  \includegraphics[width=0.65\textwidth]{./fig3.eps}
708  \mycaption{\label{fig:fluxSPLContrib} Neutrino fluxes, at $130$~km
709  from the target with the horns focusing the positive particles
710  (top panel) or the negative particles (bottom panel). The fluxes are
711  computed for a SPL proton beam of $3.5$~GeV (4~MW), a decay tunnel
712  with a length of $40$~m and a radius of $2$~m.}
713\end{figure}
714
715Since the optimization requirements for a Neutrino Factory are rather
716different than for a Super Beam the new SPL configuration has a
717significant impact on the physics performance (see
718Ref.~\cite{Campagne:2004wt} for a detailed discussion).  The SPL
719fluxes of the four neutrino species ($\nu_\mu$, $\nu_e$,
720$\bar{\nu}_\mu$, $\bar{\nu}_e$) for the positive ($\nu_\mu$ beam) and
721the negative focusing ($\bar{\nu}_\mu$ beam) are show in
722Fig.~\ref{fig:fluxSPLContrib}.  The total number of $\nu_\mu$
723($\bar{\nu}_\mu$) in positive (negative) focusing is about
724$1.18\,(0.97) \times 10^{12}\:\mathrm{m}^{-2}\mathrm{y}^{-1}$ with an
725average energy of $300$~MeV. The $\nu_e$ ($\bar{\nu}_e$) contamination
726in the $\nu_\mu$ ($\bar\nu_\mu$) beam is around $0.7\%$
727($6.0\%$).
728%
729Following Ref.~\cite{Mezzetto:2003mm}, the $\pi^o$ background is
730reduced using a tighter PID cut compared to the standard
731Super-Kamiokande analysis used in K2K, but the cuts are looser than
732for T2K. Indeed, at SPL energies the $\pi^o$ background is less severe
733than for T2HK. This is because the resonant cross section is
734suppressed, and the produced pions have an energy where the angle
735between the two gammas is very wide, leading to a small probability
736that the two gamma rings overlap. This results in a higher signal
737efficiency of SPL compared to T2HK (70\% against 40\%) and a smaller
738rate of $\pi^o$ background.
739%
740The Michel electron is required for the $\mu$ identification.
741%
742For the $\nu_\mu \rightarrow \nu_e$ channel the background consists
743roughly of 90\% $\nu_e \rightarrow \nu_e$ CC interactions, 6\% $\pi^o$
744from NC interactions, 3\% miss identified muons from $\nu_\mu
745\rightarrow \nu_\mu$ CC, and 1\% $\bar{\nu}_e \rightarrow \bar{\nu}_e$
746CC interactions. For the $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$
747channel the contributions to the background are 45\% $\bar{\nu}_e
748\rightarrow \bar{\nu}_e$ CC interactions, 35\% $\nu_e \rightarrow
749\nu_e$ CC interactions, 18\% $\pi^o$ from NC interactions and 2\% miss
750identified muons from $\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu$ CC.
751In addition we include the events from the contamination of
752``wrong sign'' muon-neutrinos due to $\bar\nu_\mu \to \bar\nu_e$
753($\nu_\mu \to \nu_e$) oscillations in the neutrino (antineutrino)
754mode.
755%
756We have checked that with the envisaged duty cycle of $2.4\times
75710^{-4}$ the background from atmospheric neutrinos is negligible for
758the SPL.
759
760\begin{figure}[!t]
761  \centering
762  \includegraphics[width=0.5\textwidth]{./fig4.eps}
763%
764  \mycaption{\label{fig:fluxComparison} 
765  Comparison of the fluxes from SPL and \BB.}
766\end{figure}
767
768Considering the signal over square-root of background
769ratio, the $3.5$~GeV beam energy is more favorable than the original
770$2.2$~GeV option. Compared to the fluxes used in
771Refs.~\cite{Mezzetto:2003mm,Donini:2004hu} the gain is at least a
772factor $2.5$ and this justifies to reconsider in detail the physics
773potential of the SPL Super Beam.
774%
775Both the appearance and the disappearance channels are used. For the
776spectral analysis we use 10 bins of 100~MeV in the interval $0 < E_\nu
777< 1$~GeV, applying the same migration matrices as for the \BB\ to take
778into account properly the neutrino energy reconstruction. As ultimate
779goal suggested in Ref.~\cite{T2K} a 2\% systematical error is used as
780default both for signal and background, this would be achieved by a
781special care of the design of the close position. However, we discuss
782also how a 5\% systematical error affects the sensitivities.
783%
784Using neutrino cross-sections on water from Ref.~\cite{Nuance}, the
785number of expected $\nu_\mu$ charged current is about $98$ per
786kt~yr. In Fig.~\ref{fig:fluxComparison} we compare the fluxes from the
787SPL to the one from the \BB.
788
789%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
790\subsection{The atmospheric neutrino analysis}
791%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
792\label{sec:atm-details}
793
794The simulation of atmospheric neutrino data in MEMPHYS is based on the
795analysis presented in Ref.~\cite{Huber:2005ep}, with the following
796differences:
797%
798\begin{itemize}
799  \item We replace the neutrino fluxes at Kamioka with those at Gran
800    Sasso. We use the Honda calculations~\cite{Honda:2004yz}, which
801    unfortunately are not yet available for the Fr\'ejus
802    site. However, since the fluxes increase with the geomagnetic
803    latitude and Fr\'ejus is northern than Gran Sasso, our choice is
804    conservative.
805   
806  \item We take into account the specific geometry of the MEMPHYS
807    detector. This is particularly important to properly separate
808    fully contained from partially contained events, as well as
809    stopping muon from through-going muon events.
810   
811  \item We divide our total data sample into 420 different bins:
812    fully contained single-ring events, further subdivided according
813    to flavor ($e$-like or $\mu$-like), lepton momentum (8 bins:
814    0.1--0.3, 0.3--0.5, 0.5--1, 1--2, 2--3, 3--5, 5--8,
815    8--$\infty$~GeV) and lepton direction (20 bins in zenith angle);
816%
817    fully contained multi-ring events, further subdivided according to
818    flavor ($e$-like or $\mu$-like), reconstructed neutrino energy (3
819    bins: 0--1.33, 1.33--5, 5--$\infty$~GeV) and lepton direction (10
820    bins in zenith angle);
821%       
822    partially contained $\mu$-like events, divided into 20 zenith bins;
823%       
824    up-going muons, divided into stopping and through-going events, and in
825    10 zenith bins each.
826
827    \item We include in our calculations the neutral-current
828      contamination of each bin. To this extent we assume that the
829      ratio between neural-current and \emph{unoscillated}
830      charged-current events in MEMPHYS is the same as in
831      Super-Kamiokande, and we take this ratio from
832      Ref.~\cite{Ashie:2005ik}.
833     
834    \item We consider also multi-ring events, which we define
835      as fully contained charged-current events which are \emph{not}
836      tagged as single-ring. Again, we assume that the survival
837      efficiency and the NC contamination are the same as for
838      Super-Kamiokande~\cite{Ashie:2005ik}.
839\end{itemize}
840
841The expected number of contained events is given by:
842%
843\begin{multline} \label{eq:contained}
844    N_b(\vec\omega) = N_b^\text{NC} +
845    n_\text{tgt} T \sum_{\alpha,\beta,\pm}
846    \int_0^\infty dh \int_{-1}^{+1} dc_\nu
847    \int_{\Emin}^\infty dE_\nu \int_{\Emin}^{E_\nu} dE_l
848    \int_{-1}^{+1} dc_a \int_0^{2\pi} d\varphi_a
849    \\
850    \frac{d^3 \Phi_\alpha^\pm}{dE_\nu \, dc_\nu \, dh}(E_\nu, c_\nu, h)
851    \, P_{\alpha\to\beta}^\pm(E_\nu, c_\nu, h \,|\, \vec\omega)
852    \, \frac{d^2\sigma_\beta^\pm}{dE_l \, dc_a}(E_\nu, E_l, c_a)
853    \, \varepsilon_\beta^b(E_l, c_l(c_\nu, c_a, \varphi_a))
854    \,,
855\end{multline}
856%
857where $P_{\alpha\to\beta}^+$ ($P_{\alpha\to\beta}^-$) is the
858$\nu_\alpha \to \nu_\beta$ ($\bar{\nu}_\alpha \to \bar{\nu}_\beta$)
859conversion probability for given values of the neutrino energy
860$E_\nu$, the cosine $c_\nu$ of the angle between the incoming neutrino
861and the vertical direction, the production altitude $h$, and the
862neutrino oscillation parameters $\vec\omega$. We calculate the
863conversion probability numerically in the general three-flavor
864framework taking into account matter effects from a realistic Earth
865density profile. Further, $N_b^\text{NC}$ is the neutral-current
866background for the bin $b$, $n_\text{tgt}$ is the number of targets,
867$T$ is the experiment running time, $\Phi_\alpha^+$ ($\Phi_\alpha^-$)
868is the flux of atmospheric neutrinos (antineutrinos) of type $\alpha$,
869and $\sigma_\beta^+$ ($\sigma_\beta^-$) is the charged-current
870neutrino- (antineutrino-) nucleon interaction cross section.
871%
872The variable $E_l$ is the energy of the final lepton of type $\beta$,
873while $c_a$ and $\varphi_a$ parametrize the opening angle between the
874incoming neutrino and the final lepton directions as determined by the
875kinematics of the neutrino interaction.
876%
877Finally, $\varepsilon_\beta^b$ gives the probability that a charged
878lepton of type $\beta$, energy $E_l$ and direction $c_l$ contributes
879to the bin $b$.
880
881Up-going muon events are calculated as follows:
882%
883\begin{multline} \label{eq:upgoing}
884    N_b(\vec\omega) = \rho_\text{rock} T \sum_{\alpha,\pm} 
885    \int_0^\infty dh \int_{-1}^{+1} dc_\nu
886    \int_{\Emin}^\infty dE_\nu 
887    \int_{\Emin}^{E_\nu} dE^0_\mu \int_{\Emin}^{E^0_\mu} d\Efin_\mu
888    \int_{-1}^{+1} dc_a \int_0^{2\pi} d\varphi_a
889    \\
890    \frac{d^3 \Phi_\alpha^\pm}{dE_\nu \, dc_\nu \, dh}(E_\nu, c_\nu, h)
891    \, P_{\alpha\to\mu}^\pm(E_\nu, c_\nu, h \,|\, \vec\omega)
892    \, \frac{d^2\sigma_\mu^\pm}{dE^0_\mu \, dc_a}(E_\nu, dE^0_\mu, c_a)
893    \\
894    \times R_\text{rock}(E^0_\mu,\Efin_\mu)
895    \, \mathcal{A}_\text{eff}^b(\Efin_\mu,
896    c_l(c_\nu, c_a, \varphi_a)) \,,
897\end{multline}
898%
899where $\rho_\text{rock}$ is the density of targets in standard rock,
900$R_\text{rock}$ is the effective muon range~\cite{Lipari:1991ut} for a
901muon which is produced with energy $E^0_\mu$ and reaches the detector
902with energy $\Efin_\mu$, and $\mathcal{A}_\text{eff}^b$ is the
903effective area for the bin $b$. The other variables and physical
904quantities are the same as for contained events.
905
906The statistical analysis is based on the pull method, as described in
907Ref.~\cite{Gonzalez-Garcia:2004wg}. In our analysis we include three
908different kind of experimental uncertainties:
909%
910Flux uncertainties: total normalization (20\%), tilt factor (5\%),
911zenith angle (5\%), $\nu/\bar\nu$ ratio (5\%), and $\mu/e$ ratio
912(5\%);
913%   
914cross-section uncertainties: total normalization (15\%) and $\mu/e$
915ratio (1\%) for each type of charged-current interaction
916(quasi-elastic, one-pion production, and deep-inelastic scattering),
917and total normalization (15\%) for the neutral-current contributions;
918%   
919systematic uncertainties: same as in previous analyses, details are
920given in the Appendix of Ref.~\cite{Gonzalez-Garcia:2004wg}. In
921addition, we assume independent normalization uncertainties (20\%) for
922$e$-like and $\mu$-like multi-ring events.
923%
924Since we are dividing our data sample into a large number of bins, it
925is important to use Poisson statistics as some of the bins contain
926only a few number of events. We therefore write our $\chi^2$ as:
927%
928\begin{equation} \label{eq:poisson}
929    \chi^2(\vec\omega) = \min_{\vec\xi} \left[ 2 \sum_b \left(
930    N_b^\text{th}(\vec\omega,\, \vec\xi)
931    - N_b^\text{ex} + N_b^\text{ex} \ln\frac{N_b^\text{ex}}
932    {N_b^\text{th}(\vec\omega,\, \vec\xi)} \right)
933    + \sum_n \xi_n^2 \right] \,,
934\end{equation}
935%
936where the number of events for a given value of the pulls $\vec\xi$ is
937given by:
938%
939\begin{equation} \label{eq:theopulls}
940    N_b^\text{th}(\vec\omega,\, \vec\xi) = N_b^\text{th}(\vec\omega) \,
941    \exp\left( \sum_n \pi_b^n(\vec\omega)\, \xi_n \right) \,.
942\end{equation}
943%
944The use of an exponential dependence on the pulls in
945Eq.~\eqref{eq:theopulls}, rather than the usual linear dependence,
946ensures that the theoretical predictions remain positive for
947\emph{any} value of the pulls, thus avoiding numerical inconsistencies
948during the pull minimization procedure.
949
950 
951
952%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
953\section{Degeneracies}
954%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
955\label{sec:degeneracies}
956
957
958A characteristic feature in the analysis of future LBL experiments is
959the presence of {\it parameter degeneracies}.  Due to the inherent
960three-flavor structure of the oscillation probabilities, for a given
961experiment in general several disconnected regions in the
962multi-dimensional space of oscillation parameters will be
963present. Traditionally these degeneracies are referred to in the
964following way:
965%
966\begin{itemize}
967\item
968The {\it intrinsic} or
969($\delCP,\theta_{13}$)-degeneracy~\cite{Burguet-Castell:2001ez}:
970For a measurement based on the $\nu_\mu \to \nu_e$ oscillation probability for
971neutrinos and antineutrinos two disconnected solutions appear in the
972($\delCP,\theta_{13}$) plane.
973\item
974The {\it hierarchy} or sign($\Delta
975m^2_{31}$)-degeneracy~\cite{Minakata:2001qm}: The two solutions
976corresponding to the two signs of $\Delta m^2_{31}$ appear in general
977at different values of $\delCP$ and $\theta_{13}$.
978\item
979The {\it octant} or $\theta_{23}$-degeneracy~\cite{Fogli:1996pv}:
980Since LBL experiments are sensitive mainly to $\sin^22\theta_{23}$ it
981is difficult to distinguish the two octants $\theta_{23} < \pi/4$ and
982$\theta_{23} > \pi/4$.  Again, the solutions corresponding to
983$\theta_{23}$ and $\pi/2 - \theta_{23}$ appear in general at different
984values of $\delCP$ and $\theta_{13}$.
985\end{itemize}
986%
987This leads to an eight-fold ambiguity in $\theta_{13}$ and
988$\delCP$~\cite{Barger:2001yr}, and hence degeneracies provide a
989serious limitation for the determination of $\theta_{13}$, $\delCP$,
990and the sign of $\Delta m^2_{31}$. Recent discussions of degeneracies
991can be found for example in
992Refs.~\cite{Huber:2002mx,Huber:2005ep,Yasuda:2004gu,Ishitsuka:2005qi};
993degeneracies in the context of CERN--Fr\'ejus \BB\ and SPL have been
994considered previously in Ref.~\cite{Donini:2004hu}.
995%
996In Fig.~\ref{fig:degeneracies} we illustrate the effect of
997degeneracies for the \BB, SPL, and T2HK experiments. Assuming the
998true parameter values $\delta_\mathrm{CP} = -0.85 \pi$,
999$\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$ we show the
1000allowed regions in the plane of $\stheta$ and $\delCP$ taking into
1001account the solutions with the wrong hierarchy and the wrong octant of
1002$\theta_{23}$.
1003
1004\begin{figure}[!t]
1005\centering
1006\includegraphics[width=0.95\textwidth]{./fig5.eps}
1007%
1008  \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
1009  $\delta_\mathrm{CP}$ for LBL data alone (contour lines) and LBL+ATM
1010  data combined (colored regions). $\mathrm{H^{tr/wr} (O^{tr/wr})}$
1011  refers to solutions with the true/wrong mass hierarchy (octant of
1012  $\theta_{23}$). The true parameter values are $\delta_\mathrm{CP} =
1013  -0.85 \pi$, $\sin^22\theta_{13} = 0.03$, $\sin^2\theta_{23} = 0.6$,
1014  and the values from Eq.~(\ref{eq:default-params}) for the other
1015  parameters. The running time is ($5\nu + 5\bar\nu$)~yrs for \BB\ and
1016  ($2\nu + 8\bar\nu$)~yrs for the Super Beams.}
1017\label{fig:degeneracies}
1018\end{figure}
1019
1020
1021\begin{figure}[!t]
1022\centering
1023\includegraphics[width=0.9\textwidth]{./fig6.eps}
1024%
1025  \mycaption{Resolving degeneracies in SPL by successively using the
1026  appearance rate measurement, disappearance channel rate and
1027  spectrum, spectral information in the appearance channel, and
1028  atmospheric neutrinos.  Allowed regions in $\sin^22\theta_{13}$ and
1029  $\delta_\mathrm{CP}$ are shown at 95\%~CL, and $\mathrm{H^{tr/wr}
1030  (O^{tr/wr})}$ refers to solutions with the true/wrong mass hierarchy
1031  (octant of $\theta_{23}$). The true parameter values are
1032  $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} = 0.03$,
1033  $\sin^2\theta_{23} = 0.6$, and the values from
1034  Eq.~(\ref{eq:default-params}) for the other parameters. The running
1035  time is ($2\nu + 8\bar\nu$)~yrs.
1036
1037}
1038\label{fig:degeneracies_SPL}
1039\end{figure}
1040
1041As visible in Fig.~\ref{fig:degeneracies} for the
1042Super Beam experiments SPL and T2HK there is only a four-fold
1043degeneracy related to sign($\Delta m^2_{31}$) and the octant of
1044$\theta_{23}$, whereas the intrinsic degeneracy can be resolved.
1045%
1046Several pieces of information contribute to this effect, as we
1047illustrate at the example of SPL in Fig.~\ref{fig:degeneracies_SPL}.
1048The dashed curves in the left panel of this figure show the allowed
1049regions for only the appearance measurement (for neutrinos and
1050antineutrinos) without spectral information, i.e., just a counting
1051experiment. In this case the eight-fold degeneracy is present in its
1052full beauty, and one finds two solutions (corresponding to the
1053intrinsic degeneracy) for each choice of sign($\Delta m^2_{31}$) and
1054the octant of $\theta_{23}$. Moreover, the allowed regions are
1055relatively large. For the thin solid curves the information from the
1056disappearance rate is added. The main effect is to decrease the size
1057of the allowed regions in $\stheta$. This is especially pronounced for
1058the solutions involving the wrong octant of $\theta_{23}$, since these
1059solutions are strongly affected by an uncertainty in $\theta_{23}$
1060which gets reduced by the disappearance information. Using in addition
1061to the disappearance rate also the spectrum again decreases the size
1062of the allowed regions, however, still all eight solutions are present
1063(compare dashed curves in the right panel).
1064%
1065The most relevant effect comes from the inclusion of spectral
1066information in the appearance channel, as visible from the comparison
1067of the dashed and thick-solid curves in the right panel of
1068Fig.~\ref{fig:degeneracies_SPL}. The intrinsic degeneracy gets
1069resolved and only four solutions corresponding to the sign and octant
1070degeneracies are left (see, e.g.,
1071Refs.~\cite{Huber:2002mx,Huber:2005ep,Ishitsuka:2005qi}).\footnote{The
1072inclusion of spectral information might be the source of possible
1073differences to previous studies, see e.g.\ Ref.~\cite{Donini:2004hu}.}
1074Note that the thick curves in the right panel of
1075Fig.~\ref{fig:degeneracies_SPL} correspond to the regions show in
1076Fig.~\ref{fig:degeneracies} for the SPL.
1077%
1078Finally, by the inclusion of information from atmospheric neutrinos
1079all degeneracies can be resolved in this example, and the true
1080solution is identified at 95\%~CL (see Sec.~\ref{sec:atmospherics} and
1081Ref.~\cite{Huber:2005ep} for further discussions of atmospheric
1082neutrinos).
1083
1084Concerning the \BB\ one observes from Fig.~\ref{fig:degeneracies} that
1085in this case the ($\delCP,\theta_{13}$)-degeneracy cannot be resolved
1086and one has to deal with eight distinct solutions. One reason for this
1087is the absence of precise information on $|\Delta m^2_{31}|$ and
1088$\sin^22\theta_{23}$ which is provided by the $\nu_\mu$ disappearance
1089in Super Beam experiments but is not available from the \BB. If
1090external information on these parameters at the level of 3\% is
1091included the allowed regions in Fig.~\ref{fig:degeneracies} are
1092significantly reduced. However, still all eight solutions are present,
1093which indicates that for the \BB\ spectral information is not
1094efficient enough to resolve the ($\delCP,\theta_{13}$)-degeneracy, and
1095in this case only the inclusion of atmospheric neutrino data allows a
1096nearly complete resolution of the degeneracies.
1097
1098An important observation from Fig.~\ref{fig:degeneracies} is that
1099degeneracies have only a very small impact on the CP violation
1100discovery, in the sense that if the true solution is CP violating also
1101the fake solutions are located at CP violating values of
1102$\delCP$. Indeed, since for the relatively short baselines in the
1103experiments under consideration matter effects are very small, the
1104sign($\Delta m^2_{31}$)-degenerate solution is located within good
1105approximation at $\delCP' \approx \pi -
1106\delCP$~\cite{Minakata:2001qm}. Therefore, although degeneracies
1107strongly affect the determination of $\theta_{13}$ and $\delCP$ they
1108have only a small impact on the CP violation discovery potential.
1109Furthermore, as clear from Fig.~\ref{fig:degeneracies} the sign($\Delta
1110m^2_{31}$) degeneracy has practically no effect on the $\theta_{13}$
1111measurement, whereas the octant degeneracy has very little impact on
1112the determination of $\delCP$.
1113
1114\begin{figure}[!t]
1115\centering
1116\includegraphics[width=0.9\textwidth]{./fig7.eps}
1117%
1118  \mycaption{Allowed regions in $\sin^22\theta_{13}$ and
1119  $\delta_\mathrm{CP}$ for 5~years data (neutrinos only) from \BB,
1120  SPL, and the combination. $\mathrm{H^{tr/wr} (O^{tr/wr})}$ refers to
1121  solutions with the true/wrong mass hierarchy (octant of
1122  $\theta_{23}$). For the colored regions in the left panel also
1123  5~years of atmospheric data are included; the solution with the
1124  wrong hierarchy has $\Delta\chi^2 = 4$. The true parameter
1125  values are $\delta_\mathrm{CP} = -0.85 \pi$, $\sin^22\theta_{13} =
1126  0.03$, $\sin^2\theta_{23} = 0.6$, and the values from
1127  Eq.~(\ref{eq:default-params}) for the other parameters. For the \BB\
1128  only analysis (middle panel) an external accuracy of 2\% (3\%) for
1129  $|\Delta m^2_{31}|$ ($\theta_{23}$) has been assumed, whereas for
1130  the left and right panel the default value of 10\% has been used.}
1131\label{fig:degeneracies_5yrs}
1132\end{figure}
1133
1134Fig.~\ref{fig:degeneracies} shows also that the fake solutions occur
1135at similar locations in the ($\stheta$, $\delCP$) plane for \BB\ and
1136SPL. Therefore, as noted in Ref.~\cite{Donini:2004hu}, in this sense
1137the two experiments are not complementary, and the combination of
113810~years of \BB\ and SPL data is not very effective in resolving
1139degeneracies. This is obvious since the baseline is the same and the
1140neutrino energies are similar.
1141%
1142Note however, that the \BB\ looks for $\nu_e\to\nu_\mu$ appearance,
1143whereas in SPL the T-conjugate channel $\nu_\mu\to\nu_e$ is observed.
1144Assuming CPT invariance the relation $P_{\nu_\alpha\to\nu_\beta} =
1145P_{\bar\nu_\beta\to\bar\nu_\alpha}$ holds, which implies that the
1146antineutrino measurement can be replaced by a measurement in the
1147T-conjugate channel.  Hence, if \BB\ and SPL experiments are available
1148simultaneously the full information can be obtained just from neutrino
1149data, and in principle the (time consuming) antineutrino measurement
1150is not necessary. As shown in Fig.~\ref{fig:degeneracies_5yrs} the
1151combination of 5~yrs neutrino data from the \BB\ with 5~yrs of
1152neutrino data from SPL leads to a result very close to the 10~yrs
1153neutrino+antineutrino data from one experiment alone. Hence, if \BB\
1154and SPL experiments are available simultaneously the data taking
1155period is reduced approximately by a factor of 2 with respect to a
1156single experiment. This synergy is discussed later in
1157Sec.~\ref{sec:synergies-beams} in the context of the $\theta_{13}$ and
1158CP violation discovery potentials.
1159
1160
1161%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1162\section{Physics potential}
1163%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1164\label{sec:sensitivities}
1165
1166\subsection{Sensitivity to the atmospheric parameters}
1167\label{sec:atm}
1168
1169The $\nu_\mu$ disappearance channel available in the Super Beam
1170experiments SPL and T2HK allows a precise determination of the
1171atmospheric parameters $|\Delta m^2_{31}|$ and $\sin^22\theta_{23}$,
1172see, e.g., Refs.~\cite{Antusch:2004yx,Minakata:2004pg,Donini:2005db}
1173for recent analyses). Fig.~\ref{fig:atm-params} illustrates the
1174improvement on these parameters by Super Beam experiments with respect
1175to the present knowledge from SK atmospheric and K2K data. We show the
1176allowed regions at 99\%~CL for T2K-I, SPL, and T2HK, where in all
1177three cases 5~years of neutrino data are assumed. T2K-I corresponds to
1178the phase~I of the T2K experiment with a beam power of 0.77~MW and the
1179Super-Kamiokande detector as target~\cite{T2K}. In Tab.~\ref{tab:atm-params} we
1180give the corresponding relative accuracies at 3$\sigma$ for $|\Delta
1181m^2_{31}|$ and $\sin^2\theta_{23}$.
1182
1183\begin{figure}[!t]
1184\centering
1185  \includegraphics[width=0.55\textwidth]{./fig8.eps}
1186  \mycaption{\label{fig:atm-params} Allowed regions of $\Delta
1187  m^2_{31}$ and $\sin^2\theta_{23}$ at 99\%~CL (2 d.o.f.)  after 5~yrs
1188  of neutrino data taking for SPL, T2K phase~I, T2HK, and the
1189  combination of SPL with 5~yrs of atmospheric neutrino data in the
1190  MEMPHYS detector. For the true parameter values we use $\Delta
1191  m^2_{31} = 2.2\, (2.6) \times 10^{-3}~\mathrm{eV}^2$ and
1192  $\sin^2\theta_{23} = 0.5 \, (0.37)$ for the test point 1 (2), and
1193  $\theta_{13} = 0$ and the solar parameters as given in
1194  Eq.~(\ref{eq:default-params}). The shaded region corresponds to the
1195  99\%~CL region from present SK and K2K data~\cite{Maltoni:2004ei}.}
1196\end{figure}
1197
1198
1199\begin{table}[!t]
1200  \centering
1201  \begin{tabular}{lcrrr}
1202  \hline\noalign{\smallskip}
1203    & True values  & T2K-I & SPL & T2HK \\
1204  \noalign{\smallskip}\hline\noalign{\smallskip}
1205  $\Delta m^2_{31}$   & $2.2\cdot 10^{-3}$ eV$^2$ & 4.7\% & 3.2\% & 1.1\% \\
1206  $\sin^2\theta_{23}$ & $0.5$                     & 20\%  & 20\%  & 6\%   \\
1207  \noalign{\smallskip}\hline\noalign{\smallskip}
1208  $\Delta m^2_{31}$   & $2.6\cdot 10^{-3}$ eV$^2$ & 4.4\% & 2.5\% & 0.7\% \\
1209  $\sin^2\theta_{23}$ & $0.37$                    & 8.9\% & 3.1\% & 0.8\% \\
1210  \noalign{\smallskip}\hline
1211  \end{tabular}
1212  \mycaption{Accuracies at $3\sigma$ on the atmospheric parameters
1213  $|\Delta m^2_{31}|$ and $\sin^2\theta_{23}$ for 5 years of neutrino
1214  data from T2K-I, SPL, and T2HK for the two test points shown in
1215  Fig.~\ref{fig:atm-params} ($\theta^\mathrm{true}_{13} = 0$). The
1216  accuracy for a parameter $x$ is defined as $(x^\mathrm{upper} -
1217  x^\mathrm{lower})/(2 x^\mathrm{true})$, where $x^\mathrm{upper}$
1218  ($x^\mathrm{lower}$) is the upper (lower) bound at 3$\sigma$ for
1219  1~d.o.f.\ obtained by projecting the contour $\Delta \chi^2 = 9$
1220  onto the $x$-axis. For the accuracies for test point~2 the octant
1221  degenerate solution is neglected.\label{tab:atm-params}}
1222\end{table}
1223
1224From the figure and the table it becomes evident that the T2K setups
1225are very good in measuring the atmospheric parameters, and only a
1226modest improvement is possible with SPL with respect to T2K phase~I.
1227T2HK provides an excellent sensitivity for these parameters, and for
1228the example of the test point~2 sub-percent accuracies are obtained at
12293$\sigma$. The disadvantage of SPL with respect to T2HK is the
1230limited spectral information. Because of the lower beam energy
1231nuclear Fermi motion is a severe limitation for energy reconstruction
1232in SPL, whereas in T2K the somewhat higher energy allows an efficient
1233use of spectral information of quasi-elastic events. Indeed, due to
1234the large number of events in the disappearance channel (cf.\
1235Tab.~\ref{tab:events}) the measurement is completely dominated by the
1236spectrum, and even increasing the normalization uncertainty up to
1237100\% has very little impact on the allowed regions. The effect of
1238spectral information on the disappearance measurement is
1239discussed in some detail in Ref.~\cite{Donini:2005db}.
1240
1241In the interpretation of the numbers given in
1242Tab.~\ref{tab:atm-params} one should consider that at accuracies below
12431\% systematics might become important, which are not accounted for
1244here. We do include the most relevant systematics (see
1245Secs.~\ref{sec:analysis} and \ref{sec:experiments}), however, at that
1246level additional uncertainties related to, for example, the spectral
1247shapes of signal and/or background, or the energy calibration might
1248eventually limit the accuracy.
1249
1250For the test point~1, with maximal mixing for $\theta_{23}$, rather
1251poor accuracies of $\sim20\%$ for T2K-I and SPL, and $6\%$ for T2HK
1252are obtained for $\sin^2\theta_{23}$. The reason is that in the
1253disappearance channel $\sin^22\theta_{23}$ is measured with high
1254precision, which translates to rather large errors for
1255$\sin^2\theta_{23}$ if $\theta_{23} = \pi/4$~\cite{Minakata:2004pg}.
1256%
1257For the same reason it is difficult to resolve the octant degeneracy,
1258and for the test point~2, with a non-maximal value of
1259$\sin^2\theta_{23} = 0.37$, for all three LBL experiments the
1260degenerate solution is present around $\sin^2\theta_{23} = 0.63$.
1261%
1262As pointed out in Refs.~\cite{Peres:2003wd,Gonzalez-Garcia:2004cu}
1263atmospheric neutrino data may allow to distinguish between the two
1264octants of $\theta_{23}$. If 5~years of atmospheric neutrino data in
1265MEMPHYS are added to the SPL data, the degenerate solution for the
1266test point~2 can be excluded at more than $5\sigma$ and hence the
1267octant degeneracy is resolved in this example, see
1268Sec.~\ref{sec:atmospherics} for a more detailed discussion.
1269
1270
1271%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1272\subsection{The $\theta_{13}$ discovery potential}
1273\label{sec:th13}
1274
1275If no finite value of $\theta_{13}$ is discovered by the next round of
1276experiments an important task of the experiments under consideration
1277here is to push further the sensitivity to this parameter. In this
1278section we address this problem, where we use to following definition
1279of the $\theta_{13}$ discovery potential: Data are simulated for a
1280finite true value of $\stheta$ and a given true value for $\delCP$. If
1281the $\Delta\chi^2$ of the fit to these data with $\theta_{13} = 0$ is
1282larger than 9 the corresponding true value of $\theta_{13}$ ``is
1283discovered at 3$\sigma$''. In other words, the $3\sigma$ discovery
1284limit as a function of the true $\delCP$ is given by the true value of
1285$\stheta$ for which $\Delta\chi^2(\theta_{13}=0) = 9$. In the fitting
1286process we minimize the $\Delta\chi^2$ with respect to $\theta_{12}$,
1287$\theta_{23}$, $\Delta m^2_{12}$, and $\Delta m^2_{31}$, and in
1288general one has to test also for degenerate solutions in sign($\Delta
1289m^2_{31}$) and the octant of $\theta_{23}$.
1290
1291\begin{figure}
1292  \centering \includegraphics[width=0.9\textwidth]{./fig9.eps}
1293  \mycaption{$3\sigma$ discovery sensitivity to $\stheta$ for \BB,
1294  SPL, and T2HK as a function of the true value of \delCP\ (left
1295  panel) and as a function of the fraction of all possible values of
1296  \delCP\ (right panel). The running time is ($5\nu + 5\bar\nu$)~yrs
1297  for \BB\ and ($2\nu + 8\bar\nu$)~yrs for the Super Beams. The width
1298  of the bands corresponds to values for the systematical errors
1299  between 2\% and 5\%. The black curves correspond to the combination
1300  of \BB\ and SPL with 10~yrs of total data taking each for a
1301  systematical error of 2\%, and the dashed curves show the
1302  sensitivity of the \BB\ when the number of ion decays/yr are reduced
1303  by a factor of two with respect to the values given in
1304  Tab.~\ref{tab:setups}.\label{fig:th13}}
1305\end{figure}
1306
1307The discovery limits are shown for \BB, SPL, and T2HK in
1308Fig.~\ref{fig:th13}. One observes that SPL and T2HK are rather similar
1309in performance, whereas the \BB\ with our standard fluxes performs
1310significantly better. For all three facilities a guaranteed discovery
1311reach of $\stheta \simeq 5\times 10^{-3}$ is obtained, irrespective of
1312the actual value of \delCP, however, for certain values of \delCP\ the
1313sensitivity is significantly improved. For SPL and T2HK discovery
1314limits around $\stheta \simeq 10^{-3}$ are possible for a large
1315fraction of all possible values of \delCP, whereas for our standard
1316\BB\ a sensitivity below $\stheta = 4\times 10^{-4}$ is reached for
131780\% of all possible values of \delCP. If 10~years of data from \BB\
1318and SPL are combined the discovery limit is dominated by the \BB.
1319%
1320Let us stress that the \BB\ performance depends crucially on the
1321neutrino flux intensity, as can be seen from the dashed curves in
1322Fig.~\ref{fig:th13}, which has been obtained by reducing the number of
1323ion decays/yr by a factor of two with respect to our standard values
1324given in Tab.~\ref{tab:setups}. In this case the sensitivity decreases
1325significantly, but still values slightly better than from the
1326Super Beam experiments are reached.
1327
1328The peak of the sensitivity curves around $\delCP \approx \pi$ appears
1329due to the interplay of neutrino and antineutrino data. For the Super
1330Beams neutrino (antineutrino) data are most sensitive in the region
1331$\pi \lesssim \delCP \lesssim 2\pi$ ($0 \lesssim \delCP \lesssim
1332\pi$), and opposite for the \BB, compare also Fig.~\ref{fig:th13-5yrs}
1333in Sec.~\ref{sec:synergies-beams}. The particular shape of the
1334sensitivity curves emerges from the relative location of the
1335corresponding curves for neutrino and antineutrino data, which is
1336controlled by the $L/E_\nu$ value where the experiment is operated and
1337the value of $|\Delta m^2_{31}|$. The fact that the peak is most
1338pronounced for the \BB\ follows from the somewhat smaler $L/E_\nu$ of
1339the \BB\ compared to the Super Beams, whereas the shapes for SPL and
1340T2HK are similar because of the similar $L/E_\nu$ values.
1341
1342In Fig.~\ref{fig:th13} we illustrate also the effect of systematical
1343errors on the $\theta_{13}$ discovery reach. The lower boundary of the
1344band for each experiment corresponds to a systematical error of 2\%,
1345whereas the upper boundary is obtained for 5\%. These errors include
1346the (uncorrelated) normalization uncertainties on the signal as well
1347as on the background, where the crucial uncertainty is the error on
1348the background. We find that the \BB\ is basically not affected by
1349these errors, since the background has a rather different spectral
1350shape (strongly peaked at low energies) than the signal. The fact
1351that T2HK is relatively strongly affected by the actual value of the
1352systematics can by understood by considering the ratio of signal to
1353the square-root of the background using the numbers of
1354Tab.~\ref{tab:events}. We shall discuss this issue in more detail in
1355the next section in the context of the CP violation discovery reach.
1356
1357\begin{figure}
1358  \centering \includegraphics[width=0.9\textwidth]{./fig10.eps}
1359  \mycaption{\label{fig:SPLTheta13Disco} $3\sigma$ discovery
1360  sensitivity to $\stheta$ for the SPL as a function of the true value
1361  of \delCP\ for $\sin^2\theta_{23}^\mathrm{true} = 0.6$ and true
1362  values for the other parameters as given in
1363  Eq.~(\ref{eq:default-params}). The running time is ($2\nu +
1364  8\bar\nu$)~yrs.
1365}
1366\end{figure}
1367
1368Let us remark that the $\theta_{13}$ sensitivities are practically not
1369affected by the sign($\Delta m^2_{31}$)-degeneracy. This is easy to
1370understand, since the data is fitted with $\theta_{13} = 0$, and in
1371this case both mass hierarchies lead to very similar event rates. If
1372the inverted hierarchy is used as the true hierarchy, the peak in the
1373discovery limit visible in the left panel of Fig.~\ref{fig:th13}
1374around $\delCP \sim \pi$ moves to $\delCP \sim 0$. However, the
1375characteristic shape of the curves, and in particular, the sensitivity
1376as a function of the \delCP-fraction shown in the right panel are
1377hardly affected by the sign of the true $\Delta m^2_{31}$.
1378%
1379In case of a non-maximal value of $\theta_{23}$ the octant-degeneracy
1380has a minor impact on the $\theta_{13}$ discovery potential, as
1381illustrated in Fig.~\ref{fig:SPLTheta13Disco} for the SPL. We show the
1382discovery limit obtained with the true and the fake octant of
1383$\theta_{23}$ for a true value of $\sin^2\theta_{23}= 0.6$. Let us
1384note that for true values of $\sin^2\theta_{23} > 0.5$ the
1385octant-degenerate solution leads to a worse sensitivity to
1386$\theta_{13}$ (see figure), whereas for $\sin^2\theta_{23} < 0.5$ the
1387fake solution does not affect the $\theta_{13}$ discovery, since in
1388this case the sensitivity is increased.
1389
1390
1391%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1392\subsection{Sensitivity to CP violation}
1393\label{sec:CPV}
1394
1395In case a finite value of $\theta_{13}$ is established it is important
1396to quantitatively assess the discovery potential for leptonic CP
1397violation (CPV). The CP symmetry is violated if the complex phase
1398\delCP\ is different from $0$ and $\pi$. Therefore, CPV is discovered
1399if these values for \delCP\ can be excluded.
1400%
1401We evaluate the discovery potential for CPV in the following way:
1402Data are calculated by scanning the true values of $\stheta$ and
1403$\delCP$. Then these data are fitted with the CP conserving values
1404$\delCP = 0$ and $\delCP = \pi$, where all parameters except \delCP\
1405are varied and the sign and octant degeneracies are taken into
1406account. If no fit with $\Delta \chi^2 < 9$ is found CP conserving
1407values of \delCP\ can be excluded at $3\sigma$ for the chosen values
1408of $\delta_\mathrm{CP}^\mathrm{true}$ and $\stheta^\mathrm{true}$.
1409
1410\begin{figure}[!t]
1411  \centering
1412   \includegraphics[width=0.65\textwidth]{./fig11.eps}
1413%   
1414   \mycaption{CPV discovery potential for \BB, SPL, and T2HK: For
1415   parameter values inside the ellipse-shaped curves CP conserving
1416   values of \delCP\ can be excluded at $3\sigma$ $(\Delta\chi^2>9)$.
1417   The running time is ($5\nu + 5\bar\nu$)~yrs for \BB\ and ($2\nu +
1418   8\bar\nu$)~yrs for the Super Beams. The width of the bands
1419   corresponds to values for the systematical errors from 2\% to
1420   5\%. The dashed curves show the sensitivity of the \BB\ when the
1421   number of ion decays/yr are reduced by a factor of two with respect
1422   to the values given in Tab.~\ref{tab:setups} for 2\%
1423   systematics.\label{fig:CPV}}
1424\end{figure}
1425
1426The CPV discovery potential for \BB, SPL, and T2HK is shown in
1427Fig.~\ref{fig:CPV}. As in the case of the $\theta_{13}$ sensitivity we
1428find that SPL and T2HK perform rather similar, whereas the \BB\ has
1429significantly better sensitivity if our adopted numbers of ion decays
1430per year can be achieved. For systematical errors of 2\% maximal CPV
1431(for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$) can be discovered at
1432$3\sigma$ down to $\stheta \simeq 8.8 \,(6.6)\times 10^{-4}$ for SPL
1433(T2HK), and $\stheta \simeq 2\times 10^{-4}$ for the \BB. This number
1434for the \BB\ is increased by a factor 3 if the fluxes are reduced to
1435half of our nominal values.  The best sensitivity to CPV is obtained
1436for all three facilities around $\stheta \sim 10^{-2}$. For this value
1437CPV can be established for 78\%, 73\%, 75\% of all values of \delCP\
1438for \BB, SPL, T2HK, respectively (again for systematics of 2\%).
1439
1440The widths of the bands in Fig.~\ref{fig:CPV} corresponds to different
1441values for systematical errors. The curves which give the best
1442sensitivities are obtained for systematics of 2\%, the curves
1443corresponding to the worst sensitivity have been computed for
1444systematics of 5\%. We change the uncertainty on the signal as well as
1445on the background, however, it turns out that the most relevant
1446uncertainty is the background normalization. We find that the impact
1447of systematics is very small for the \BB. The reason for this is that
1448the spectral shape of the background in the \BB\ (from pions and
1449atmospheric neutrinos) is very different from the signal, and
1450therefore they can be disentangled by the fit of the energy spectrum.
1451For the Super Beams the background spectrum is more similar to the
1452signal, and therefore an uncertainty on the background normalization
1453might have a strong impact on the sensitivity, as visible from the SPL
1454and T2HK curves in Fig.~\ref{fig:CPV}. In particular T2HK is strongly
1455affected, and moving from 2\% to 5\% uncertainy decreases the
1456sensitivity to maximal CPV by a factor 3.
1457
1458\begin{figure}[!t]
1459  \centering
1460   \includegraphics[width=0.9\textwidth]{./fig12.eps}
1461%   
1462   \mycaption{Impact of total exposure and systematical errors on the
1463   CPV discovery potential of \BB, SPL, and T2HK. We show the
1464   smallest true value of $\stheta$ for which $\delCP = \pi/2$ can be
1465   distinguished from $\delCP = 0$ or $\delCP = \pi$ at $3\sigma$
1466   $(\Delta\chi^2>9)$ as a function of the exposure in kt~yrs (left)
1467   and as a function of the systematical error on the background
1468   $\sigma_\mathrm{bkgr}$ (right). The widths of the curves in the
1469   left panel corresponds to values of $\sigma_\mathrm{bkgr}$ from 2\%
1470   to 5\%. The thin solid curves in the left panel corresponds to no
1471   systematical errors. The right plot is calculated for the standard
1472   exposure of 4400~kt~yrs. No systematical error on the signal has
1473   been assumed. \label{fig:systematics}}
1474\end{figure}
1475
1476This interesting feature can be understood in the following way. A
1477rough measure to estimate the sensitivity is given by the signal
1478compared to the error on the background. The latter receives
1479contributions from the statistical error $\sqrt{B}$ and from the
1480systematical uncertainty $\sigma_\mathrm{bkgr}B$, where $B$ is the
1481number of background events and $\sigma_\mathrm{bkgr}$ is the
1482(relative) systematical error. Hence the importance of the systematics
1483can be estimated by the ratio of systematical and statistical errors
1484$\sigma_\mathrm{bkgr} B / \sqrt{B} = \sigma_\mathrm{bkgr} \sqrt{B}$.
1485Summing the numbers for background events in the neutrino and
1486antineutrino channels given in Tab.~\ref{tab:events} one finds that
1487systematical errors dominate ($\sigma_\mathrm{bkgr} \sqrt{B} > 1$) if
1488$\sigma_\mathrm{bkgr} \gtrsim 6\%,\, 3\%, \, 2\%$ for \BB, SPL, T2HK,
1489respectively.
1490%
1491In the right panel Fig.~\ref{fig:systematics} we show the sensitivity
1492to maximal CPV (as defined in the figure caption) as a function of
1493$\sigma_\mathrm{bkgr}$. Indeed, the worsening of the sensitivity due
1494to systematics occurs roughly at the values of $\sigma_\mathrm{bkgr}$
1495as estimated above. For a more quantitative understanding of these
1496curves it is necessary to consider the number of signal and background
1497events for neutrinos and antineutrinos separately, as well as to take
1498into account spectral information.
1499
1500
1501The left panel of Fig.~\ref{fig:systematics} shows the sensitivity to
1502maximal CPV as a function of the exposure\footnote{Note that the CPV
1503sensitivity for the \BB\ with reduced fluxes from Fig.~\ref{fig:CPV}
1504is worse than the value which follows from Fig.~\ref{fig:systematics}.
1505The reason is that in Fig.~\ref{fig:systematics} the total exposure is
1506scaled (mass~$\times$~time), i.e., signal and background are scaled in
1507the same way, whereas for the dashed curve in Fig.~\ref{fig:CPV} only
1508the fluxes are reduced but backgrounds are kept constant.} for values
1509of $\sigma_\mathrm{bkgr}$ from 2\% to 5\%. One can observe clearly
1510that for the standard exposure of 4400~kt~yrs T2HK is dominated by
1511systematics and changing $\sigma_\mathrm{bkgr}$ from 2\% to 5\% has a
1512big impact on the sensitivity. In contrast the CERN--MEMPHYS
1513experiments (especially the \BB) are rather stable with respect to
1514systematics and for the standard exposure they are still statistics
1515dominated. We conclude that in T2HK systematics have to be under very
1516good control, whereas this issue is less important for \BB\ and SPL.
1517%
1518We have checked explicitly that the systematical error on the signal
1519has negligible impact on these results. Therefore, we have set this
1520error to zero for calculating Fig.~\ref{fig:systematics} to highlight
1521the importance of the background error. In all other calculations also
1522the signal error is included, in particular also in Fig.~\ref{fig:CPV}.
1523
1524Let us remark that for the T2KK configuration (with one half of the
1525Hyper-K detector mass at Kamioka and the second half at the same
1526off-axis angle in Korea) the problem of systematics might be less
1527severe than for T2HK, since both detectors observe the same flux and
1528background.
1529%
1530Note however, that an important issue for the CPV sensitivity is
1531whether systematics between neutrino and antineutrino data are
1532correlated or not. We have checked that the worse sensitivies for T2HK
1533shown in Fig.~\ref{fig:CPV} compared to the results obtained in
1534Refs.~\cite{Ishitsuka:2005qi,Kajita:2006bt} can be traced back to the
1535fact that in these papers neutrino and antineutrino systematics are
1536correlated, whereas we consider them to be independent. Note that our
1537approach is conservative, and the assumption of uncorrelated errors
1538has been adopted also for the CERN--MEMPHYS experiments.
1539
1540
1541\begin{figure}[!t]
1542  \centering
1543   \includegraphics[width=0.8\textwidth]{./fig13.eps}
1544%   
1545   \mycaption{Impact of degeneracies on the CPV discovery potential
1546   for the \BB. We show the sensitivity to CPV at $3\sigma$
1547   $(\Delta\chi^2>9)$ computed for 4 different combinations of the
1548   true values of the hierarchy (NH or IH) and $\theta_{23}$
1549   ($\sin^2\theta_{23} = 0.4$ or $0.6$). Dashed curves are computed
1550   neglecting degeneracies in the fit. The running time is ($5\nu +
1551   5\bar\nu$)~yrs.
1552\label{fig:deltacp}}
1553\end{figure}
1554
1555Finally, in Fig.~\ref{fig:deltacp} we illustrate the impact of
1556degeneracies, as well as the true hierarchy and \thetatt-octant on the
1557CPV sensitivity.  Curves of different colors correspond to the four
1558different choices for \sigdm\ and the \thetatt-octant of the true
1559parameters. For the solid curves the simulated data for each choice of
1560true \sigdm\ and \thetatt-octant are fitted by taking into account all
1561four degenerate solutions, i.e., also for the fit all four
1562combinations of \sigdm\ and \thetatt-octant are used. One observes
1563from the figure that the true hierarchy and octant have a rather small
1564impact on the \BB\ CPV sensitivity, in particular the sensitivity to
1565maximal CPV is completely independent.  The main effect of changing the
1566true hierarchy is to exchange the behavior between $0 < \delCP <
1567180^\circ$ and $180^\circ < \delCP < 360^\circ$. For $\stheta \lesssim
156810^{-2}$ the sensitivity gets slightly worse if
1569$\thetatt^\mathrm{true} > \pi/4$ compared to $\thetatt^\mathrm{true} <
1570\pi/4$.
1571
1572The dashed curves in Fig.~\ref{fig:deltacp} are computed without
1573taking into account the degeneracies, i.e., for each choice of true
1574\sigdm\ and \thetatt-octant the data are fitted only with this
1575particular choice. The effect of the degeneracies becomes visible for
1576large values of \thetaot. Note that this is just the region where they
1577can be reduced by a combined analysis with atmospheric neutrinos (see
1578Sec.~\ref{sec:atmospherics} or Ref.~\cite{Huber:2005ep}).
1579 
1580
1581%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1582\section{Synergies provided by the CERN--MEMPHYS facilities}
1583%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1584\label{sec:synergies}
1585
1586%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1587\subsection{Combining Beta Beam and Super Beam}
1588%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1589\label{sec:synergies-beams}
1590
1591In this section we discuss synergies which emerge if both \BB\ and SPL
1592are available. The main difference between these two beams is the
1593different initial neutrino flavor,
1594$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ for \BB\ and
1595$\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ for SPL. This implies
1596that at near detectors all relevant cross sections can be measured. In
1597particular, the near detector of the \BB\ will measure the cross
1598section for the SPL appearance search, and vice versa.
1599%
1600If both experiments run with neutrinos and antineutrinos all possible
1601transition probabilities are covered: $P_{\nu_e\to\nu_\mu}$,
1602$P_{\bar\nu_e\to\bar\nu_\mu}$, $P_{\nu_\mu\to\nu_e}$, and
1603$P_{\bar\nu_\mu\to\bar\nu_e}$. Together with the fact that matter
1604effects are very small because of the relatively short baseline, this
1605means that in addition to CP also direct tests of the T and CPT
1606symmetries are possible.
1607
1608\begin{figure}[!t]
1609  \centering
1610   \includegraphics[width=0.9\textwidth]{./fig14.eps}
1611%   
1612   \mycaption{Discovery potential of a finite value of $\stheta$ at
1613   $3\sigma$ $(\Delta\chi^2>9)$ for 5~yrs neutrino data from
1614   \BB, SPL, and the combination of \BB\ + SPL compared to
1615   10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
1616   \label{fig:th13-5yrs}}
1617\end{figure}
1618
1619However, if the CPT symmetry is assumed in principle all information
1620can be obtained just from neutrino data because of the relations
1621$P_{\bar\nu_e\to\bar\nu_\mu} = P_{\nu_\mu\to\nu_e}$ and
1622$P_{\bar\nu_\mu\to\bar\nu_e} = P_{\nu_e\to\nu_\mu}$. As mentioned
1623already in Sec.~\ref{sec:degeneracies} this implies that (time
1624consuming) antineutrino running can be avoided. We illustrate this
1625synergy in Figs.~\ref{fig:th13-5yrs} and \ref{fig:CP-5yrs}. In
1626Fig.~\ref{fig:th13-5yrs} we show the $\theta_{13}$ discovery potential
1627of 5 years of neutrino data from \BB\ and SPL. From the left panel the
1628complementarity of the two experiments is obvious, since each of them
1629is most sensitive in a different region of \delCP. (As expected from
1630general properties of the oscillation probabilities the sensitivity
1631curves of \BB\ and SPL are approximately related by the transformation
1632$\delCP \to 2\pi - \delCP$.) Combining these two data sets results in
1633a sensitivity slightly better than from 10 years (2$\nu$+8$\bar\nu$)
1634of T2HK data.
1635%
1636As visible in Fig.~\ref{fig:CP-5yrs} also for the CPV discovery this
1637synergy works and 5 years of neutrino data from \BB\ and SPL lead to a
1638similar sensitivity as 10 years of T2HK.
1639
1640\begin{figure}[!t]
1641  \centering
1642   \includegraphics[width=0.6\textwidth]{./fig15.eps}
1643%   
1644   \mycaption{Sensitivity to CPV at $3\sigma$ $(\Delta\chi^2>9)$ for
1645   combining 5~yrs neutrino data from \BB\ and SPL compared to
1646   10~yrs data from T2HK (2~yrs neutrinos + 8~yrs antineutrinos).
1647   \label{fig:CP-5yrs}}
1648\end{figure}
1649
1650
1651
1652%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1653\subsection{Resolving degeneracies with atmospheric neutrinos}
1654%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1655\label{sec:atmospherics}
1656
1657It was pointed out in Ref.~\cite{Huber:2005ep} that for LBL
1658experiments based on mega ton scale water \v{C}erenkov detectors data
1659from atmospheric neutrinos (ATM) provide an attractive method to
1660resolve degeneracies. Atmospheric neutrinos are sensitive to the
1661neutrino mass hierarchy if $\theta_{13}$ is sufficiently large due to
1662Earth matter effects, mainly in multi-GeV $e$-like
1663events~\cite{Petcov:1998su,Akhmedov:1998ui,Bernabeu:2003yp}. Moreover,
1664sub-GeV $e$-like events provide sensitivity to the octant of
1665$\theta_{23}$~\cite{Kim:1998bv,Peres:2003wd,Gonzalez-Garcia:2004cu}
1666due to oscillations with $\Delta m^2_{21}$ (see also
1667Ref.~\cite{Kajita} for a discussion of atmospheric neutrinos in the
1668context of Hyper-K).
1669%
1670Following Ref.~\cite{Huber:2005ep} we investigate here the synergy
1671from a combination of LBL data from \BB\ and SPL with ATM data in the
1672MEMPHYS detector. Technical details are given in
1673Sec.~\ref{sec:atm-details}.
1674 
1675The effect of degeneracies in LBL data has been discussed in
1676Sec.~\ref{sec:degeneracies}, see Figs.~\ref{fig:degeneracies} and
1677\ref{fig:degeneracies_SPL}. As discussed there, for given true
1678parameter values the data can be fitted with the wrong hierarchy
1679and/or with the wrong octant of $\theta_{23}$. Hence, from LBL data
1680alone the hierarchy and the octant cannot be determined and
1681ambiguities exist in the determination of $\theta_{13}$ and
1682$\delta_\mathrm{CP}$.
1683%
1684If the LBL data are combined with ATM data only the colored regions in
1685Fig.~\ref{fig:degeneracies} survive, i.e., in this particular example
1686for SPL and T2HK the degeneracies are completely lifted at 95\%~CL,
1687the mass hierarchy and the octant of $\theta_{23}$ can be identified,
1688and the ambiguities in $\theta_{13}$ and $\delta_\mathrm{CP}$ are
1689resolved. For the \BB\ an island corresponding to the wrong hierarchy
1690does survive at the 95\%~CL for 2~dof. Still, the solution with the
1691wrong sign of $\Delta m^2_{31}$ is disfavored with $\Delta\chi^2 =
16925.1$ with respect to the true solution, which corresponds to
16932.4$\sigma$ for 1~dof.
1694%
1695Let us note that in Fig.~\ref{fig:degeneracies} we have chosen a
1696favorable value of $\sin^2\theta_{23} = 0.6$; for values
1697$\sin^2\theta_{23} < 0.5$ in general the sensitivity of ATM data is
1698weaker~\cite{Huber:2005ep}.
1699
1700\begin{figure}[!t]
1701\centering
1702  \includegraphics[width=0.9\textwidth]{./fig16.eps}
1703%
1704  \mycaption{Sensitivity to the mass hierarchy at $2\sigma$
1705  $(\Delta\chi^2 = 4)$ as a function of the true values of
1706  $\sin^22\theta_{13}$ and $\delta_\mathrm{CP}$ (left), and the
1707  fraction of true values of $\delCP$ (right). The solid curves are
1708  the sensitivities from the combination of long-baseline and
1709  atmospheric neutrino data, the dashed curves correspond to
1710  long-baseline data only. The running time is ($5\nu + 5\bar\nu$)~yrs
1711  for \BB\ and ($2\nu + 8\bar\nu$)~yrs for the Super Beams. For
1712  comparison we show in the right panel also the sensitivities of
1713  NO$\nu$A and NO$\nu$A+T2K extracted from Fig.~13.14 of
1714  Ref.~\cite{Ayres:2004js}. For the curve labeled ``NO$\nu$A
1715  (p.dr.)+T2K@4~MW'' a proton driver has been assumed for NO$\nu$A and
1716  the T2K beam has been up-graded to 4~MW, see
1717  Ref.~\cite{Ayres:2004js} for details.}
1718  \label{fig:hierarchy}
1719\end{figure}
1720
1721In Fig.~\ref{fig:hierarchy} we show how the combination of ATM+LBL
1722data leads to a non-trivial sensitivity to the neutrino mass
1723hierarchy, i.e.\ to the sign of $\Delta m^2_{31}$. For LBL data alone
1724(dashed curves) there is practically no sensitivity for the
1725CERN--MEMPHYS experiments (because of the very small matter effects
1726due to the relatively short baseline), and the sensitivity of T2HK
1727depends strongly on the true value of $\delta_\mathrm{CP}$. However,
1728by including data from atmospheric neutrinos (solid curves) the mass
1729hierarchy can be identified at $2\sigma$~CL provided
1730$\sin^22\theta_{13} \gtrsim 0.02-0.03$. As an example we have chosen
1731in that figure a true value of $\theta_{23} = \pi/4$. Generically the
1732hierarchy sensitivity increases with increasing $\theta_{23}$, see
1733Ref.~\cite{Huber:2005ep} for a detailed discussion.
1734
1735The sensitivity to the neutrino mass hierarchy shown in
1736Fig.~\ref{fig:hierarchy} is significantly improved with respect to our
1737previous results obtained in Ref.~\cite{Huber:2005ep}. There are two
1738main reasons for this improved performance: First, we use now much
1739more bins in charged lepton energy for fully contained single-ring
1740events\footnote{The impact of energy binning on the hierarchy
1741determination with atmospheric neutrinos has been discussed recently
1742in Ref.~\cite{Petcov:2005rv} in the context of magnetized iron
1743detectors.}  (compare Sec.~\ref{sec:atm-details}), and second, we
1744implemented also information from multi-ring events. This latter point
1745is important since the relative contribution of neutrinos and
1746antineutrinos is different for single- and multi-ring
1747events. Therefore, combining single- and multi-ring data allows to
1748obtain a discrimination between neutrino and antineutrino events on a
1749statistical basis. This in turn contains crucial information on the
1750hierarchy, since the matter enhancement is visible either in neutrinos
1751or antineutrinos, depending on the hierarchy.
1752
1753Although \BB\ and SPL alone have no sensitivity to the hierarchy at
1754all, we find that the combination of them does provide rather good
1755sensitivity even without atmospheric data. The reason for this
1756interesting effect is the following. Because of the rather short
1757baseline the matter effect is too small to distinguish between NH and
1758IH given only neutrino and antineutrino information in one channel.
1759However, the tiny matter effect suffices to move the hierarchy
1760degenerate solution to slightly different locations in the ($\stheta$,
1761$\delCP$) plane for the $\stackrel{\scriptscriptstyle(-)}{\nu}_e \to
1762\stackrel{\scriptscriptstyle (-)}{\nu}_\mu$ (\BB) and
1763$\stackrel{\scriptscriptstyle(-)}{\nu}_\mu \to
1764\stackrel{\scriptscriptstyle (-)}{\nu}_e$ (SPL) channels (compare
1765Fig.~\ref{fig:degeneracies}). Hence, if all four CP and T conjugate
1766channels are available (as it is the case for the \BB+SPL combination)
1767already the small matter effect picked up along the 130~km
1768CERN--MEMPHYS distance provides sensitivity to the mass hierarchy for
1769$\sin^22\theta_{13} \gtrsim 0.03$, or $\sin^22\theta_{13} \gtrsim 0.015$
1770if also atmospheric neutrino data is included.
1771
1772For comparison we show in the right panel of Fig.~\ref{fig:hierarchy}
1773also the sensitivity of the NO$\nu$A~\cite{Ayres:2004js} experiment,
1774and of NO$\nu$A+T2K, where in the second case a beam upgrade by a
1775proton driver has been assumed for NO$\nu$A, and for T2K the
1776Super-Kamiokande detector has been used but the beam intensity has
1777been increased by assuming 4~MW power. More details on these
1778sensitivities can be found in Ref.~\cite{Ayres:2004js}.
1779%
1780Let us note that in general LBL experiments with two detectors and/or
1781very long baselines ($\gtrsim 1000$~km) are a competitive method to
1782atmospheric neutrinos for the hierarchy determination, see, e.g.,
1783Refs.~\cite{Ishitsuka:2005qi,Kajita:2006bt,MenaRequejo:2005hn,Hagiwara:2005pe,Barger:2006vy}
1784for recent analyses. In particular, in case of the T2KK extension of
1785the T2HK experiment, the very long baseline to Korea allows for a
1786determination of the mass hierarchy down to $\sin^22\theta_{13}
1787\gtrsim 0.02$ ($2\sigma$) without using atmospheric
1788neutrinos~\cite{Kajita:2006bt}.
1789%
1790We mention also the possibility to determine the neutrino mass
1791hierarchy by using neutrino events from a galactic Super Nova
1792explosion in mega ton \v{C}erenkov detectors such as MEMPHYS, see,
1793e.g., Ref.~\cite{Kachelriess:2004vs}.
1794
1795\begin{figure}[!t]
1796\centering
1797  \includegraphics[width=0.55\textwidth]{./fig17.eps}
1798%
1799  \mycaption{$\Delta\chi^2$ of the solution with the wrong octant of
1800  $\theta_{23}$ as a function of the true value of
1801  $\sin^2\theta_{23}$. We have assumed a true value of $\theta_{13} =
1802  0$, and the running time is ($2\nu + 8\bar\nu$)~yrs.}
1803  \label{fig:octant}
1804\end{figure}
1805
1806Fig.~\ref{fig:octant} shows the potential of ATM+LBL data to exclude
1807the octant degenerate solution. Since this effect is based mainly on
1808oscillations with $\Delta m^2_{21}$ there is very good sensitivity
1809even for $\theta_{13} = 0$; a finite value of $\theta_{13}$ in general
1810improves the sensitivity~\cite{Huber:2005ep}.  From the figure one can
1811read off that atmospheric data alone can can resolve the correct
1812octant at $3\sigma$ if $|\sin^2\theta_{23} - 0.5| \gtrsim 0.085$. If
1813atmospheric data is combined with the LBL data from SPL or T2HK there
1814is sensitivity to the octant for $|\sin^2\theta_{23} - 0.5| \gtrsim
18150.05$. The improvement of the octant sensitivity with respect to
1816previous analyses~\cite{Huber:2005ep,Gonzalez-Garcia:2004cu} follows
1817from changes in the analysis of sub-GeV atmospheric events, where now
1818three bins in lepton momentum are used instead of one. Note that since
1819in Fig.~\ref{fig:octant} we have assumed a true value of $\theta_{13}
1820= 0$, combining the \BB\ with ATM does not improve the sensitivity
1821with respect to atmospheric data alone.
1822%
1823We note that the T2KK configuration provides also some sensitivity to
1824the octant of $\theta_{23}$ without referring to atmospheric
1825neutrinos. In Ref.~\cite{Kajita:2006bt} it was found that for
1826$|\sin^2\theta_{23} - 0.5| \gtrsim 0.12$ the octant can be identified
1827in T2KK at $3\sigma$.
1828
1829%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1830\section{Summary}
1831%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1832\label{sec:conclusions}
1833
1834In this work we have studied the physics potential of the
1835CERN--MEMPHYS neutrino oscillation project. We consider a Beta Beam
1836(\BB) with $\gamma = 100$ for the stored ions, where existing
1837facilities at CERN can be used optimally, and a Super Beam based on an
1838optimized Super Proton Linac (SPL) with a beam energy of 3.5~GeV and
18394~MW power. As target we assume the MEMPHYS detector, a 440~kt water
1840\v{C}erenkov detector at Fr\'ejus, at a distance of 130~km from
1841CERN. The main characteristics of the experiments are summarized in
1842Tab.~\ref{tab:setups}.
1843%
1844The adopted neutrino fluxes are based on realistic calculations of ion
1845production and storage for the \BB, and a full simulation of the beam
1846line (particle production and decay of secondaries) for SPL. Special
1847care has be given to the issue of backgrounds, which we include by
1848means of detailed event simulations and applying Super-Kamiokande particle
1849identification algorithms.
1850
1851The physics potential of the \BB\ and SPL experiments in terms of
1852$\theta_{13}$ discovery reach and sensitivity to CP violation has been
1853addressed where parameter degeneracies are fully taken into account.
1854The main results on these performance indicators are summarized in
1855Figs.~\ref{fig:th13} and \ref{fig:CPV}.
1856%
1857We obtain a guaranteed discovery reach of $\stheta \simeq 5\times
185810^{-3}$ at $3\sigma$, irrespective of the actual value of \delCP. For
1859certain values of \delCP\ the sensitivity is significantly improved,
1860and for \BB\ (SPL) discovery limits around $\stheta \simeq 3\,(10)
1861\times 10^{-4}$ are possible for a large fraction of all possible
1862values of \delCP.
1863%
1864Maximal CP violation (for $\delCP^\mathrm{true} = \pi/2, \, 3\pi/2$)
1865can be discovered at $3\sigma$ down to $\stheta \simeq 2\, (9)\times
186610^{-4}$ for \BB\ (SPL), whereas the best sensitivity to CP violation
1867is obtained for $\stheta \sim 10^{-2}$: For $\stheta = 10^{-2}$ CP
1868violation can be established at $3\sigma$ for 78\% (73\%) of all
1869possible true values of \delCP\ for \BB\ (SPL).
1870%
1871We stress that the \BB\ performance in general depends crucially on
1872the number of ion decays per year.
1873%
1874The impact of the value of systematical uncertainties on signal and
1875background on our results is discussed.
1876%
1877The \BB\ and SPL sensitivities are compared to the ones of the
1878phase~II of the T2K experiment in Japan (T2HK), which is a competing
1879proposal of similar size and timescale. In general we obtain rather
1880similar sensitivities for T2HK and SPL, and hence the CERN--MEMPHYS
1881experiments provide a viable alternative to T2HK. We find that \BB\
1882and SPL are less sensitive to systematical errors, whereas the
1883sensitivity of T2HK crucially depends on the systematical error on the
1884background.\footnote{Let us note that in the present study we have not
1885considered the recent ``T2KK'' proposal~\cite{Ishitsuka:2005qi}, where
1886one half of the Hyper-K detector mass is at Kamioka and the second
1887half in Korea. For such a setup our results do not apply and
1888especially the conclusion on systematical errors may be different.}
1889
1890Assuming that both \BB\ and SPL experiments are available, we point
1891out that one can benefit from the different oscillation channels
1892$\nu_e\to\nu_\mu$ for \BB\ and $\nu_\mu\to\nu_e$ for SPL, since by the
1893combination of these channels the time intensive antineutrino
1894measurements can be avoided. We show that 5 years of neutrino data from
1895\BB\ and SPL lead to similar results as 2 years of neutrino plus 8
1896years of antineutrino data from T2HK.
1897%
1898Furthermore, we discuss the use of atmospheric neutrinos in the
1899MEMPHYS detector to resolve parameter degeneracies in the
1900long-baseline data. This effect leads to a sensitivity to the neutrino
1901mass hierarchy at $2\sigma$~CL for $\sin^22\theta_{13} \gtrsim
19020.025$ for \BB\ and SPL, although these experiments alone (without
1903atmospheric data) have no sensitivity at all. The optimal hierarchy
1904sensitivity is obtained from combining \BB+SPL+atmospheric data.
1905Furthermore, the combination of atmospheric data with a Super Beam
1906provides a possibility to determine the octant of $\theta_{23}$.
1907
1908To conclude, we have shown that the CERN--MEMPHYS neutrino oscillation
1909project based on a Beta Beam and/or a Super Beam plus a mega ton scale
1910water \v{C}erenkov detector offers interesting and competitive physics
1911possibilities and is worth to be considered as a serious option in
1912the worldwide process of identifying future high precision neutrino
1913oscillation facilities~\cite{ISSpage}.
1914
1915\subsection*{Acknowledgment}
1916
1917We thank J.~Argyriades for communication on the Super-K atmospheric
1918neutrino analysis, A.~Cazes for his work on the SPL simulation, and
1919P.~Huber for his patience in answering questions concerning the use of
1920GLoBES. Furthermore, we thank D.~Casper for the help in installing and
1921running Nuance, and E.~Couce for discussions about the \BB\
1922backgrounds.  T.S.\ is supported by the $6^\mathrm{th}$~Framework
1923Program of the European Community under a Marie Curie Intra-European
1924Fellowship.
1925
1926
1927%\newpage
1928\begin{thebibliography}{99}
1929
1930\bibitem{solar}
1931  B.~T.~Cleveland {\it et al.},
1932  Astrophys.\ J.\  {\bf 496} (1998) 505;
1933  %%CITATION = ASJOA,496,505;%%
1934%
1935  J.N.~Abdurashitov {\it et al.}  [SAGE],
1936  J.\ Exp.\ Theor.\ Phys.\  {\bf 95} (2002) 181
1937  % [Zh.\ Eksp.\ Teor.\ Fiz.\  {\bf 122} (2002) 211].
1938  [astro-ph/0204245];
1939  %%CITATION = ASTRO-PH 0204245;%%
1940%
1941  T. Kirsten {\it et al.} [GALLEX and GNO],
1942  Nucl. Phys. B (Proc. Suppl.)  {\bf 118} (2003) 33;
1943%
1944  S.~Fukuda {\it et al.} [Super-Kamiokande],
1945  %``Determination of solar neutrino
1946  % oscillation parameters using 1496 days  of Super-Kamiokande-I data,''
1947  Phys. Lett. {\bf B539} (2002) 179;
1948%
1949%\bibitem{ahmad:2002ka}
1950  Q.R. Ahmad {\em et~al.} [SNO],
1951  Phys. Rev. Lett. {\bf 89}, 011302 (2002)
1952  [nucl-ex/0204009];
1953  %%CITATION = NUCL-EX 0204009;%%
1954%
1955%\bibitem{Aharmim:2005gt}
1956  B.~Aharmim {\it et al.}  [SNO],
1957  %``Electron energy spectra, fluxes, and day-night asymmetries of B-8 solar
1958  %neutrinos from the 391-day salt phase SNO data set,''
1959  Phys.\ Rev.\ C {\bf 72} (2005) 055502
1960  [nucl-ex/0502021].
1961  %%CITATION = NUCL-EX 0502021;%%
1962
1963\bibitem{Fukuda:1998mi}
1964  Y.~Fukuda {\it et al.} [Super-Kamiokande Coll.],
1965  %``Evidence for oscillation of atmospheric neutrinos,''
1966  Phys.\ Rev.\ Lett.\  {\bf 81} (1998) 1562
1967  [hep-ex/9807003].
1968  %%CITATION = HEP-EX 9807003;%%
1969
1970\bibitem{Ashie:2005ik}
1971  Super-Kamiokande Coll.,
1972  Y.~Ashie {\it et al.}%[Super-Kamiokande Collaboration],
1973  %``A measurement of atmospheric neutrino oscillation parameters by
1974  %Super-Kamiokande I,''
1975  Phys.\ Rev.\ D {\bf 71}, 112005 (2005)
1976  [hep-ex/0501064];
1977  %%CITATION = HEP-EX 0501064;%%
1978%
1979%\bibitem{Hosaka:2006zd}
1980  J.~Hosaka {\it et al.},% [Super-Kamiokande Collaboration],
1981  %``Three flavor neutrino oscillation analysis of atmospheric neutrinos in
1982  %Super-Kamiokande,''
1983  Phys.\ Rev.\ D {\bf 74}, 032002 (2006)
1984  [hep-ex/0604011].
1985  %%CITATION = HEP-EX 0604011;%%
1986
1987
1988\bibitem{Araki:2004mb}
1989  T.~Araki {\it et al.} [KamLAND Coll.],
1990  %``Measurement of neutrino oscillation with KamLAND: Evidence of spectral
1991  %distortion,''
1992  Phys.\ Rev.\ Lett.\  {\bf 94}, 081801 (2005)
1993  [hep-ex/0406035].
1994  %%CITATION = HEP-EX 0406035;%%
1995
1996
1997\bibitem{Aliu:2004sq}
1998  E.~Aliu {\it et al.}  [K2K Coll.],
1999  %``Evidence for muon neutrino oscillation in an accelerator-based
2000  %experiment,''
2001  Phys.\ Rev.\ Lett.\  {\bf 94}, 081802 (2005)
2002  [hep-ex/0411038].
2003  %%CITATION = HEP-EX 0411038;%%
2004
2005\bibitem{MINOS} 
2006  D.G.~Micheal {\it et al.} [MINOS Coll.],
2007  %''Observation of muon neutrino disappearance with the {MINOS} detectors and
2008  %the {NuMI} neutrino beam,''
2009  hep-ex/0607088.
2010
2011\bibitem{OPERA}
2012  D. Autiero [OPERA Coll.],
2013  Nucl.\ Phys.\ B (Proc. Suppl.) {\bf 143}, 257 (2005);
2014  M. Guler  \etal, \textit{Experiment proposal},
2015  CERN/SPSC 2000-028 SPSC/P318 LNGS P25/2000.
2016
2017\bibitem{CNGS}
2018  G. Acquistapace \etal, CERN-98-02.
2019
2020\bibitem{LSND}
2021  A. Athanassopoulos \etal, Phys.\ Rev.\ Lett.\ {\bf 81}, 1774  (1998);
2022  A. Aguilar \etal, Phys.\ Rev.\ D {\bf 64}, 112007 (2001).
2023
2024\bibitem{MINIBOONE}
2025  I. Stancu \etal, FERMILAB-TM-2207.
2026
2027\bibitem{FOGLILISI05}
2028  G.~L.~Fogli, E.~Lisi, A.~Marrone and A.~Palazzo,
2029  %``Global analysis of three-flavor neutrino masses and mixings,''
2030  Prog.\ Part.\ Nucl.\ Phys.\  {\bf 57}, 742 (2006)
2031  [hep-ph/0506083].
2032  %%CITATION = HEP-PH 0506083;%%
2033
2034\bibitem{Maltoni:2004ei}
2035  M.~Maltoni, T.~Schwetz, M.~A.~Tortola and J.~W.~F.~Valle,
2036  %``Status of global fits to neutrino oscillations,''
2037  New J.\ Phys.\  {\bf 6}, 122 (2004)
2038  [hep-ph/0405172];
2039  %%CITATION = HEP-PH 0405172;%%
2040%
2041%\bibitem{Schwetz:2005jr}
2042  T.~Schwetz,
2043  %``Neutrino oscillations: Current status and prospects,''
2044  Acta Phys.\ Polon.\ B {\bf 36}, 3203 (2005)
2045  [hep-ph/0510331].
2046  %%CITATION = HEP-PH 0510331;%%
2047
2048\bibitem{PMNS}
2049  B.~Pontecorvo, Sov.\ Phys.--JETP {\bf 6}, 429 (1957)
2050  [Zh.\ Eksp.\ Teor.\ Fiz.\ \textbf{33}, 549 (1957)];
2051  Z.~Maki, M.~Nakagawa and S.~Sakata,
2052  Prog.\ Theor.\ Phys.\ \textbf{28}, 870 (1962);
2053  B.~Pontecorvo, Sov.\ Phys.--JETP \textbf{26}, 984 (1968)
2054  [Zh. Eksp. Teor. Fiz. \textbf{53}, 1717 (1967)];
2055  V.~N.~Gribov and B.~Pontecorvo,
2056  Phys.\ Lett.\ B \textbf{28}, 493 (1969).
2057
2058\bibitem{CHOOZ}
2059  Chooz Collaboration,
2060  M. Apollonio \etal, Phys.\ Lett.\ B {\bf 466}, 415 (1999);
2061%\bibitem{Apollonio:2002gd}
2062  M.~Apollonio {\it et al.},
2063  %``Search for neutrino oscillations on a long base-line at the CHOOZ  nuclear
2064  %power station,''
2065  Eur.\ Phys.\ J.\ C {\bf 27}, 331 (2003)
2066  [hep-ex/0301017].
2067  %%CITATION = HEP-EX 0301017;%%
2068
2069\bibitem{Wpaper}
2070  K.~Anderson \etal, White paper report on using nuclear
2071  reactors to search for a value of $\theta_{13}$,
2072  hep-ex/0402041;
2073%
2074  F.~Ardellier \etal, Letter of intent for Double-Chooz,
2075  hep-ex/0405032.
2076
2077\bibitem{T2K}
2078  Y.~Itow {\it et al.},
2079  The JHF-Kamioka neutrino project,
2080  hep-ex/0106019;
2081  %%CITATION = HEP-EX 0106019;%%
2082%
2083%\bibitem{Kobayashi:2005hu}
2084  T.~Kobayashi,
2085  %``Super beams,''
2086  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 303.
2087  %%CITATION = NUPHZ,143,303;%%
2088
2089\bibitem{Ayres:2004js}
2090  D.~S.~Ayres {\it et al.} [NOvA Coll.],
2091  %``NOvA proposal to build a 30-kiloton off-axis detector to study neutrino
2092  %oscillations in the Fermilab NuMI beamline,''
2093  hep-ex/0503053.
2094  %%CITATION = HEP-EX 0503053;%%
2095
2096\bibitem{Huber:2003pm}
2097  P.~Huber, M.~Lindner, T.~Schwetz and W.~Winter,
2098  %``Reactor neutrino experiments compared to superbeams,''
2099  Nucl.\ Phys.\ B {\bf 665} (2003) 487
2100  [hep-ph/0303232];
2101  %%CITATION = HEP-PH 0303232;%%
2102%
2103%\bibitem{Huber:2004ug}
2104  P.~Huber, M.~Lindner, M.~Rolinec, T.~Schwetz and W.~Winter,
2105  %``Prospects of accelerator and reactor neutrino oscillation experiments  for
2106  %the coming ten years,''
2107  Phys.\ Rev.\ D {\bf 70} (2004) 073014
2108  [hep-ph/0403068].
2109  %%CITATION = HEP-PH 0403068;%%
2110
2111\bibitem{Albrow:2005kw}
2112  M.~G.~Albrow {\it et al.},
2113  Physics at a Fermilab proton driver,
2114  hep-ex/0509019.
2115  %%CITATION = HEP-EX 0509019;%%
2116
2117\bibitem{SPL}
2118  M.~Baylac {\it et al.},
2119  Conceptual design of the SPL II: A high-power superconducting H- linac
2120  at CERN, CERN-2006-006.
2121
2122\bibitem{BNLHS}
2123%\bibitem{Diwan:2003bp}
2124  M.~V.~Diwan {\it et al.},
2125  %``Very long baseline neutrino oscillation experiments for precise
2126  %measurements of mixing parameters and CP violating effects,''
2127  Phys.\ Rev.\ D {\bf 68} (2003) 012002
2128  [hep-ph/0303081].
2129  %%CITATION = HEP-PH 0303081;%%
2130
2131\bibitem{zucchelli}
2132%\bibitem{Zucchelli:2002sa}
2133  P.~Zucchelli,
2134  %``A novel concept for a anti-nu/e / nu/e neutrino factory: The Beta Beam,''
2135  Phys.\ Lett.\ B {\bf 532} (2002) 166.
2136  %%CITATION = PHLTA,B532,166;%%
2137
2138\bibitem{Albright:2004iw}
2139  C.~Albright {\it et al.}  [Neutrino Factory/Muon Collider Coll.],
2140  %``The neutrino factory and Beta Beam experiments and development,''
2141  physics/0411123.
2142  %%CITATION = PHYS-ICS 0411123;%%
2143
2144\bibitem{Blondel:2004ae}
2145  A.~Blondel {\it et al.},
2146  ECFA/CERN studies of a European neutrino factory complex,
2147  CERN-2004-002
2148
2149\bibitem{Campagne:2004wt}
2150  J.~E.~Campagne and A.~Cazes,
2151  %``The theta(13) and delta(CP) sensitivities of the SPL-Frejus project
2152  %revisited,''
2153  Eur.\ Phys.\ J.\ C {\bf 45} (2006) 643
2154  [hep-ex/0411062].
2155  %%CITATION = HEP-EX 0411062;%%
2156
2157\bibitem{Mezzetto:2003ub}
2158  M.~Mezzetto,
2159  %``Physics reach of the beta beam,''
2160  J.\ Phys.\ G {\bf 29} (2003) 1771
2161  [hep-ex/0302007];
2162  %%CITATION = HEP-EX 0302007;%%
2163%
2164  J.~Bouchez, M.~Lindroos, M.~Mezzetto,
2165  %``Beta Beams: Present design and expected performances,''
2166  AIP Conf.\ Proc.\  {\bf 721} (2004) 37
2167  [hep-ex/0310059].
2168  %%CITATION = HEP-EX 0310059;%%
2169
2170\bibitem{memphys}
2171  A.~de Bellefon {\it et al.},
2172  MEMPHYS: A large scale water \v{C}erenkov detector
2173  at Fr\'ejus, Contribution to the CERN strategic committee,
2174  hep-ex/0607026,\\
2175  \verb!http://apc-p7.org/APC_CS/Experiences/MEMPHYS/!
2176
2177\bibitem{UNO} 
2178  C.~K.~Jung,
2179  Feasibility of a next generation underground water Cherenkov detector:
2180  UNO, hep-ex/0005046.
2181  %%CITATION = HEP-EX 0005046;%%
2182
2183\bibitem{Nakamura:2003hk}
2184  K.~Nakamura,
2185  %``Hyper-Kamiokande: A next generation water Cherenkov detector,''
2186  Int.\ J.\ Mod.\ Phys.\ A {\bf 18} (2003) 4053.
2187  %%CITATION = IMPAE,A18,4053;%%
2188
2189\bibitem{Huber:2005ep}
2190  P.~Huber, M.~Maltoni, T.~Schwetz,
2191  %``Resolving parameter degeneracies in long-baseline experiments by
2192  %atmospheric neutrino data,''
2193  Phys.\ Rev.\ D {\bf 71} (2005) 053006
2194  [hep-ph/0501037].
2195  %%CITATION = HEP-PH 0501037;%%
2196
2197\bibitem{Globes}
2198  P.~Huber, M.~Lindner and W.~Winter,
2199  %``Simulation of long-baseline neutrino oscillation experiments with
2200  %GLoBES,''
2201  Comput.\ Phys.\ Commun.\  {\bf 167} (2005) 195
2202  [hep-ph/0407333],
2203  \verb!http://www.mpi-hd.mpg.de/lin/globes/!
2204
2205\bibitem{Huber:2002mx}
2206  P.~Huber, M.~Lindner and W.~Winter,
2207  %``Superbeams versus neutrino factories,''
2208  Nucl.\ Phys.\ B {\bf 645} (2002) 3
2209  [hep-ph/0204352].
2210  %%CITATION = HEP-PH 0204352;%%
2211
2212\bibitem{Nuance}
2213  NUANCE event generator (v3),
2214  \verb!http://nuint.ps.uci.edu/nuance/!,
2215  D.~Casper,
2216  %``The nuance neutrino physics simulation, and the future,''
2217  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 112} (2002) 161
2218  [hep-ph/0208030].
2219
2220
2221% T2KK %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2222
2223\bibitem{Ishitsuka:2005qi}
2224  M.~Ishitsuka, T.~Kajita, H.~Minakata and H.~Nunokawa,
2225  %``Resolving neutrino mass hierarchy and CP degeneracy by two identical
2226  %detectors with different baselines,''
2227  Phys.\ Rev.\ D {\bf 72} (2005) 033003
2228  [hep-ph/0504026].
2229  %%CITATION = HEP-PH 0504026;%%
2230
2231\bibitem{Kajita:2006bt}
2232  T.~Kajita, H.~Minakata, S.~Nakayama and H.~Nunokawa,
2233  %``Resolving eight-fold neutrino parameter degeneracy by two identical
2234  %detectors with different baselines,''
2235  Phys.\ Rev.\  D {\bf 75}, 013006 (2007)
2236  [hep-ph/0609286].
2237  %%CITATION = PHRVA,D75,013006;%%
2238
2239\bibitem{Hagiwara:2005pe}
2240  K.~Hagiwara, N.~Okamura and K.~Senda,
2241  %``Solving the neutrino parameter degeneracy by measuring the T2K off-axis
2242  %beam in Korea,''
2243  Phys.\ Lett.\ B {\bf 637}, 266 (2006)
2244  [hep-ph/0504061].
2245  %%CITATION = HEP-PH 0504061;%%
2246
2247
2248% BB %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2249
2250\bibitem{MyNufact04}
2251  M.~Mezzetto,
2252  %``SPL and Beta Beams to the Frejus,''
2253  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 149} (2005) 179.
2254
2255\bibitem{Donini:2004hu}
2256  A.~Donini, E.~Fernandez-Martinez, P.~Migliozzi, S.~Rigolin and L.~Scotto Lavina,
2257  %``Study of the eightfold degeneracy with a standard beta-beam and a
2258  %super-beam facility,''
2259  Nucl.\ Phys.\ B {\bf 710}, 402 (2005)
2260  [hep-ph/0406132].
2261  %%CITATION = HEP-PH 0406132;%%
2262
2263\bibitem{JJHigh2} 
2264%\bibitem{Burguet-Castell:2005pa}
2265  J.~Burguet-Castell, D.~Casper, E.~Couce, J.~J.~Gomez-Cadenas and P.~Hernandez,
2266  %``Optimal beta-beam at the CERN-SPS,''
2267  Nucl.\ Phys.\ B {\bf 725} (2005) 306
2268  [hep-ph/0503021].
2269  %%CITATION = HEP-PH 0503021;%%
2270
2271\bibitem{LindnerBB}
2272%\bibitem{Huber:2005jk}
2273  P.~Huber, M.~Lindner, M.~Rolinec and W.~Winter,
2274  %``Physics and optimization of beta-beams: From low to very high gamma,''
2275  Phys.\ Rev.\ D {\bf 73}, 053002 (2006)
2276  [hep-ph/0506237].
2277  %%CITATION = HEP-PH 0506237;%%
2278
2279\bibitem{JJHigh1}
2280 J.~Burguet-Castell, D.~Casper, J.~J.~Gomez-Cadenas, P.~Hernandez and F.~Sanchez,
2281 Nucl.\ Phys.\ B {\bf 695} (2004) 217
2282 [hep-ph/0312068].
2283
2284\bibitem{Terranova}
2285  F.~Terranova, A.~Marotta, P.~Migliozzi and M.~Spinetti,
2286  %``High energy beta beams without massive detectors,''
2287  Eur.\ Phys.\ J.\ C {\bf 38}, 69 (2004)
2288  [hep-ph/0405081].
2289  %%CITATION = HEP-PH 0405081;%%
2290
2291\bibitem{BB-Reviews}
2292  M.~Mezzetto, %``Beta Beams,''
2293  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 143} (2005) 309
2294  [hep-ex/0410083];
2295%
2296  C.~Volpe,
2297  %``Topical review on 'beta-beams',''
2298  hep-ph/0605033.
2299
2300\bibitem{Volpe}
2301  C.~Volpe,
2302  %``What about a Beta Beam facility for low energy neutrinos?,''
2303  J.\ Phys.\ G {\bf 30} (2004) L1
2304  [hep-ph/0303222].
2305
2306\bibitem{Lindroos}
2307%\bibitem{Autin:2002ms}
2308  B.~Autin {\it et al.},
2309  %``The acceleration and storage of radioactive ions for a neutrino  factory,''
2310  J.\ Phys.\ G {\bf 29}, 1785 (2003)
2311  [physics/0306106];
2312  %%CITATION = PHYS-ICS 0306106;%%
2313%
2314  M.~Benedikt, S.~Hancock and M.~Lindroos,
2315  % ``Baseline Design for a Beta-Beam Neutrino Factory'',
2316  Proceedings of EPAC, 2004,
2317  \verb!http://accelconf.web.cern.ch/AccelConf/e04!;
2318%
2319  M.~Lindroos, EURISOL DS/TASK12/TN-05-02.
2320
2321\bibitem{Eurisol}
2322  Eurisol Beta Beam webpage: \verb!http://beta-beam.web.cern.ch/beta-beam/!.
2323
2324\bibitem{Lindroos-Optimization}
2325  M.~Benedikt, A.~Fabich, S.~Hancock and M.~Lindroos,
2326  %``Optimization Of The Beta-Beam Baseline,''
2327  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 211.
2328
2329\bibitem{MezzettoNuFact05}
2330  M.~Mezzetto,
2331  %``Physics potential of the gamma = 100,100 beta beam,''
2332  Nucl.\ Phys.\ Proc.\ Suppl.\  {\bf 155} (2006) 214
2333  [hep-ex/0511005].
2334
2335% SPL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2336
2337\bibitem{Neugen}
2338  The NEUGEN neutrino event generator,
2339  \verb!http://minos.phy.tufts.edu/gallag/neugen/!.
2340
2341\bibitem{FLUKA}
2342A.~Fasso \etal, Proceedings of the MonteCarlo 2000 conference,
2343Lisbon, October 26 2000,
2344A.~Kling \etal\ (eds.), Springer-Verlag Berlin (2001), 159-164 and 955-960.
2345
2346\bibitem{GEANT}
2347Application Software group, Computing and Network Division \etal,
2348GEANT Description and Simulation Tool, CERN Geneva, Switzerland
2349
2350\bibitem{HARP-MINERVA}
2351  C. Catanesi \etal\ [HARP Coll.], CERN-SPSC 2002/019;
2352%
2353%\bibitem{Drakoulakos:2004gn}
2354  D.~Drakoulakos {\it et al.}  [Minerva Coll.],
2355  %``Proposal to perform a high-statistics neutrino scattering experiment  using
2356  %a fine-grained detector in the NuMI beam,''
2357  hep-ex/0405002.
2358  %%CITATION = HEP-EX 0405002;%%
2359
2360\bibitem{Mezzetto:2003mm}
2361  M.~Mezzetto,
2362  %``Physics potential of the SPL super beam,''
2363  J.\ Phys.\ G {\bf 29}, 1781 (2003)
2364  [hep-ex/0302005].
2365  %%CITATION = HEP-EX 0302005;%%
2366
2367% ATM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2368
2369\bibitem{Honda:2004yz}
2370  M.~Honda, T.~Kajita, K.~Kasahara and S.~Midorikawa,
2371  %``A new calculation of the atmospheric neutrino flux in a 3-dimensional
2372  %scheme,''
2373  Phys.\ Rev.\ D {\bf 70} (2004) 043008
2374  [astro-ph/0404457].
2375  %%CITATION = ASTRO-PH 0404457;%%
2376
2377\bibitem{Lipari:1991ut}
2378  P.~Lipari and T.~Stanev,
2379  %``Propagation of multi - TeV muons,''
2380  Phys.\ Rev.\ D {\bf 44} (1991) 3543.
2381  %%CITATION = PHRVA,D44,3543;%%
2382
2383\bibitem{Gonzalez-Garcia:2004wg}
2384  M.~C.~Gonzalez-Garcia and M.~Maltoni,
2385  %``Atmospheric neutrino oscillations and new physics,''
2386  Phys.\ Rev.\ D {\bf 70} (2004) 033010
2387  [hep-ph/0404085].
2388  %%CITATION = HEP-PH 0404085;%%
2389
2390% DEGENERACIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2391
2392\bibitem{Burguet-Castell:2001ez}
2393  J.~Burguet-Castell, M.~B.~Gavela, J.~J.~Gomez-Cadenas, P.~Hernandez and O.~Mena,
2394  %``On the measurement of leptonic CP violation,''
2395  Nucl.\ Phys.\ B {\bf 608} (2001) 301
2396  [hep-ph/0103258].
2397  %%CITATION = HEP-PH 0103258;%%
2398
2399\bibitem{Minakata:2001qm}
2400  H.~Minakata and H.~Nunokawa,
2401  %``Exploring neutrino mixing with low energy superbeams,''
2402  JHEP {\bf 0110}, 001 (2001)
2403  [hep-ph/0108085].
2404  %%CITATION = HEP-PH 0108085;%%
2405
2406\bibitem{Fogli:1996pv}
2407  G.~L.~Fogli and E.~Lisi,
2408  %``Tests of three-flavor mixing in long-baseline neutrino oscillation
2409  %experiments,''
2410  Phys.\ Rev.\ D {\bf 54}, 3667 (1996)
2411  [hep-ph/9604415].
2412  %%CITATION = HEP-PH 9604415;%%
2413
2414\bibitem{Barger:2001yr}
2415  V.~Barger, D.~Marfatia and K.~Whisnant,
2416  %``Breaking eight-fold degeneracies in neutrino CP violation, mixing, and
2417  %mass hierarchy,''
2418  Phys.\ Rev.\ D {\bf 65}, 073023 (2002)
2419  [hep-ph/0112119].
2420  %%CITATION = HEP-PH 0112119;%%
2421
2422\bibitem{Yasuda:2004gu}
2423  O.~Yasuda,
2424  %``New plots and parameter degeneracies in neutrino oscillations,''
2425  New J.\ Phys.\  {\bf 6}, 83 (2004)
2426  [hep-ph/0405005].
2427  %%CITATION = HEP-PH 0405005;%%
2428
2429
2430\bibitem{Antusch:2004yx}
2431  S.~Antusch, P.~Huber, J.~Kersten, T.~Schwetz and W.~Winter,
2432  %``Is there maximal mixing in the lepton sector?,''
2433  Phys.\ Rev.\ D {\bf 70}, 097302 (2004)
2434  [hep-ph/0404268].
2435  %%CITATION = HEP-PH 0404268;%%
2436
2437\bibitem{Minakata:2004pg}
2438  H.~Minakata, M.~Sonoyama and H.~Sugiyama,
2439  %``Determination of theta(23) in long-baseline neutrino oscillation
2440  %experiments with three-flavor mixing effects,''
2441  Phys.\ Rev.\ D {\bf 70} (2004) 113012
2442  [hep-ph/0406073].
2443  %%CITATION = HEP-PH 0406073;%%
2444
2445\bibitem{Donini:2005db}
2446  A.~Donini, E.~Fernandez-Martinez, D.~Meloni and S.~Rigolin,
2447  %``nu/mu disappearance at the SPL, T2K-I, NOnuA and the neutrino factory,''
2448  Nucl.\ Phys.\ B {\bf 743}, 41 (2006)
2449  [hep-ph/0512038].
2450  %%CITATION = HEP-PH 0512038;%%
2451
2452\bibitem{Peres:2003wd}
2453  O.L.G.~Peres, A.Y.~Smirnov,
2454  %``Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and
2455  %CP-violation,''
2456  Nucl.\ Phys.\ B {\bf 680} (2004) 479
2457  [hep-ph/0309312].
2458  %%CITATION = HEP-PH 0309312;%%
2459
2460\bibitem{Gonzalez-Garcia:2004cu}
2461  M.C.~Gonzalez-Garcia, M.~Maltoni, A.Y. Smirnov,
2462  %``Measuring the deviation of the 2-3 lepton mixing from maximal with
2463  %atmospheric neutrinos,''
2464  Phys.\ Rev.\ D {\bf 70} (2004) 093005
2465  [hep-ph/0408170].
2466  %%CITATION = HEP-PH 0408170;%%
2467
2468\bibitem{Petcov:1998su}
2469  S.~T.~Petcov,
2470  %``Diffractive-like (or parametric-resonance-like?) enhancement of the  earth
2471  %(day-night) effect for solar neutrinos crossing the earth core,''
2472  Phys.\ Lett.\ B {\bf 434} (1998) 321
2473  [hep-ph/9805262];
2474  %%CITATION = HEP-PH 9805262;%%
2475%
2476%\bibitem{Chizhov:1998ug}
2477  M.~Chizhov, M.~Maris and S.~T.~Petcov,
2478  %``On the oscillation length resonance in the transitions of solar and
2479  %atmospheric neutrinos crossing the earth core,''
2480  hep-ph/9810501;
2481  %%CITATION = HEP-PH 9810501;%%
2482%
2483%\bibitem{Chizhov:1999az}
2484  M.~V.~Chizhov and S.~T.~Petcov,
2485  %``New conditions for a total neutrino conversion in a medium,''
2486  Phys.\ Rev.\ Lett.\  {\bf 83} (1999) 1096
2487  [hep-ph/9903399].
2488  %%CITATION = HEP-PH 9903399;%%
2489
2490\bibitem{Akhmedov:1998ui}
2491  E.~K.~Akhmedov,
2492  %``Parametric resonance of neutrino oscillations and passage of solar and
2493  %atmospheric neutrinos through the earth,''
2494  Nucl.\ Phys.\ B {\bf 538}, 25 (1999)
2495  [hep-ph/9805272];
2496  %%CITATION = HEP-PH 9805272;%%
2497%
2498%\bibitem{Akhmedov:1998xq}
2499  E.~K.~Akhmedov, A.~Dighe, P.~Lipari and A.~Y.~Smirnov,
2500  %``Atmospheric neutrinos at Super-Kamiokande and parametric resonance in
2501  %neutrino oscillations,''
2502  Nucl.\ Phys.\ B {\bf 542}, 3 (1999)
2503  [hep-ph/9808270].
2504  %%CITATION = HEP-PH 9808270;%%
2505
2506\bibitem{Bernabeu:2003yp}
2507  J.~Bernabeu, S.~Palomares-Ruiz and S.~T.~Petcov,
2508  %``Atmospheric neutrino oscillations, theta(13) and neutrino mass
2509  %hierarchy,''
2510  Nucl.\ Phys.\ B {\bf 669}, 255 (2003)
2511  [hep-ph/0305152].
2512  %%CITATION = HEP-PH 0305152;%%
2513
2514\bibitem{Kim:1998bv}
2515  C.~W.~Kim and U.~W.~Lee,
2516  %``Comment on the possible electron-neutrino excess in the  Super-Kamiokande
2517  %atmospheric neutrino experiment,''
2518  Phys.\ Lett.\ B {\bf 444}, 204 (1998)
2519  [hep-ph/9809491].
2520  %%CITATION = HEP-PH 9809491;%%
2521
2522\bibitem{Kajita}
2523  T.~Kajita, Talk at NNN05, 7--9 April 2005, Aussois, Savoie, France,\\
2524  \verb!http://nnn05.in2p3.fr/!
2525
2526\bibitem{Petcov:2005rv}
2527  S.~T.~Petcov and T.~Schwetz,
2528  %``Determining the neutrino mass hierarchy with atmospheric neutrinos,''
2529  Nucl.\ Phys.\ B {\bf 740}, 1 (2006)
2530  [hep-ph/0511277].
2531  %%CITATION = HEP-PH 0511277;%%
2532
2533\bibitem{MenaRequejo:2005hn}
2534  O.~Mena-Requejo, S.~Palomares-Ruiz and S.~Pascoli,
2535  %``Super-NOvA: A long-baseline neutrino experiment with two off-axis
2536  %detectors,''
2537  Phys.\ Rev.\ D {\bf 72} (2005) 053002
2538  [hep-ph/0504015];
2539  %%CITATION = HEP-PH 0504015;%%
2540%
2541%\bibitem{Mena:2005ri}
2542  %O.~Mena, S.~Palomares-Ruiz and S.~Pascoli,
2543  %``Determining the neutrino mass hierarchy and CP violation in NOnuA with a
2544  %second off-axis detector,''
2545  Phys.\ Rev.\ D {\bf 73} (2006) 073007
2546  [hep-ph/0510182].
2547  %%CITATION = HEP-PH 0510182;%%
2548
2549\bibitem{Barger:2006vy}
2550  V.~Barger {\it et al.},
2551  % M.~Dierckxsens, M.~Diwan, P.~Huber, C.~Lewis, D.~Marfatia and B.~Viren,
2552  %``Precision physics with a wide band super neutrino beam,''
2553  Phys.\ Rev.\  D {\bf 74} (2006) 073004
2554  [hep-ph/0607177].
2555  %%CITATION = PHRVA,D74,073004;%%
2556
2557\bibitem{Kachelriess:2004vs}
2558  M.~Kachelriess and R.~Tomas,
2559  %``Identifying the neutrino mass hierarchy with supernova neutrinos,''
2560  hep-ph/0412100.
2561  %%CITATION = HEP-PH 0412100;%%
2562
2563\bibitem{ISSpage}
2564  Webpage of the International Scoping Study physics working group:\\
2565  \verb!http://www.hep.ph.ic.ac.uk/iss/wg1-phys-phen/index.html!
2566
2567\end{thebibliography}
2568\end{document}
2569%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2570
2571
Note: See TracBrowser for help on using the repository browser.