1 |
|
---|
2 | \section{Monte Carlo Generators}
|
---|
3 |
|
---|
4 |
|
---|
5 |
|
---|
6 | Accurate measurements of neutrino oscillation parameters by future experiments could be significantly hampered
|
---|
7 |
|
---|
8 | by the large uncertainties in neutrino cross-section in the sub-GeV range. Neutrino interactions with nucleon in
|
---|
9 |
|
---|
10 | nuclei are not well understood from a theoretical point of view, especially at low energies, and experimental
|
---|
11 |
|
---|
12 | data are sparse. Futhermore, most of available data come from Bubble chamber experiments made in the late 70s and have
|
---|
13 |
|
---|
14 | large systematic errors induced by the determination of the neutrino flux. Calulations for charged current $\nu_\mu$ are
|
---|
15 |
|
---|
16 | shown in Fig \ref{fig:neutrinoxsection}. \\
|
---|
17 |
|
---|
18 |
|
---|
19 |
|
---|
20 | New generation of high intensity and well controlled neutrino beams allow to collect much precised data that will
|
---|
21 |
|
---|
22 | attend to futher understand interactions and better constrain models.\\
|
---|
23 |
|
---|
24 |
|
---|
25 |
|
---|
26 | \begin{figure}[hbt]
|
---|
27 |
|
---|
28 | \begin{center}
|
---|
29 |
|
---|
30 | \vspace{0.1cm}
|
---|
31 |
|
---|
32 | \includegraphics[width=85mm]{./figures/neutrinoXsection.epsf}
|
---|
33 |
|
---|
34 | \vspace{0.5cm}
|
---|
35 |
|
---|
36 | \caption{ $\nu_\mu$ charged current cross-section calculations compared with experimental data}
|
---|
37 |
|
---|
38 | \label{fig:neutrinoxsection}
|
---|
39 |
|
---|
40 | \end{center}
|
---|
41 |
|
---|
42 | \end{figure}
|
---|
43 |
|
---|
44 |
|
---|
45 |
|
---|
46 | Many Monte-carlo generator codes exist but are optimised for a dedicated experiment, ${\it{e.g.}}$ tuned for specific
|
---|
47 |
|
---|
48 | target materials. The GENIE collaboration\footnote{http://hepunx.rl.ac.uk/~candreop/generators/GENIE/} \cite{genie} gathers
|
---|
49 |
|
---|
50 | experimentalists from major neutrino experiments as well as theorits and proposes a Universal neutrino generator
|
---|
51 |
|
---|
52 | that will work for all nuclear targets in all energies.
|
---|
53 |
|
---|
54 | The code of the framework is developped in Object-Oriented language to ease the interface with standard libraries like
|
---|
55 |
|
---|
56 | the CERNLIB or CLHEP packages, with other existing simulation softwares (Geant4, Pythia7, $\ldots$) and with standard
|
---|
57 |
|
---|
58 | analysis tools such as ROOT.\\
|
---|
59 |
|
---|
60 | An additional feature that is included in the GENIE framework is an interface with a database containing the
|
---|
61 |
|
---|
62 | world's neutrino data \cite{xsectiondata} for model validation.\\
|
---|
63 |
|
---|
64 |
|
---|
65 |
|
---|
66 | \section{Background rejection in large water Cerenkov}
|
---|
67 |
|
---|
68 |
|
---|
69 |
|
---|
70 | Large underground water Cherenkov detectors can measure $\nu_{\rm{e}}$ appearance as well as $\nu_\mu$
|
---|
71 |
|
---|
72 | disappearance. Projects have different configurations in neutrino flux and energy spectrum, although with
|
---|
73 |
|
---|
74 | a similar overall shape with a the dip from oscillation minimum in the oscillated $\nu_\mu$ distribution.
|
---|
75 |
|
---|
76 |
|
---|
77 |
|
---|
78 | \par
|
---|
79 |
|
---|
80 | For a $\nu_\mu$ disapearance experiment, the signal is muons from charged current quasi elestic interactions,
|
---|
81 |
|
---|
82 | $\nu_\mu + n \rightarrow p + \mu^-$.
|
---|
83 |
|
---|
84 |
|
---|
85 |
|
---|
86 | \par
|
---|
87 |
|
---|
88 | For a $\nu_{\rm{e}}$ appearance experiment, the signal comes from oscillated $\nu_{\rm{e}}$ neutrinos,
|
---|
89 |
|
---|
90 | $\nu_\mu \rightarrow \nu_{\rm{e}}$, $\nu_{\rm{e}} + n \rightarrow p + e^-$ and is detected as a fully
|
---|
91 |
|
---|
92 | contained single electron-ring event.\\
|
---|
93 |
|
---|
94 |
|
---|
95 |
|
---|
96 | \par
|
---|
97 |
|
---|
98 | Realistic monte-carlo studies for background rejection in $\nu_{\rm{e}}$ appearance experiments are
|
---|
99 |
|
---|
100 | the essential groundwork for the quest for the last unknown mixing angle of the mixing matrix and
|
---|
101 |
|
---|
102 | precise measurement of $\theta_{13}$. Main background sources are the $\nu_{\rm{e}}$ contamination in
|
---|
103 |
|
---|
104 | the beam and neutral current events with one pion decaying into two photons, $\nu + N \rightarrow N' + \nu + \pi^0 (\gamma\gamma)$.
|
---|
105 |
|
---|
106 | The latter can be reduced by the reconstruction of the second fainter photon-ring. Indeed, it is likely that
|
---|
107 |
|
---|
108 | one of the photon will carry away most of the energy, and when the energy fraction of one photon is very small,
|
---|
109 |
|
---|
110 | the event closely resembles electron signal. Algorthims for $\pi^0$ identification have thus been developped
|
---|
111 |
|
---|
112 | both at T2K \cite{dunmore} and at a megaton class detector on a Very Long Base Line neutrino beam \cite{yanagisawa}.
|
---|
113 |
|
---|
114 | Background can be subtracted for values of $\theta_{13}$ at the CHOOZ limit, understanding of systematic uncertainties becomes yet crucial
|
---|
115 |
|
---|
116 | as $\theta_{13}$ gets smaller. \\
|
---|
117 |
|
---|
118 |
|
---|
119 |
|
---|
120 | Estimated performances can be further improved with a better energy reconstruction for all charged
|
---|
121 |
|
---|
122 | current events.
|
---|
123 |
|
---|
124 |
|
---|
125 |
|
---|
126 |
|
---|
127 |
|
---|
128 |
|
---|
129 |
|
---|
130 | \section{Photodetection}
|
---|
131 |
|
---|
132 |
|
---|
133 |
|
---|
134 | The remarkable successes of SuperK, Kamland, and SNO experiments have triggered
|
---|
135 |
|
---|
136 | future extrapolated projects aiming the improvement on the accuracy of the
|
---|
137 |
|
---|
138 | actual neutrinos family parameters, the exploration of the other ones as well as
|
---|
139 |
|
---|
140 | the search for proton lifetime; sensitive volumes should reach the megaton
|
---|
141 |
|
---|
142 | scale,
|
---|
143 |
|
---|
144 | which is an extrapolation by a factor 10-20 of the SK size. In the same
|
---|
145 |
|
---|
146 | inflatory direction, the detection of very high energy cosmic neutrinos in ice
|
---|
147 |
|
---|
148 | or water Cerenkov-based detectors will also lead to large numbers of
|
---|
149 |
|
---|
150 | photomultipliers. It exists then a strong motivation for R\&D trying to decrease
|
---|
151 |
|
---|
152 | the price of photo-sensitive $cm^2$, which is a major component of projects
|
---|
153 |
|
---|
154 | budgets. Note that for the calculation of these "surface unit prices", HV,
|
---|
155 |
|
---|
156 | front-end electronics and cables have of course to be included.
|
---|
157 |
|
---|
158 |
|
---|
159 |
|
---|
160 | In another hand, the use of Cerenkov light requires conflicting qualities
|
---|
161 |
|
---|
162 | concerning the single photoelectron sensitivity, the fast time response
|
---|
163 |
|
---|
164 | needed for a good vertex determination, the best photodetection efficiency for
|
---|
165 |
|
---|
166 | setting lower energy thresholds and a robust water pressure resistant
|
---|
167 |
|
---|
168 | envelop able to work at 10 atmospheres pressure without fatal implosion. The
|
---|
169 |
|
---|
170 | process of fabrication should also take account of the time needed to built
|
---|
171 |
|
---|
172 | large quantities ( scale: 100000 u). Clearly common R\&D with industry are
|
---|
173 |
|
---|
174 | needed.
|
---|
175 |
|
---|
176 |
|
---|
177 |
|
---|
178 | Price lowering can follow one or several recepices:
|
---|
179 |
|
---|
180 | \begin{itemize}
|
---|
181 |
|
---|
182 | \item
|
---|
183 |
|
---|
184 | Remove the glass blowing (\cite{ferenc})
|
---|
185 |
|
---|
186 |
|
---|
187 |
|
---|
188 | This leads to a very elegant development using sealed glass planes (\cite{ferenc})
|
---|
189 |
|
---|
190 | \item
|
---|
191 |
|
---|
192 | Simplify the electron multiplicative element (\cite{ferenc},\cite{sk},\cite{photonis})
|
---|
193 |
|
---|
194 |
|
---|
195 |
|
---|
196 | The basic idea is to accelerate photoelectrons from photocathode with a large
|
---|
197 |
|
---|
198 | potential (10-20 KV); for shaped field, it exists a small surface of
|
---|
199 |
|
---|
200 | convergence where can be placed either scintillator+small pm (\cite{photonis}),
|
---|
201 |
|
---|
202 | or an APD ( \cite{sk}). The total gain is then the product of the acceleration gain (
|
---|
203 |
|
---|
204 | $\sim$ 4500) followed by the detecting device gain ( $\sim$ 30 or more for an APD).
|
---|
205 |
|
---|
206 | Such system disposes of a fast time response even for large size photocathods
|
---|
207 |
|
---|
208 | and of an impressive single
|
---|
209 |
|
---|
210 | p.e performance. The main drawbacks are the problems brought with the isolation of
|
---|
211 |
|
---|
212 | the very high voltage and a
|
---|
213 |
|
---|
214 | frontend fast amplification needed for the APD case.
|
---|
215 |
|
---|
216 | \item
|
---|
217 |
|
---|
218 | Optimize the unit size (\cite{photonis})
|
---|
219 |
|
---|
220 |
|
---|
221 |
|
---|
222 | For classical big pmts, there is a not obvious relation between size, price/$cm^2$
|
---|
223 |
|
---|
224 | ,time performance, total efficiency and investments for production tools.
|
---|
225 |
|
---|
226 | Photonis (\cite{photonis}) evaluated this and found as the best candidate a 12
|
---|
227 |
|
---|
228 | inches tube, compared to bigger ones.
|
---|
229 |
|
---|
230 | \item
|
---|
231 |
|
---|
232 | Increase the photocathode efficiencies (\cite{ferenc},\cite{photonis})
|
---|
233 |
|
---|
234 |
|
---|
235 |
|
---|
236 | The use of $\sim$ 20 KV hv permits an excellent collection efficiency. Improvement
|
---|
237 |
|
---|
238 | of photocathode QE efficiency can be found in the use of reflective photo-cathod
|
---|
239 |
|
---|
240 | (30-44 $\%$ instead of $\sim 20 \%$)
|
---|
241 |
|
---|
242 | \end{itemize}
|
---|
243 |
|
---|
244 |
|
---|
245 |
|
---|
246 | \begin{thebibliography}{99}
|
---|
247 |
|
---|
248 |
|
---|
249 |
|
---|
250 | \bibitem{genie} C. Andreopoulos and H. Gallagher, "Tools for Neutrino Interaction Model Validation", Nucl.Phys.Proc.Suppl.139:247-252,2005
|
---|
251 |
|
---|
252 | \bibitem{xsectiondata} Mike Whalley, "A New Neutrino Cross Section Data Resource", Nucl.Phys.Proc.Suppl.139:241-246,2005
|
---|
253 |
|
---|
254 |
|
---|
255 |
|
---|
256 | \bibitem{costas} Neutrino Interactions and MC Event Generators
|
---|
257 |
|
---|
258 | Presented by C. Andreopoulos (Rutherford Lab)
|
---|
259 |
|
---|
260 |
|
---|
261 |
|
---|
262 | \bibitem{dunmore} Analysis and background aspects in large water Cherenkov detectors
|
---|
263 |
|
---|
264 | Presented by J. Dunmore (Irvine)
|
---|
265 |
|
---|
266 | \bibitem{yanagisawa} Background understanding and suppression in Very Long Baseline Neutrino Oscillation experiments with water Cherenkov detectors
|
---|
267 |
|
---|
268 | Presented by C. Yanagisawa (Stony Brook)
|
---|
269 |
|
---|
270 |
|
---|
271 |
|
---|
272 | \bibitem{ferenc}
|
---|
273 |
|
---|
274 | Development of new large-aera photosensors in the USA
|
---|
275 |
|
---|
276 |
|
---|
277 |
|
---|
278 | Presented by D. Ferenc (Davis)
|
---|
279 |
|
---|
280 |
|
---|
281 |
|
---|
282 | \bibitem{sk}
|
---|
283 |
|
---|
284 | R\&D of a large format hybrid photo-detector (HPD) for a next
|
---|
285 |
|
---|
286 | generation water Cherenkov detector.
|
---|
287 |
|
---|
288 |
|
---|
289 |
|
---|
290 | Presented by H. Aihara ( Tokyo)
|
---|
291 |
|
---|
292 |
|
---|
293 |
|
---|
294 | \bibitem{pouthas}
|
---|
295 |
|
---|
296 | Large photodetector developments in Europe
|
---|
297 |
|
---|
298 |
|
---|
299 |
|
---|
300 | Presented by J. Pouthas (Orsay)
|
---|
301 |
|
---|
302 |
|
---|
303 |
|
---|
304 | \bibitem{photonis}
|
---|
305 |
|
---|
306 | Revisiting the optimum PMT size for water Cherenkov megaton detectors
|
---|
307 |
|
---|
308 |
|
---|
309 |
|
---|
310 | Presented by C. Marmonier (Photonis)
|
---|
311 |
|
---|
312 |
|
---|
313 |
|
---|
314 | \bibitem{hama}
|
---|
315 |
|
---|
316 | Large formats PMTs from Hamamatsu Photonics
|
---|
317 |
|
---|
318 |
|
---|
319 |
|
---|
320 | Presented by M.A. Birkel (Hamamatsu)
|
---|
321 |
|
---|
322 |
|
---|
323 |
|
---|
324 | \bibitem{burle}
|
---|
325 |
|
---|
326 | Burle Indistries: Recent photomultiplier and device developments
|
---|
327 |
|
---|
328 |
|
---|
329 |
|
---|
330 | Presented by R. Caracciolo (Burle)
|
---|
331 |
|
---|
332 |
|
---|
333 |
|
---|
334 | \bibitem{etube}
|
---|
335 |
|
---|
336 | Electron Tubes: Detector considerations for neutrino physic
|
---|
337 |
|
---|
338 |
|
---|
339 |
|
---|
340 | Presented by T. Wright (Electron Tubes)
|
---|
341 |
|
---|
342 | \end{thebibliography}
|
---|
343 |
|
---|
344 |
|
---|
345 |
|
---|