| 1 | \section{Atmospheric Neutrinos}
|
|---|
| 2 | \label{sec:Phys-Atm-neut}
|
|---|
| 3 | %
|
|---|
| 4 | %\REDBLA{Creation by JEC 27/4/06 waiting for M. Maltoni Draft $\sim$22May}
|
|---|
| 5 | %\REDBLA{Update by JEC 22/6/06}
|
|---|
| 6 | %\REDBLA{Update by JEC 16/10/06: this is a section now}
|
|---|
| 7 | %\REDBLA{Update by AB + JEC 3/11/06 : subsectioning + tau-neutrinos}
|
|---|
| 8 | \subsection{Introduction}
|
|---|
| 9 | %%
|
|---|
| 10 | %use \refTab{} and \refFig{} commands to reference Tables and Figures.
|
|---|
| 11 | %JEC 22/6/06 START: contribution from Michele Maltoni
|
|---|
| 12 | Atmospheric neutrinos originates from the decay chain initiated by the
|
|---|
| 13 | collision of cosmic rays with the upper layers of the Earth's
|
|---|
| 14 | atmosphere.
|
|---|
| 15 | %
|
|---|
| 16 | \begin{figure}
|
|---|
| 17 | \includegraphics[width=\columnwidth]{./figures/fig.octant.eps}
|
|---|
| 18 | \caption{ \label{fig:octant} %
|
|---|
| 19 | Discrimination of the wrong octant solution as a function of
|
|---|
| 20 | $\sin^2\theta_{23}^\mathrm{true}$, for
|
|---|
| 21 | $\theta_{13}^\mathrm{true} = 0$. We have assumed 10 years of
|
|---|
| 22 | data taking with a 440-kton detector.}
|
|---|
| 23 | \end{figure}
|
|---|
| 24 | The hadronic interaction between primary cosmic rays (mainly protons
|
|---|
| 25 | and helium nuclei) and the light atmosphere nuclei produces secondary
|
|---|
| 26 | $\pi$ and $K$ mesons, which then decay giving electron and muon
|
|---|
| 27 | neutrinos and antineutrinos.
|
|---|
| 28 | %
|
|---|
| 29 | At lower energies the main contribution comes from $\pi$ mesons, and
|
|---|
| 30 | the decay chain $\pi \to \mu + \nu_\mu$ followed by $\mu \to e + \nu_e
|
|---|
| 31 | + \nu_\mu$ produces essentially two $\nu_\mu$ for each $\nu_e$. As
|
|---|
| 32 | the energy increases, more and more muons reach the ground before
|
|---|
| 33 | decays, and therefore the $\nu_\mu / \nu_e$ ratio increases.
|
|---|
| 34 | %
|
|---|
| 35 | For $E_\nu \gtrsim 1$~GeV the dependence of the total neutrino flux on
|
|---|
| 36 | the neutrino energy is well described by a power law, $d\Phi / d_E
|
|---|
| 37 | \propto E^{-\gamma}$ with $\gamma = 3$ for $\nu_\mu$ and $\gamma=3.5$
|
|---|
| 38 | for $\nu_e$, whereas at sub-GeV energies the dependence becomes more
|
|---|
| 39 | complicated because of the effects of the solar wind and of the
|
|---|
| 40 | Earth's magnetic field~\cite{Gonzalez-Garcia:2002dz}. As for the
|
|---|
| 41 | zenith dependence, for energies larger than a few GeV the neutrino
|
|---|
| 42 | flux is enhanced in the horizontal direction since pions and muons can
|
|---|
| 43 | travel a longer distance before reaching the ground, and therefore
|
|---|
| 44 | have more chances to decay producing neutrinos.
|
|---|
| 45 |
|
|---|
| 46 | Historically, the atmospheric neutrino problem originated in the
|
|---|
| 47 | 1980's as a discrepancy between the atmospheric neutrino flux measured
|
|---|
| 48 | with different experimental techniques. In the previous years, a
|
|---|
| 49 | number of detectors had been built, which could detect neutrinos
|
|---|
| 50 | through the observation of the charged lepton produced in
|
|---|
| 51 | charged-current neutrino-nucleon interactions inside the detector
|
|---|
| 52 | itself.
|
|---|
| 53 | %
|
|---|
| 54 | These detectors could be divided into two classes: \emph{iron
|
|---|
| 55 | calorimeters}, which reconstructed the track or electromagnetic shower
|
|---|
| 56 | produced by the lepton, and \emph{water \v{C}erenkov}, which measured
|
|---|
| 57 | instead the Cerenkov light emitted by the lepton as it moved faster
|
|---|
| 58 | than light in water.
|
|---|
| 59 | %
|
|---|
| 60 | The oldest iron calorimeters, Frejus \cite{Daum:1994bf} and
|
|---|
| 61 | NUSEX \cite{Aglietta:1988be}, found no discrepancy between the
|
|---|
| 62 | observed flux and the theoretical predictions, whereas the two \WC\ detectors, IMB \cite{Becker-Szendy:1992hq} and
|
|---|
| 63 | Kamiokande \cite{Hirata:1992ku}, observed a clear deficit in the
|
|---|
| 64 | predicted $\nu_\mu / \nu_e$ ratio.
|
|---|
| 65 | %
|
|---|
| 66 | The problem was finally solved in 1998, when the water Cerenkov
|
|---|
| 67 | detector SuperKamiokande \cite{Fukuda:1998mi} established with high
|
|---|
| 68 | statistical accuracy that there was indeed a zenith- and
|
|---|
| 69 | energy-dependent deficit in the muon neutrino flux with respect to the
|
|---|
| 70 | theoretical predictions, and that this deficit was compatible with the
|
|---|
| 71 | hypothesis of mass-induced $\nu_\mu \to \nu_\tau$ oscillations. Also,
|
|---|
| 72 | the independent confirmation of this effect from the iron calorimeter
|
|---|
| 73 | experiments Soudan-II \cite{Allison:1999ms} and
|
|---|
| 74 | MACRO \cite{Ambrosio:2001je} eliminated the discrepancy between the
|
|---|
| 75 | two experimental techniques.
|
|---|
| 76 |
|
|---|
| 77 | Despite providing the first solid evidence for neutrino oscillations,
|
|---|
| 78 | atmospheric neutrino experiments have received only minor
|
|---|
| 79 | consideration during the last years. This is mainly due to two
|
|---|
| 80 | important limitations:
|
|---|
| 81 | %
|
|---|
| 82 | \begin{itemize}
|
|---|
| 83 | \item the sensitivity of an atmospheric neutrino experiments is
|
|---|
| 84 | strongly limited by the large uncertainties in the knowledge of
|
|---|
| 85 | neutrino fluxes and neutrino-nucleon cross-section. Such
|
|---|
| 86 | uncertainties can be as large as 20\%.
|
|---|
| 87 |
|
|---|
| 88 | \item in general, water Cerenkov detectors do not allow an accurate
|
|---|
| 89 | reconstruction of the neutrino energy and direction if none of the
|
|---|
| 90 | two is known ``a priori''. This strongly limits the sensitivity to
|
|---|
| 91 | $\Delta m^2$, which is very sensitive to the resolution on $L/E$.
|
|---|
| 92 | \end{itemize}
|
|---|
| 93 | %
|
|---|
| 94 | During its phase-I, Super-Kamiokande has collected 4099 electron-like
|
|---|
| 95 | and 5436 muon-like contained neutrino events \cite{Ashie:2005ik}. With
|
|---|
| 96 | only about a hundred events each, K2K \cite{Ahn:2006zz} and
|
|---|
| 97 | MINOS \cite{Tagg:2006sx} already provide a stronger bound on the
|
|---|
| 98 | atmospheric mass-squared difference $\Delta m_{31}^2$. The present
|
|---|
| 99 | value of the mixing angle $\theta_{23}$ is still dominated by
|
|---|
| 100 | Super-Kamiokande data, being statistics the most important factor for
|
|---|
| 101 | such a measurement, but strong improvements are expected from the next
|
|---|
| 102 | generation of long-baseline experiments T2K \cite{Itow:2001ee} and
|
|---|
| 103 | NO$\nu$A \cite{Ayres:2004js}.
|
|---|
| 104 |
|
|---|
| 105 |
|
|---|
| 106 | \begin{figure}
|
|---|
| 107 | \includegraphics[width=\columnwidth]{./figures/SPLBBMEMPHYS-fig16.eps}
|
|---|
| 108 | \caption{ \label{fig:hierarchy} %
|
|---|
| 109 | Sensitivity to the mass hierarchy at $2\sigma$ ($\Delta\chi^2 =
|
|---|
| 110 | 4$) as a function of $\sin^22\theta_{13}^\mathrm{true}$ and
|
|---|
| 111 | $\delta_\mathrm{CP}^\mathrm{true}$ (left), and the fraction of
|
|---|
| 112 | true values of $\delta_\mathrm{CP}^\mathrm{true}$ (right). The
|
|---|
| 113 | solid curves are the sensitivities from the combination of
|
|---|
| 114 | long-baseline and atmospheric neutrino data, the dashed curves
|
|---|
| 115 | correspond to long-baseline data only. We have assumed 10 years
|
|---|
| 116 | of data taking with a 440-kton detector.}
|
|---|
| 117 | \end{figure}
|
|---|
| 118 | %
|
|---|
| 119 | \subsection{Oscillation physics}
|
|---|
| 120 | %
|
|---|
| 121 | Despite these drawbacks, atmospheric detectors can still play a
|
|---|
| 122 | leading role in the future of neutrino physics due to the huge range
|
|---|
| 123 | in energy (from 100~MeV to 10~TeV and above) and distance (from 20~km
|
|---|
| 124 | \begin{figure}
|
|---|
| 125 | \includegraphics[width=\columnwidth]{./figures/fig.theta13.eps}
|
|---|
| 126 | \caption{ \label{fig:theta13} %
|
|---|
| 127 | Sensitivity to $\sin^22\theta_{13}$ as a function of
|
|---|
| 128 | $\sin^2\theta_{23}^\mathrm{true}$ for LBL data only (dashed),
|
|---|
| 129 | and the combination LBL+ATM (solid). In the left and central
|
|---|
| 130 | panels we restrict the fit of $\theta_{23}$ to the octant
|
|---|
| 131 | corresponding to $\theta_{23}^\mathrm{true}$ and $\pi/2 -
|
|---|
| 132 | \theta_{23}^\mathrm{true}$, respectively, whereas the right
|
|---|
| 133 | panel shows the overall sensitivity taking into account both
|
|---|
| 134 | octants. We have assumed 8 years of LBL and 9 years of ATM data
|
|---|
| 135 | taking with the T2HK beam and a 1~Mton detector.}
|
|---|
| 136 | \end{figure}
|
|---|
| 137 | to more than 12000~Km) covered by the data. This unique feature, as
|
|---|
| 138 | well as the very large statistics expected for a detector such as
|
|---|
| 139 | MEMPHYS ($20\div 30$ times the present SK event rate), will allow a
|
|---|
| 140 | very accurate study of \emph{subdominant modifications} to the leading
|
|---|
| 141 | oscillation pattern, thus providing complementary information to
|
|---|
| 142 | accelerator-based experiments. More concretely, atmospheric neutrino
|
|---|
| 143 | data will be extremely valuable for:
|
|---|
| 144 | %
|
|---|
| 145 | \begin{itemize}
|
|---|
| 146 | \item resolving the octant ambiguity: although future LBL
|
|---|
| 147 | experiments are expected to considerably improve the measurement
|
|---|
| 148 | of the absolute value of the small quantity $D_{23} \equiv
|
|---|
| 149 | \sin^2\theta_{23} - 1/2$, they will have practically no
|
|---|
| 150 | sensitivity on its sign. On the other hands, it has been pointed
|
|---|
| 151 | out \cite{Kim:1998bv,Peres:1999yi} that the $\nu_\mu \to \nu_e$ conversion
|
|---|
| 152 | signal induced by the small but finite value of $\Delta m_{21}^2$
|
|---|
| 153 | can resolve this degeneracy. However, observing such a conversion
|
|---|
| 154 | requires a very long baseline and low energy neutrinos, and
|
|---|
| 155 | atmospheric sub-GeV electron-like events are particularly suitable
|
|---|
| 156 | for this purpose. In \refFig{fig:octant} we show the potential
|
|---|
| 157 | of different ATM+LBL experiments to exclude the octant degenerate
|
|---|
| 158 | solution.
|
|---|
| 159 |
|
|---|
| 160 | \item resolving the hierarchy degeneracy: if $\theta_{13}$ is not
|
|---|
| 161 | too small, matter effect will produce resonant conversion in the
|
|---|
| 162 | $\nu_\mu \leftrightarrow \nu_e$ channel for neutrinos
|
|---|
| 163 | (antineutrinos) if the mass hierarchy is normal (inverted). The
|
|---|
| 164 | observation of this enhanced conversion would allow the
|
|---|
| 165 | determination of the mass hierarchy. Although a magnetized
|
|---|
| 166 | detector would be the best solution for this task, it is possible
|
|---|
| 167 | to extract useful information also with a conventional detector
|
|---|
| 168 | since the event rates expected for atmospheric neutrinos and
|
|---|
| 169 | antineutrinos are quite different. This is clearly visible from
|
|---|
| 170 | \refFig{fig:hierarchy}, where we show how the sensitivity to the
|
|---|
| 171 | mass hierarchy of different LBL experiments is drastically
|
|---|
| 172 | increased when the ATM data collected by the same detector are
|
|---|
| 173 | also included in the fit.
|
|---|
| 174 |
|
|---|
| 175 | \item measuring or improving the bound on $\theta_{13}$: although
|
|---|
| 176 | atmospheric data alone are not expected to be competitive with the
|
|---|
| 177 | next generation of long-baseline experiments in the sensitivity to
|
|---|
| 178 | $\theta_{13}$, they will contribute indirectly by eliminating the
|
|---|
| 179 | octant degeneracy, which is an important source of uncertainty for
|
|---|
| 180 | LBL. In particular, if $\theta_{23}^\mathrm{true}$ is larger than
|
|---|
| 181 | $45^\circ$ then the inclusion of atmospheric data will
|
|---|
| 182 | considerably improve the LBL sensitivity to $\theta_{13}$, as can
|
|---|
| 183 | be seen from the right panel of \refFig{fig:theta13} \cite{huber-2005-71}.
|
|---|
| 184 |
|
|---|
| 185 | %JEC 3/11/06 START place it at the end of the section
|
|---|
| 186 | % \item searching for physics beyond the Standard Model: the appearance
|
|---|
| 187 | % of subleading features in the main oscillation pattern can also be
|
|---|
| 188 | % a hint for New Physics. The huge range of energies probed by
|
|---|
| 189 | % atmospheric data will allow to put very strong bounds on
|
|---|
| 190 | % mechanisms which predict deviation from the $1/E$ behavior. For
|
|---|
| 191 | % example, the bound on non-standard neutrino-matter interactions
|
|---|
| 192 | % and on other types of New Physics (such as violation of the
|
|---|
| 193 | % equivalence principle, or violation of the Lorentz invariance)
|
|---|
| 194 | % which can be derived from \emph{present} data is already the
|
|---|
| 195 | % strongest which can be put on these
|
|---|
| 196 | % mechanisms \cite{Gonzalez-Garcia:2004wg}. The increased statistics
|
|---|
| 197 | % expected for MEMPHYS will further improve these constraints.
|
|---|
| 198 | %JEC 3/11/06 END
|
|---|
| 199 | \end{itemize}
|
|---|
| 200 | %
|
|---|
| 201 | %A Bueno 3/11/06 START new subsection
|
|---|
| 202 | \subsection{Direct detection of $\nu_\tau$ in the atmospheric neutrino flux}
|
|---|
| 203 | %
|
|---|
| 204 | At energies above a GeV,
|
|---|
| 205 | we expect unoscillated events to be upward-downward going symmetric.
|
|---|
| 206 | In contrast, we know that $\nu_\tau, \ \bar{\nu}_\tau$ induced events come from
|
|---|
| 207 | below the horizon (upward going events). Therefore
|
|---|
| 208 | the presence of $\nu_\tau$, $\bar{\nu}_\tau$ events can be revealed by a
|
|---|
| 209 | measured excess of upward going events.
|
|---|
| 210 | Hereafter we assume that the {$\nu_\mu$} and
|
|---|
| 211 | the {$\mathbf \nu_\tau$} are maximally mixed and their mass
|
|---|
| 212 | squared difference
|
|---|
| 213 | is {$ \Delta m^2 = 3. \times 10^{-3}$} eV{$^2$}.
|
|---|
| 214 | We use the Fluka 3D atmospheric neutrino fluxes.
|
|---|
| 215 |
|
|---|
| 216 | In GLACIER, the search for $\nu_\tau$ appearance is based on the
|
|---|
| 217 | information provided by the event kinematics and takes advantage
|
|---|
| 218 | of the special characteristics of $\nu_\tau$ CC and the subsequent
|
|---|
| 219 | decay of the produced $\tau$ lepton when compared to CC and NC interactions
|
|---|
| 220 | of $\nu_\mu$ and $\nu_e$, i.e. by making use of $\vec{P}_{candidate}$
|
|---|
| 221 | and $\vec{P}_{hadron}$. Due to the large background induced by the natural
|
|---|
| 222 | abundance of the atmospheric neutrino flux in $\nu_e$ and
|
|---|
| 223 | $\bar{\nu}_e$, we note that the measurement of a statistically
|
|---|
| 224 | significant excess of
|
|---|
| 225 | $\nu_\tau$ events is very unlikely for the $\tau \to e$ decay mode,
|
|---|
| 226 | therefore we conclude that a search
|
|---|
| 227 | based on this channel is hopeless. Same conclusions apply to
|
|---|
| 228 | the muonic decay channel.
|
|---|
| 229 |
|
|---|
| 230 | The situation is much more advantageous for the hadronic channels:
|
|---|
| 231 | we consider tau decays to one prong (single pion, rho) and to three
|
|---|
| 232 | prongs ($\pi^\pm \pi^0 \pi^0 $ and three charged pions).
|
|---|
| 233 | After a careful evaluation of the performance of different
|
|---|
| 234 | combinations of kinematic variables, we decided to use: $E_{visible}$,
|
|---|
| 235 | $y_{bj}$ (the ratio between the total hadronic energy and
|
|---|
| 236 | $E_{visible}$) and $Q_T$ (defined as the transverse momentum of the $\tau$
|
|---|
| 237 | candidate with respect to the total measured momentum). The chosen
|
|---|
| 238 | variables are not independent one from another but show
|
|---|
| 239 | correlations between them. These correlations can be exploited to reduce the
|
|---|
| 240 | background. In order to maximize the separation between signal
|
|---|
| 241 | and background, we use three dimensional likelihood functions
|
|---|
| 242 | ${\cal L}(Q_T,E_{visible}, y_{bj})$ where
|
|---|
| 243 | correlations are taken into account. For every channel, we build three
|
|---|
| 244 | dimensional likelihood functions
|
|---|
| 245 | for both signal (${\cal L}^S_\pi, \ {\cal L}^S_\rho, \
|
|---|
| 246 | {\cal L}^S_{3\pi}$) and background (${\cal L}^B_\pi, \ {\cal L}^B_\rho, \
|
|---|
| 247 | {\cal L}^B_{3\pi}$). To enhance the separation of $\nu_\tau$ induced
|
|---|
| 248 | events from $\nu_\mu, \ \nu_e$ interactions, we take a ratio of
|
|---|
| 249 | likelihoods as the sole discriminant variable:
|
|---|
| 250 | \begin{equation}
|
|---|
| 251 | \ln \lambda_i \equiv \ln({\cal L}^S_i / {\cal L}^B_i)
|
|---|
| 252 | \end{equation}
|
|---|
| 253 | where $i=\pi,\ \rho, \ 3\pi$.
|
|---|
| 254 |
|
|---|
| 255 | To further improve the sensitivity of the $\nu_\tau$
|
|---|
| 256 | appearance search, we combine
|
|---|
| 257 | the three independent hadronic analyses into a single one.
|
|---|
| 258 | Events that are common to at least
|
|---|
| 259 | two analyses are counted only once and a survey of all possible
|
|---|
| 260 | combinations, for a restricted set of values of the likelihood
|
|---|
| 261 | ratios, is performed. Table \ref{tab:combi} illustrates the
|
|---|
| 262 | statistical significance achieved by several selected combinations of the
|
|---|
| 263 | likelihood ratios for an exposure equivalent to 100 kton$\times$year.
|
|---|
| 264 |
|
|---|
| 265 | \begin{table}
|
|---|
| 266 | \caption{\label{tab:combi}Expected background and signal events for different
|
|---|
| 267 | combinations of the $\pi$, $\rho$ and $3\pi$ analyses. The considered
|
|---|
| 268 | statistical sample corresponds to an exposure of 100
|
|---|
| 269 | kton$\times$year. The best
|
|---|
| 270 | combination found is indicated in bold characters.}
|
|---|
| 271 | \begin{center}
|
|---|
| 272 | \begin{tabular}{cccclc}\hline\hline
|
|---|
| 273 | $\ln \lambda_\pi$ & $\ln \lambda_\rho$ & $\ln \lambda_{3\pi}$ &
|
|---|
| 274 | Top & Bottom & $P_\beta$ ($\%$) \\
|
|---|
| 275 | Cut & Cut & Cut & Events & Events & \\ \hline
|
|---|
| 276 | 0. & 0.5 & 0. & 223 & $223 + 43 = 266$ & $2 \times 10^{-1}$
|
|---|
| 277 | ($3.1\sigma$)\\
|
|---|
| 278 | 1.5. & 1.5 & 0 & 92 & $92 + 35= 127$ & $2 \times 10^{-2}$ ($3.7\sigma$)\\
|
|---|
| 279 | 3. & -1 & 0. & 87 & $87 + 33 = 120 $ & $3 \times 10^{-2}$
|
|---|
| 280 | ($3.6\sigma$)\\
|
|---|
| 281 | 3. & 0.5 & 0. & 25 & {$25 + 22= 47$}
|
|---|
| 282 | & {$2 \times 10^{-3}$ $(4.3\sigma)$} \\
|
|---|
| 283 | 3. & 1.5 & 0 & 20 & $20 + 19 = 39$ & $4 \times 10^{-3}$ ($4.1\sigma$)\\
|
|---|
| 284 | 3. & 0.5 & -1. & 59 & $59 + 30 = 89$ & $9 \times 10^{-3}$ ($3.9\sigma$)\\
|
|---|
| 285 | 3. & 0.5 & 1. & 18 & $18 + 17 = 35$ & $1 \times 10^{-2}$ ($3.8\sigma$)\\ \hline\hline
|
|---|
| 286 | \end{tabular}
|
|---|
| 287 | \end{center}
|
|---|
| 288 | \end{table}
|
|---|
| 289 | The best combination, for a 100 kton$\times$year exposure,
|
|---|
| 290 | is achieved for the
|
|---|
| 291 | following set of cuts: {$\ln \lambda_\pi > 3$,
|
|---|
| 292 | $\ln \lambda_\rho > 0.5$} and {$\ln \lambda_{3\pi} > 0$}.
|
|---|
| 293 | The expected number of NC background events amounts to 25 (top)
|
|---|
| 294 | while 25+22 = 47 (bottom) are expected. $P_\beta$ is the Poisson probability
|
|---|
| 295 | for the measured excess of upward going events to be due to a
|
|---|
| 296 | statistical fluctuation as a function of the exposure. We have
|
|---|
| 297 | an effect larger than $4\sigma$ for an
|
|---|
| 298 | exposure of 100 kton$\times$year (one year of data taking with GLACIER).
|
|---|
| 299 | %A Bueno 3/11/06 START
|
|---|
| 300 | %
|
|---|
| 301 | % JEC 3/11/06 START new section
|
|---|
| 302 | \subsection{New phenomena beyond the "Standard Model"}
|
|---|
| 303 | %
|
|---|
| 304 | It is worth remembering that atmospheric neutrino fluxes are
|
|---|
| 305 | themselves an important subject of investigation, and at the light of
|
|---|
| 306 | the precise determination of the oscillation parameters provided by
|
|---|
| 307 | long-baseline experiments the atmospheric neutrino data accumulated by
|
|---|
| 308 | the proposed detectors can be used as a \emph{direct measurement} of the incoming
|
|---|
| 309 | neutrino flux, and therefore as an indirect measurement of the primary
|
|---|
| 310 | cosmic rays flux.
|
|---|
| 311 |
|
|---|
| 312 | The appearance
|
|---|
| 313 | of subleading features in the main oscillation pattern can also be
|
|---|
| 314 | a hint for New Physics. The huge range of energies probed by
|
|---|
| 315 | atmospheric data will allow to put very strong bounds on
|
|---|
| 316 | mechanisms which predict deviation from the $1/E$ behavior. For
|
|---|
| 317 | example, the bound on non-standard neutrino-matter interactions
|
|---|
| 318 | and on other types of New Physics (such as violation of the
|
|---|
| 319 | equivalence principle, or violation of the Lorentz invariance)
|
|---|
| 320 | which can be derived from \emph{present} data is already the
|
|---|
| 321 | strongest which can be put on these
|
|---|
| 322 | mechanisms \cite{Gonzalez-Garcia:2004wg}. So, the increased statistics
|
|---|
| 323 | expected for the proposed detectors will further improve these constraints.
|
|---|
| 324 | % JEC 3/11/06 END
|
|---|
| 325 | %JEC 22/6/06 END
|
|---|