% % bibtex is used for bibliography % - put your references in file Frejus.bib, in bibtex format % (you can get it directly from spires). % No need to worry about the order of citation % - to process file, do % latex Frejus % bibtex Frejus % latex Frejus % %\documentstyle[12pt,epsfig,amstex,amssymb,here]{article} \documentclass[12pt]{article} \usepackage{epsfig,amsmath,amssymb,here,rotating} \usepackage[T1]{fontenc} \usepackage{eurosym} %\usepackage{eurosans} \newcommand{\modif}[3]{{(\sc{#1})}{\sout{\small #2}}{\bf #3}} % \def\dm{\ensuremath{\Delta m}} \def\dm2{\ensuremath{\Delta m^{2}\ }} \def\sen2th{\ensuremath{ \sin^{2}(2\theta)\ }} \def\(({\left(} \def\)){\right)} \def\nubar{$\overline{\nu}\ $} \def\nue{\ensuremath{\nu_{e}\ }} \def\nubare{\ensuremath{\overline{\nu}_{e}\ }} \def\nubarecc{$\overline{\nu}_{e}^{CC}\ $} \def\numu{\ensuremath{\nu_{\mu}\ }} \def\nubarmu{\ensuremath{\overline{\nu}_{\mu}\ }} \def\nubarmucc{$\overline{\nu}_{\mu}^{CC}\ $} \def\nutau{\ensuremath{\nu_{\tau}\ }} \def\nubartau{\ensuremath{\overline{\nu_{\tau}}\ }} \def\nulep{$\nu^{l}\ $} \def\nubarlep{$\overline{\nu^{l}}\ $} \def\nuef{\ensuremath{\nu_{e}}} \def\nubarf{\ensuremath{\overline{\nu}}} \def\nubaref{\ensuremath{\overline{\nu}_{e}}} \def\numuf{\ensuremath{\nu_{\mu}}} \def\nubarmuf{\ensuremath{\overline{\nu_{\mu}}}} \def\nutauf{\ensuremath{\nu_{\tau}}} \def\nubartauf{\ensuremath{\overline{\nu_{\tau}}}} \def\nulepf{\ensuremath{\nu^{l}}} \def\nubarlepf{\ensuremath{\overline{\nu^{l}}}} \def\pzero{\ensuremath{\ensuremath{\pi^0\ }}} %\newcommand{\pion}{\ensuremath{\pi}} %\newcommand{\pinot}{\ensuremath{\pi^0}} %\newcommand{\phad}{\ensuremath{\vec{p}_{had}}} \newcommand{\mphad}{\ensuremath{p_{had}}} \newcommand{\plep}{\ensuremath{\vec{p}_{lep}}} \newcommand{\pele}{\ensuremath{\vec{p}_{ele}}} \newcommand{\mpele}{\ensuremath{p_{lep}}} \newcommand{\evis}{\ensuremath{E_{vis}\,}} \newcommand{\pte}{\ensuremath{p^T_e}} \newcommand{\ptlep}{\ensuremath{p^T_{lepton}}} \newcommand{\nuecc}{\ensuremath{\nu_e^{CC}\,}} \newcommand{\numucc}{\ensuremath{\nu_\mu^{CC}\,}} \newcommand{\numunc}{\ensuremath{\nu_\mu^{NC}}} \newcommand{\antinuecc}{\ensuremath{\overline{\nu_e}^{CC}\,}} \newcommand{\antinumucc}{\ensuremath{\overline{\nu_\mu}^{CC}}} \newcommand{\chisq}{\ensuremath{\chi^{2}\ }} \newcommand{\raw}{\rightarrow} \newcommand{\nn}{\nonumber} % \newcommand{\ev}{ {\rm eV} } \newcommand{\gev}{ {\rm GeV} } \newcommand{\Gev}{ {\rm GeV} } \newcommand{\tev}{ {\rm TeV} } \newcommand{\mev}{ {\rm MeV} } \newcommand{\Mev}{ {\rm MeV} } \newcommand{\mw}{ {\rm MW} } \newcommand{\km}{ {\rm km} } \newcommand{\tesla}{ {\rm Tesla} } \newcommand{\meter}{ {\rm m} } \newcommand{\kton}{ {\rm Kton} } \newcommand{\ton}{ {\rm ton} } \newcommand{\mton}{ {\rm Mton} } \newcommand{\mm}{ {\rm mm} } \newcommand{\cm}{ {\rm cm} } \newcommand{\mim}{ {\mu \rm m} } %\newcommand{\bea}{\begin{eqnarray}} %\newcommand{\eea}{\end{eqnarray}} \newcommand{\be}{\begin{equation}} \newcommand{\ee}{\end{equation}} % \newcommand{\flux}{\mbox{$ cm^{-2}~s^{-1}$}} \newcommand{\dens}{\mbox{$ cm^{-3}$}} % \newcommand{\tetaot}{\mbox{$\theta_{13}$}} \newcommand{\tetatt}{\mbox{$\theta_{23}$}} \newcommand{\tatm}{\mbox{$\theta_{23}$}} \newcommand{\tsun}{\mbox{$\theta_{12}$}} \newcommand{\deltt}{\mbox{$\Delta_{23}$}} \newcommand{\delot}{\mbox{$\Delta_{13}$}} \newcommand{\dsun}{\mbox{$\Delta_{sun}^2$}} \newcommand{\datm}{\mbox{$\Delta_{atm}^2$}} % \newcommand{\Losc}{\mbox{$L_{osc}$}} \newcommand{\mmm}{\mbox{$m_{1}^{2}-m_{2}^{2}$}} \newcommand{\stt}{\mbox{$sin^{2}~2\theta $}} \newcommand{\dms}{\mbox{$\Delta m^{2}$}} \newcommand{\numubar}{\mbox{$\overline{\nu}_{\mu}$}} \newcommand{\nuebar}{\mbox{$\overline{\nu}_{e}$}} \newcommand{\muminus}{\mbox{$\mu^{-}$}} \newcommand{\muplus}{\mbox{$\mu^{+}$}} \newcommand{\neb}{\mbox{$\overline{\nu}_{e}$}} \newcommand{\num}{\mbox{${\nu}_{\mu}$}} \newcommand{\nmb}{\mbox{$\overline{\nu}_{\mu}$}} \newcommand{\nut}{\mbox{${\nu}_{\tau}$}} \newcommand{\ntb}{\mbox{$\overline{\nu}_{\tau}$}} \newcommand{\nub}{\mbox{$\overline{\nu}$}} \newcommand{\lsim}{\mbox{\raisebox{-1.ex} {$\stackrel{\textstyle <}{\textstyle \sim}$}}} \newcommand{\gsim}{\mbox{\raisebox{-1.ex} {$\stackrel{\textstyle >}{\textstyle \sim}$}}} \newcommand{\sstt} {\sin^2 2\theta} %\newcommand{\dms} {\Delta m^2} \newcommand{\degree} {^{\circ}} \newcommand{\ttbs}{\char'134} %\newcommand{\AmS}{{\protect\the\textfont2 A\kern-.1667em\lower.5ex\hbox{M}\kern-.125emS}} \newcommand{\pnuenumu}{\ensuremath{P(\nue \rightarrow \numu)\,}} %\newcommand{\pnumunumu}{\ensuremath{p(\numu \rightarrow \numu)\,}} \newcommand{\nuenumu}{\ensuremath{\nue \rightarrow \numu\,}} \newcommand{\numunutau}{\ensuremath{\numu \rightarrow \nutau\,}} \newcommand{\nuenutau}{\ensuremath{\nue \rightarrow \nutau}} \newcommand{\nubarenubarmu}{\ensuremath{\overline{\nu}_e \rightarrow \overline{\nu}_\mu\,}} \newcommand{\nubarmunubare}{\ensuremath{\overline{\nu}_\mu \rightarrow \overline{\nu}_e\,}} \newcommand{\dmot}{\ensuremath{\Delta m^2_{12}\,}} \newcommand{\dmtt}{\ensuremath{\Delta m^2_{23} \,}} \newcommand{\He}{\ensuremath{^6{\mathrm{He}\,}}} \newcommand{\Ne}{\ensuremath{^{18}{\mathrm{Ne}\,}}} \def\Li{^6{\mathrm{Li}}} \def\anue{\overline{{\mathrm\nu}}_{\mathrm e}} \def\anumu{\overline{{\mathrm\nu}}_{\mathrm \mu}} \newcommand{\thetaot}{\ensuremath{\theta_{13}}\,} \newcommand{\thetatt}{\ensuremath{\theta_{23}}\,} \newcommand{\numunue}{\ensuremath{\nu_\mu \rightarrow \nu_e}} \newcommand{\pnuenue}{\ensuremath{P(\nue \rightarrow \nue)}} \newcommand{\pnumunue}{\ensuremath{P(\nu_\mu \rightarrow \nu_e)}} \newcommand{\pnumunumu}{\ensuremath{P(\nu_\mu \rightarrow \nu_\mu)}} \newcommand{\pnubarenubarmu}{\ensuremath{P(\overline{\nu}_e \rightarrow \overline{\nu}_\mu\)\,}} \newcommand{\pnubarmunubare}{\ensuremath{P(\overline{\nu}_\mu \rightarrow \overline{\nu}_e)\,}} \newcommand{\dmsun}{\ensuremath{\Delta m^2_{sun}\ }} \newcommand{\dmatm}{\ensuremath{\Delta m^2_{atm}}} \newcommand{\nueovernumu}{\ensuremath{\nue/\numu}} \newcommand{\sigdm}{\ensuremath{{\rm sign}(\Delta m^2_{23})\ }} %\newcommand{\delCP}{\ensuremath{\delta_{\rm CP}}} \newcommand{\delCP}{\ensuremath{\delta_{\rm CP}\ }} \newcommand{\stheta}{\sin^22\theta_{13}} \newcommand{\deltacp}{\delta_\mathrm{CP}} \def\He{\ensuremath{^6{\mathrm{He}}}} \def\Li{\ensuremath{^6{\mathrm{Li}}}} \def\Ne{\ensuremath{^{18}{\mathrm{Ne}}}} \def\anue{\ensuremath{\overline{{\mathrm\nu}}_{\mathrm e}}} \def\anumu{\ensuremath{\overline{{\mathrm\nu}}_{\mathrm \mu}}} \def\numunue{\ensuremath{\mbox{$\nu_\mu \rightarrow \nu e$}}} % % \newcommand{\REDBLA}[1]{\red {#1} \black} % \def\mc2{\multicolumn{2}{c|}} % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \input{style.tex} \begin{document} \bibliographystyle{JHEP} \begin{titlepage} %\vspace*{2cm} \begin{center} {\bf \Large MEMPHYS\,:} \vspace{0.2cm} {\bf \Large A large scale water \v{C}erenkov detector at Fr\'ejus} %\vspace{0.5cm} %{\bf Preliminary } %\vspace{1.5cm} %{\bf Contribution to the CERN strategic committee} \\ %Orsay, 30/01/2006 \end{center} \vspace{2.5cm} \begin{center} {A. de Bellefon$^{(1)}$, J. Bouchez$^{(1)}$$^{(2)}$, J. Busto$^{(3)}$, J.-E. Campagne$^{(4)}$, \\ C. Cavata$^{(2)}$, %S. Davidson$^{(5)}$, J. Dolbeau$^{(1)}$, J. Dumarchez$^{(5)}$, P. Gorodetzky$^{(1)}$, S. Katsanevas$^{(1)}$, \\ M. Mezzetto$^{(6)}$, L. Mosca$^{(2)}$, T. Patzak$^{(1)}$, % Joel Pouthas$^{(7)}$, P. Salin$^{(1)}$, A. Tonazzo$^{(1)}$, C. Volpe$^{(7)}$} \vspace{0.5cm} {\it $^{(1)}$ APC Paris \\ $^{(2)}$ DAPNIA-CEA Saclay \\ $^{(3)}$ CPP Marseille \\ $^{(4)}$ LAL Orsay \\ % $^{()}$ IPN Lyon \\ $^{(5)}$ LPNHE Paris \\ $^{(6)}$ INFN Padova \\ $^{(7)}$ IPN Orsay } \end{center} \vspace{1.5cm} \begin{center} {\bf Abstract}\\ A water \v{C}erenkov detector project, of megaton scale, to be installed in the Fr\'ejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-beam coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle $\theta_{13}$ and the CP-violating phase $\delta$. \end{center} \vspace{2.3cm} \end{titlepage} \newpage \tableofcontents \newpage \input{motivation} \newpage \section{Megaton Physics} \input{pdk_phy.tex} \input{snv_phy.tex} \input{osc_phy.tex} \newpage \input{undlab_detector.tex} \input{annex.tex} \newpage \section{Detector Performance} \label{sec:det} As mentioned above, we consider a massive water \v{C}erenkov detector {\`a} la UNO \cite{uno} and review the performances of such a detector for the main physics fields. \input{pdk_det.tex} \input{snv_det.tex} \input{osc_det.tex} \input{nusolar.tex} \newpage \input{conclusion.tex} \newpage \bibliography{Frejus} \end{document}