source: Backup NB/Talks/MEMPHYSetal/MEMPHYS EOI/CAMPAGNE_MEMPHYS-EOI/Frejus.tex @ 416

Last change on this file since 416 was 387, checked in by campagne, 16 years ago
File size: 8.7 KB
Line 
1%
2% bibtex is used for bibliography
3% - put your references in file Frejus.bib, in bibtex format
4%   (you can get it directly from spires).
5%   No need to worry about the order of citation
6% - to process file, do
7%       latex Frejus
8%       bibtex Frejus
9%       latex Frejus
10%
11%\documentstyle[12pt,epsfig,amstex,amssymb,here]{article}
12\documentclass[12pt]{article}
13\usepackage{epsfig,amsmath,amssymb,here,rotating}
14\usepackage[T1]{fontenc}
15\usepackage{eurosym}
16%\usepackage{eurosans}
17\newcommand{\modif}[3]{{(\sc{#1})}{\sout{\small #2}}{\bf #3}}
18
19%
20
21\def\dm{\ensuremath{\Delta m}}
22\def\dm2{\ensuremath{\Delta m^{2}\ }}
23\def\sen2th{\ensuremath{ \sin^{2}(2\theta)\ }}
24\def\(({\left(}
25\def\)){\right)}
26
27\def\nubar{$\overline{\nu}\ $}
28\def\nue{\ensuremath{\nu_{e}\ }}
29\def\nubare{\ensuremath{\overline{\nu}_{e}\ }}
30\def\nubarecc{$\overline{\nu}_{e}^{CC}\ $}
31\def\numu{\ensuremath{\nu_{\mu}\ }}
32\def\nubarmu{\ensuremath{\overline{\nu}_{\mu}\ }}
33\def\nubarmucc{$\overline{\nu}_{\mu}^{CC}\ $}
34\def\nutau{\ensuremath{\nu_{\tau}\ }}
35\def\nubartau{\ensuremath{\overline{\nu_{\tau}}\ }}
36\def\nulep{$\nu^{l}\ $}
37\def\nubarlep{$\overline{\nu^{l}}\ $}
38
39\def\nuef{\ensuremath{\nu_{e}}}
40\def\nubarf{\ensuremath{\overline{\nu}}}
41\def\nubaref{\ensuremath{\overline{\nu}_{e}}}
42\def\numuf{\ensuremath{\nu_{\mu}}}
43\def\nubarmuf{\ensuremath{\overline{\nu_{\mu}}}}
44\def\nutauf{\ensuremath{\nu_{\tau}}}
45\def\nubartauf{\ensuremath{\overline{\nu_{\tau}}}}
46\def\nulepf{\ensuremath{\nu^{l}}}
47\def\nubarlepf{\ensuremath{\overline{\nu^{l}}}}
48\def\pzero{\ensuremath{\ensuremath{\pi^0\ }}}
49
50%\newcommand{\pion}{\ensuremath{\pi}}
51%\newcommand{\pinot}{\ensuremath{\pi^0}}
52%\newcommand{\phad}{\ensuremath{\vec{p}_{had}}}
53\newcommand{\mphad}{\ensuremath{p_{had}}}
54\newcommand{\plep}{\ensuremath{\vec{p}_{lep}}}
55\newcommand{\pele}{\ensuremath{\vec{p}_{ele}}}
56\newcommand{\mpele}{\ensuremath{p_{lep}}}
57\newcommand{\evis}{\ensuremath{E_{vis}\,}}
58\newcommand{\pte}{\ensuremath{p^T_e}}
59\newcommand{\ptlep}{\ensuremath{p^T_{lepton}}}
60\newcommand{\nuecc}{\ensuremath{\nu_e^{CC}\,}}
61\newcommand{\numucc}{\ensuremath{\nu_\mu^{CC}\,}}
62\newcommand{\numunc}{\ensuremath{\nu_\mu^{NC}}}
63\newcommand{\antinuecc}{\ensuremath{\overline{\nu_e}^{CC}\,}}
64\newcommand{\antinumucc}{\ensuremath{\overline{\nu_\mu}^{CC}}}
65
66\newcommand{\chisq}{\ensuremath{\chi^{2}\ }}
67
68\newcommand{\raw}{\rightarrow}
69\newcommand{\nn}{\nonumber}
70%
71\newcommand{\ev}{ {\rm eV} }
72\newcommand{\gev}{ {\rm GeV} }
73\newcommand{\Gev}{ {\rm GeV} }
74\newcommand{\tev}{ {\rm TeV} }
75\newcommand{\mev}{ {\rm MeV} }
76\newcommand{\Mev}{ {\rm MeV} }
77\newcommand{\mw}{ {\rm MW} }
78\newcommand{\km}{ {\rm km} }
79\newcommand{\tesla}{ {\rm Tesla} }
80\newcommand{\meter}{ {\rm m} }
81\newcommand{\kton}{ {\rm Kton} }
82\newcommand{\ton}{ {\rm ton} }
83\newcommand{\mton}{ {\rm Mton} }
84\newcommand{\mm}{ {\rm mm} }
85\newcommand{\cm}{ {\rm cm} }
86\newcommand{\mim}{ {\mu \rm m} }
87%\newcommand{\bea}{\begin{eqnarray}}
88%\newcommand{\eea}{\end{eqnarray}}
89\newcommand{\be}{\begin{equation}}
90\newcommand{\ee}{\end{equation}}
91%
92\newcommand{\flux}{\mbox{$ cm^{-2}~s^{-1}$}}
93\newcommand{\dens}{\mbox{$ cm^{-3}$}}
94%
95\newcommand{\tetaot}{\mbox{$\theta_{13}$}}
96\newcommand{\tetatt}{\mbox{$\theta_{23}$}}
97\newcommand{\tatm}{\mbox{$\theta_{23}$}}
98\newcommand{\tsun}{\mbox{$\theta_{12}$}}
99\newcommand{\deltt}{\mbox{$\Delta_{23}$}}
100\newcommand{\delot}{\mbox{$\Delta_{13}$}}
101\newcommand{\dsun}{\mbox{$\Delta_{sun}^2$}}
102\newcommand{\datm}{\mbox{$\Delta_{atm}^2$}}
103
104%
105\newcommand{\Losc}{\mbox{$L_{osc}$}}
106\newcommand{\mmm}{\mbox{$m_{1}^{2}-m_{2}^{2}$}}
107\newcommand{\stt}{\mbox{$sin^{2}~2\theta $}}
108\newcommand{\dms}{\mbox{$\Delta m^{2}$}}
109\newcommand{\numubar}{\mbox{$\overline{\nu}_{\mu}$}}
110\newcommand{\nuebar}{\mbox{$\overline{\nu}_{e}$}}
111\newcommand{\muminus}{\mbox{$\mu^{-}$}}
112\newcommand{\muplus}{\mbox{$\mu^{+}$}}
113
114\newcommand{\neb}{\mbox{$\overline{\nu}_{e}$}}
115\newcommand{\num}{\mbox{${\nu}_{\mu}$}}
116\newcommand{\nmb}{\mbox{$\overline{\nu}_{\mu}$}}
117\newcommand{\nut}{\mbox{${\nu}_{\tau}$}}
118\newcommand{\ntb}{\mbox{$\overline{\nu}_{\tau}$}}
119\newcommand{\nub}{\mbox{$\overline{\nu}$}}
120\newcommand{\lsim}{\mbox{\raisebox{-1.ex}
121{$\stackrel{\textstyle <}{\textstyle \sim}$}}}
122\newcommand{\gsim}{\mbox{\raisebox{-1.ex}
123{$\stackrel{\textstyle >}{\textstyle \sim}$}}}
124\newcommand{\sstt}      {\sin^2 2\theta}
125%\newcommand{\dms}       {\Delta m^2}
126\newcommand{\degree}    {^{\circ}}
127
128\newcommand{\ttbs}{\char'134}
129%\newcommand{\AmS}{{\protect\the\textfont2 A\kern-.1667em\lower.5ex\hbox{M}\kern-.125emS}}
130
131\newcommand{\pnuenumu}{\ensuremath{P(\nue \rightarrow \numu)\,}}
132%\newcommand{\pnumunumu}{\ensuremath{p(\numu \rightarrow \numu)\,}}
133\newcommand{\nuenumu}{\ensuremath{\nue \rightarrow \numu\,}}
134\newcommand{\numunutau}{\ensuremath{\numu \rightarrow \nutau\,}}
135\newcommand{\nuenutau}{\ensuremath{\nue \rightarrow \nutau}}
136\newcommand{\nubarenubarmu}{\ensuremath{\overline{\nu}_e \rightarrow \overline{\nu}_\mu\,}}
137\newcommand{\nubarmunubare}{\ensuremath{\overline{\nu}_\mu \rightarrow \overline{\nu}_e\,}}
138\newcommand{\dmot}{\ensuremath{\Delta m^2_{12}\,}}
139\newcommand{\dmtt}{\ensuremath{\Delta m^2_{23} \,}}
140
141\newcommand{\He}{\ensuremath{^6{\mathrm{He}\,}}}
142\newcommand{\Ne}{\ensuremath{^{18}{\mathrm{Ne}\,}}}
143\def\Li{^6{\mathrm{Li}}}
144\def\anue{\overline{{\mathrm\nu}}_{\mathrm e}}
145\def\anumu{\overline{{\mathrm\nu}}_{\mathrm \mu}}
146\newcommand{\thetaot}{\ensuremath{\theta_{13}}\,}
147\newcommand{\thetatt}{\ensuremath{\theta_{23}}\,}
148\newcommand{\numunue}{\ensuremath{\nu_\mu \rightarrow \nu_e}}
149\newcommand{\pnuenue}{\ensuremath{P(\nue \rightarrow \nue)}}
150\newcommand{\pnumunue}{\ensuremath{P(\nu_\mu \rightarrow \nu_e)}}
151\newcommand{\pnumunumu}{\ensuremath{P(\nu_\mu \rightarrow \nu_\mu)}}
152\newcommand{\pnubarenubarmu}{\ensuremath{P(\overline{\nu}_e \rightarrow \overline{\nu}_\mu\)\,}}
153\newcommand{\pnubarmunubare}{\ensuremath{P(\overline{\nu}_\mu \rightarrow \overline{\nu}_e)\,}}
154\newcommand{\dmsun}{\ensuremath{\Delta m^2_{sun}\ }}
155\newcommand{\dmatm}{\ensuremath{\Delta m^2_{atm}}}
156\newcommand{\nueovernumu}{\ensuremath{\nue/\numu}}
157\newcommand{\sigdm}{\ensuremath{{\rm sign}(\Delta m^2_{23})\ }}
158%\newcommand{\delCP}{\ensuremath{\delta_{\rm CP}}}
159\newcommand{\delCP}{\ensuremath{\delta_{\rm CP}\ }}
160
161\newcommand{\stheta}{\sin^22\theta_{13}}
162\newcommand{\deltacp}{\delta_\mathrm{CP}}
163
164\def\He{\ensuremath{^6{\mathrm{He}}}}
165\def\Li{\ensuremath{^6{\mathrm{Li}}}}
166\def\Ne{\ensuremath{^{18}{\mathrm{Ne}}}}
167\def\anue{\ensuremath{\overline{{\mathrm\nu}}_{\mathrm e}}}
168\def\anumu{\ensuremath{\overline{{\mathrm\nu}}_{\mathrm \mu}}}
169\def\numunue{\ensuremath{\mbox{$\nu_\mu \rightarrow \nu  e$}}}
170
171%
172%
173\newcommand{\REDBLA}[1]{\red {#1} \black}
174%
175\def\mc2{\multicolumn{2}{c|}}
176%
177%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
178
179\input{style.tex}
180
181\begin{document}
182
183\bibliographystyle{JHEP}
184
185\begin{titlepage}
186
187%\vspace*{2cm}
188
189\begin{center}
190{\bf \Large MEMPHYS\,:}
191
192\vspace{0.2cm} 
193
194{\bf \Large A large scale water \v{C}erenkov detector at Fr\'ejus}
195
196%\vspace{0.5cm}
197%{\bf Preliminary }
198
199%\vspace{1.5cm}
200%{\bf Contribution to the CERN strategic committee} \\
201%Orsay, 30/01/2006
202\end{center}
203
204\vspace{2.5cm}
205
206\begin{center}
207
208{A. de Bellefon$^{(1)}$,
209J. Bouchez$^{(1)}$$^{(2)}$,
210J. Busto$^{(3)}$,
211J.-E. Campagne$^{(4)}$, \\
212C. Cavata$^{(2)}$, %S. Davidson$^{(5)}$,
213J. Dolbeau$^{(1)}$,
214J. Dumarchez$^{(5)}$,
215P. Gorodetzky$^{(1)}$,
216S. Katsanevas$^{(1)}$, \\
217M. Mezzetto$^{(6)}$
218L. Mosca$^{(2)}$,
219T. Patzak$^{(1)}$, % Joel Pouthas$^{(7)}$,
220P. Salin$^{(1)}$,
221A. Tonazzo$^{(1)}$,
222C. Volpe$^{(7)}$}
223
224\vspace{0.5cm}
225{\it $^{(1)}$ APC Paris \\
226     $^{(2)}$ DAPNIA-CEA Saclay \\
227     $^{(3)}$ CPP Marseille \\
228     $^{(4)}$ LAL Orsay \\
229%     $^{()}$ IPN Lyon \\
230     $^{(5)}$ LPNHE Paris \\
231     $^{(6)}$ INFN Padova \\ 
232     $^{(7)}$ IPN Orsay
233}
234
235
236\end{center}
237\vspace{1.5cm}
238\begin{center}
239{\bf Abstract}\\
240A water \v{C}erenkov detector project, of megaton scale, to be installed
241in the Fr\'ejus underground site and dedicated to nucleon decay,
242neutrinos from supernovae, solar and atmospheric neutrinos, as well as
243neutrinos from a super-beam and/or a beta-beam coming from CERN, is
244presented and compared with competitor projects in Japan and in the
245USA. The performances of the European project are discussed, including
246the possibility to measure the mixing angle $\theta_{13}$ and the
247CP-violating phase $\delta$.
248
249\end{center}
250
251\vspace{2.3cm}
252\end{titlepage}
253
254
255\newpage
256\tableofcontents
257\newpage
258
259\input{motivation}
260
261\newpage
262
263\section{Megaton Physics}
264\input{pdk_phy.tex}
265\input{snv_phy.tex}
266\input{osc_phy.tex}
267
268\newpage
269\input{undlab_detector.tex}
270\input{annex.tex}
271
272
273\newpage
274
275\section{Detector Performance}
276\label{sec:det}
277As mentioned above, we consider a massive water \v{C}erenkov detector
278{\`a} la UNO \cite{uno} and review the performances of such a detector for
279the main physics fields.
280
281\input{pdk_det.tex}
282\input{snv_det.tex}
283\input{osc_det.tex}
284\input{nusolar.tex}
285
286\newpage
287\input{conclusion.tex}
288
289\newpage
290\bibliography{Frejus}
291
292\end{document}
293
294
295
Note: See TracBrowser for help on using the repository browser.