1

R&D direction on horns and target

A.K.Ichikawa

KEK

R&D of Target and Horns are in progress

by Neutrino construction group and Target&Monitor group in KEK.

Especially,

Target

by Y. Hayato with KEK Target&Monitor group lead by Noumi *Horns*

Conceptual design by A. K. Ichikawa

supported by Y. Yamanoi, Y. Suzuki and Target&Monitor group

Brief comments on the target and horns in the MC simulation In the beam MC simulation,

horns proposed in BNL-E889 was used.

- $D_{in} = 1.9 \text{ cm}^{\phi}$, I=250kA
- Sapphire target (Al₂O₃, ρ =4g/cm³) D=0.64 cm, L=45cm c.f. K2K Aluminum D_{in}=3.0cm^{ϕ}, I=250kA

In addition, heat load from radiation

Need realistic design work

Target for K2K

12kJ in 1.1μs
Al 30mm^φ x 660mm (Embedded in the horn)
Heat was generated by the horn-current

Target for J-Parc

2.6MJ in 5µsAluminum cannot withstand.Only low-Z material such as graphite or beryllium.

Graphite w/ water cooling

Density~1.8g/cm³Melting point~3600°CGood thermal conductivityMechanically strong

Target Size

•Pion absorption

•Temperature rise

Time dependence of temperature

 ΔT_{max} ~200°C at center ~40°C

(Thermal convection coefficient on the surface should be larger than ~ 3000 W/m²/K to satisfy <100°C@surface condition.)

by Y. Hayato and M. Minakawa 9

T.Oyabu et al.

Heat convection coefficient btw. graphite and water was measured at various conditions.

E C11 翻 EAS 689 C11 C11 0.00 C 0 3 5 Time (min.)

Cooling Test w/ more realistic setups

By Y. Hayato

By A. K. Ichikawa

Thermal stress Calculation by hand

 $\sigma_{\text{quasi-static}} = 10 \sim 15 \text{MPa}$ $\sigma_{\text{dynamical}} = \sim 8 \text{Mpa}$ Safety factor ~ 3

Stress analysis using FEM just started.

by Y. Hayato

Scaling laws

W/ fixed current,

Inner conductor 4.6cm^{\diamond} I = 250 kA

Target outside the horn

The idea for '1st horn'

J-Parc neutrino Horn System

Flux

Comparison w/o Materials

x 10³

20

Stress

Electromagnetic force on inner conductor

pressure $\propto (\frac{I}{r})^2$

p=2.5MPa @r=28mm c.f. 4.7 MPa for K2K

Allowable stress Aluminum 6061-T6(extrusion) yield strength 282 MPa 10⁸ cycle fatigue strength 69MPa moisture x 0.43 stress ratio x 0.85 allowable stress 25 MPa x f_{weld} Ref. L.Bartoszek MiniBooNE horn review 21 http://www.bartoszekeng.com/mboone/mboone.htm

Example of Possible items expected to Foreign Institute

This is not a perfect list. More discussion is necessary.

Target :

Material itself

(graphite w/ good mechanical property, C-C composit, etc.) Measurement of quality(strength, radiation resistivity, heat conduction etc.) of materials

Horns :

Independent stress analysis

Production of inner conductor

Summary

Target

Base line of the current design is

graphite of 25~30mm^{\u03e8} surrounded by cooling water

In this year, cooling test and examination of various items such as mechanical stress calculation and cooling schemes will be conducted. *Horns*

Base line of the current design is

3 horns with 320kA current.

In this year, conceptual design will be completed and examination of various items such as mechanical stress, cooling and power supply will be conducted.

Heat Load from Radiation

Change the neutrino beam energy

$\Delta m^2 \left[10^{-3} eV^2 \right]$	2.04	2.18	2.75	3.17	3.28
	(90% A.R.)	(80% A.R.)	(best fit)	(80% A.R)	(90 % A.R)
$E_{\nu}[GeV]$	0.487	0.520	0.656	0.756	0.782
OA angle[deg.]	3.1	3.0	2.4	2.1	2.0

Decay Volume

jnubeam : neutrino beam simulation code developed from K2K code

- DV shape : incorporate actual shape
- target & horns : still BNL-type.
- calculation of v-flux at SK for all decays by weighting
- Hadron production model
 - 1. Models built-in Geant3. e.g. GFLUKA..
 - 2. Various models using Input via stdout | stdin.
 - > MARS | jnubeam
 - > FLUKA2000 | jnubeam

Types for the 1st horn

Momentum region of π 's

w/ BNL-type horn, 2.5 ° OAB

 π 's contributing E_v<1.2GeV

