[400] | 1 | \documentclass{article}
|
---|
| 2 | %----------------------------------------------------------------------------
|
---|
| 3 | %
|
---|
| 4 | \usepackage[T1]{fontenc}
|
---|
| 5 | \usepackage[latin1]{inputenc}
|
---|
| 6 | \usepackage{graphicx}
|
---|
| 7 | \usepackage{epsfig}
|
---|
| 8 | \usepackage{amssymb}
|
---|
| 9 | \usepackage{amsmath}
|
---|
| 10 | \usepackage{latexsym}
|
---|
| 11 |
|
---|
| 12 | %----------------------------------------------------------------------------
|
---|
| 13 | \begin{document}
|
---|
| 14 | When $\delta_{CP}= 0^o$ and Matter Effects are neglected then,
|
---|
| 15 | \begin{eqnarray}
|
---|
| 16 | P_{\nu_\mu\rightarrow\nu_e}
|
---|
| 17 | & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\
|
---|
| 18 | & + & (8 c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2)
|
---|
| 19 | \cos \Delta_{23} \sin\Delta_{31} \sin\Delta_{21}
|
---|
| 20 | \end{eqnarray}
|
---|
| 21 | As $\Delta_{23} = \Delta_{21} + \Delta_{13}$ then
|
---|
| 22 | $$
|
---|
| 23 | \cos \Delta_{23} = \cos \Delta_{21} \cos \Delta_{13} - \sin \Delta_{21} \sin \Delta_{13}
|
---|
| 24 | $$
|
---|
| 25 | and in numerical application $\Delta_{21} = 1.27 \delta m^2_{21} L/E \approx O(10^{-2})$. So,
|
---|
| 26 | \begin{eqnarray}
|
---|
| 27 | P_{\nu_\mu\rightarrow\nu_e}
|
---|
| 28 | & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\
|
---|
| 29 | & + & (8 c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2)
|
---|
| 30 | \Delta_{21} \cos \Delta_{13} \sin\Delta_{31}
|
---|
| 31 | \end{eqnarray}
|
---|
| 32 | If one uses $s_{12}^2 = 0.314$ and $s_{23}^2 = 0.44$ then one realizes that in the parenthesis the second term is of the order $s_{13}$ compared to the first term, so it may be neglected hereafter as we will focus on $s_{13} < 10^{-2}$. Then, it yields
|
---|
| 33 | \begin{eqnarray}
|
---|
| 34 | P_{\nu_\mu\rightarrow\nu_e}
|
---|
| 35 | & \simeq & \alpha \cos\beta \sin^2 \Delta_{31} + \alpha \sin\beta \cos \Delta_{13} \sin\Delta_{31}
|
---|
| 36 | \end{eqnarray}
|
---|
| 37 | with
|
---|
| 38 | \begin{eqnarray}
|
---|
| 39 | \alpha \cos\beta & \equiv & 4 c_{13}^2 s_{13}^2 s_{23}^2 \\
|
---|
| 40 | \alpha \sin\beta & \equiv & 8 c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23}
|
---|
| 41 | \end{eqnarray}
|
---|
| 42 | It is remarkable that now the oscillation probability may be written as
|
---|
| 43 | \begin{eqnarray}
|
---|
| 44 | P_{\nu_\mu\rightarrow\nu_e}
|
---|
| 45 | & \simeq & \frac{\alpha}{2}\left[
|
---|
| 46 | \cos\beta - \cos\left( 2\Delta_{13} + \beta\right) \right]
|
---|
| 47 | \end{eqnarray}
|
---|
| 48 | The maximum of the probability is obtained at
|
---|
| 49 | \begin{eqnarray}
|
---|
| 50 | \Delta_{31} & = & \frac{\pi}{2} - \frac{\beta}{2} \\
|
---|
| 51 | \mathrm{with}\ \tan \beta & = & 2 \Delta_{21}\frac{c_{12} s_{12}c_{23} }{ s_{13}s_{23}}
|
---|
| 52 | \end{eqnarray}
|
---|
| 53 | The "usual" 2-famillies case is obtain with $\beta = 0$. In case of $E\sim 0.3$~GeV, $L\sim130$~km and $\sin^22\theta_{13} = 10^{-3}$ then
|
---|
| 54 | \begin{eqnarray}
|
---|
| 55 | \left(\delta m_{31}^2\right)_{max} & = & 2.9\, 10^{-3} \ \mathrm{if} \ \beta = 0 \\
|
---|
| 56 | & = & 1.8\, 10^{-3}
|
---|
| 57 | \end{eqnarray}
|
---|
| 58 |
|
---|
| 59 |
|
---|
| 60 |
|
---|
| 61 |
|
---|
| 62 |
|
---|
| 63 |
|
---|
| 64 | %----------------------------------------------------------------------------
|
---|
| 65 | \end{document}
|
---|