| [400] | 1 | \documentclass{article} | 
|---|
|  | 2 | %---------------------------------------------------------------------------- | 
|---|
|  | 3 | % | 
|---|
|  | 4 | \usepackage[T1]{fontenc} | 
|---|
|  | 5 | \usepackage[latin1]{inputenc} | 
|---|
|  | 6 | \usepackage{graphicx} | 
|---|
|  | 7 | \usepackage{epsfig} | 
|---|
|  | 8 | \usepackage{amssymb} | 
|---|
|  | 9 | \usepackage{amsmath} | 
|---|
|  | 10 | \usepackage{latexsym} | 
|---|
|  | 11 |  | 
|---|
|  | 12 | %---------------------------------------------------------------------------- | 
|---|
|  | 13 | \begin{document} | 
|---|
|  | 14 | When $\delta_{CP}= 0^o$ and Matter Effects are neglected then, | 
|---|
|  | 15 | \begin{eqnarray} | 
|---|
|  | 16 | P_{\nu_\mu\rightarrow\nu_e} | 
|---|
|  | 17 | & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\ | 
|---|
|  | 18 | & +      & (8  c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2) | 
|---|
|  | 19 | \cos \Delta_{23} \sin\Delta_{31} \sin\Delta_{21} | 
|---|
|  | 20 | \end{eqnarray} | 
|---|
|  | 21 | As $\Delta_{23} = \Delta_{21} + \Delta_{13}$ then | 
|---|
|  | 22 | $$ | 
|---|
|  | 23 | \cos \Delta_{23} = \cos \Delta_{21} \cos \Delta_{13} - \sin \Delta_{21} \sin \Delta_{13} | 
|---|
|  | 24 | $$ | 
|---|
|  | 25 | and in numerical application $\Delta_{21} = 1.27 \delta m^2_{21} L/E \approx O(10^{-2})$. So, | 
|---|
|  | 26 | \begin{eqnarray} | 
|---|
|  | 27 | P_{\nu_\mu\rightarrow\nu_e} | 
|---|
|  | 28 | & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\ | 
|---|
|  | 29 | & +      & (8  c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2) | 
|---|
|  | 30 | \Delta_{21}  \cos \Delta_{13} \sin\Delta_{31} | 
|---|
|  | 31 | \end{eqnarray} | 
|---|
|  | 32 | If one uses $s_{12}^2 = 0.314$ and $s_{23}^2 = 0.44$ then one realizes that in the parenthesis the second term is of the order $s_{13}$ compared to the first term, so it may be neglected hereafter as we will focus on $s_{13} < 10^{-2}$. Then, it yields | 
|---|
|  | 33 | \begin{eqnarray} | 
|---|
|  | 34 | P_{\nu_\mu\rightarrow\nu_e} | 
|---|
|  | 35 | & \simeq & \alpha \cos\beta \sin^2 \Delta_{31} + \alpha \sin\beta \cos \Delta_{13} \sin\Delta_{31} | 
|---|
|  | 36 | \end{eqnarray} | 
|---|
|  | 37 | with | 
|---|
|  | 38 | \begin{eqnarray} | 
|---|
|  | 39 | \alpha \cos\beta & \equiv &  4 c_{13}^2 s_{13}^2 s_{23}^2 \\ | 
|---|
|  | 40 | \alpha \sin\beta & \equiv & 8  c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} | 
|---|
|  | 41 | \end{eqnarray} | 
|---|
|  | 42 | It is remarkable that now the oscillation probability may be written as | 
|---|
|  | 43 | \begin{eqnarray} | 
|---|
|  | 44 | P_{\nu_\mu\rightarrow\nu_e} | 
|---|
|  | 45 | & \simeq & \frac{\alpha}{2}\left[ | 
|---|
|  | 46 | \cos\beta - \cos\left( 2\Delta_{13} + \beta\right) \right] | 
|---|
|  | 47 | \end{eqnarray} | 
|---|
|  | 48 | The maximum of the probability is obtained at | 
|---|
|  | 49 | \begin{eqnarray} | 
|---|
|  | 50 | \Delta_{31} & = & \frac{\pi}{2} - \frac{\beta}{2} \\ | 
|---|
|  | 51 | \mathrm{with}\ \tan \beta & = & 2 \Delta_{21}\frac{c_{12} s_{12}c_{23} }{ s_{13}s_{23}} | 
|---|
|  | 52 | \end{eqnarray} | 
|---|
|  | 53 | The "usual" 2-famillies case is obtain with $\beta = 0$. In case of $E\sim 0.3$~GeV, $L\sim130$~km and $\sin^22\theta_{13} = 10^{-3}$ then | 
|---|
|  | 54 | \begin{eqnarray} | 
|---|
|  | 55 | \left(\delta m_{31}^2\right)_{max} & = & 2.9\, 10^{-3} \ \mathrm{if} \ \beta = 0 \\ | 
|---|
|  | 56 | & = & 1.8\, 10^{-3} | 
|---|
|  | 57 | \end{eqnarray} | 
|---|
|  | 58 |  | 
|---|
|  | 59 |  | 
|---|
|  | 60 |  | 
|---|
|  | 61 |  | 
|---|
|  | 62 |  | 
|---|
|  | 63 |  | 
|---|
|  | 64 | %---------------------------------------------------------------------------- | 
|---|
|  | 65 | \end{document} | 
|---|