\documentclass{article} %---------------------------------------------------------------------------- % \usepackage[T1]{fontenc} \usepackage[latin1]{inputenc} \usepackage{graphicx} \usepackage{epsfig} \usepackage{amssymb} \usepackage{amsmath} \usepackage{latexsym} %---------------------------------------------------------------------------- \begin{document} When $\delta_{CP}= 0^o$ and Matter Effects are neglected then, \begin{eqnarray} P_{\nu_\mu\rightarrow\nu_e} & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\ & + & (8 c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2) \cos \Delta_{23} \sin\Delta_{31} \sin\Delta_{21} \end{eqnarray} As $\Delta_{23} = \Delta_{21} + \Delta_{13}$ then $$ \cos \Delta_{23} = \cos \Delta_{21} \cos \Delta_{13} - \sin \Delta_{21} \sin \Delta_{13} $$ and in numerical application $\Delta_{21} = 1.27 \delta m^2_{21} L/E \approx O(10^{-2})$. So, \begin{eqnarray} P_{\nu_\mu\rightarrow\nu_e} & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\ & + & (8 c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2) \Delta_{21} \cos \Delta_{13} \sin\Delta_{31} \end{eqnarray} If one uses $s_{12}^2 = 0.314$ and $s_{23}^2 = 0.44$ then one realizes that in the parenthesis the second term is of the order $s_{13}$ compared to the first term, so it may be neglected hereafter as we will focus on $s_{13} < 10^{-2}$. Then, it yields \begin{eqnarray} P_{\nu_\mu\rightarrow\nu_e} & \simeq & \alpha \cos\beta \sin^2 \Delta_{31} + \alpha \sin\beta \cos \Delta_{13} \sin\Delta_{31} \end{eqnarray} with \begin{eqnarray} \alpha \cos\beta & \equiv & 4 c_{13}^2 s_{13}^2 s_{23}^2 \\ \alpha \sin\beta & \equiv & 8 c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} \end{eqnarray} It is remarkable that now the oscillation probability may be written as \begin{eqnarray} P_{\nu_\mu\rightarrow\nu_e} & \simeq & \frac{\alpha}{2}\left[ \cos\beta - \cos\left( 2\Delta_{13} + \beta\right) \right] \end{eqnarray} The maximum of the probability is obtained at \begin{eqnarray} \Delta_{31} & = & \frac{\pi}{2} - \frac{\beta}{2} \\ \mathrm{with}\ \tan \beta & = & 2 \Delta_{21}\frac{c_{12} s_{12}c_{23} }{ s_{13}s_{23}} \end{eqnarray} The "usual" 2-famillies case is obtain with $\beta = 0$. In case of $E\sim 0.3$~GeV, $L\sim130$~km and $\sin^22\theta_{13} = 10^{-3}$ then \begin{eqnarray} \left(\delta m_{31}^2\right)_{max} & = & 2.9\, 10^{-3} \ \mathrm{if} \ \beta = 0 \\ & = & 1.8\, 10^{-3} \end{eqnarray} %---------------------------------------------------------------------------- \end{document}