source: Backup NB/Talks/NuFact05/Approx.tex @ 409

Last change on this file since 409 was 400, checked in by campagne, 16 years ago
File size: 2.7 KB
Line 
1\documentclass{article}
2%----------------------------------------------------------------------------
3%
4\usepackage[T1]{fontenc}
5\usepackage[latin1]{inputenc}
6\usepackage{graphicx}
7\usepackage{epsfig}
8\usepackage{amssymb}
9\usepackage{amsmath}
10\usepackage{latexsym}
11
12%----------------------------------------------------------------------------
13\begin{document}
14When $\delta_{CP}= 0^o$ and Matter Effects are neglected then,
15\begin{eqnarray}
16        P_{\nu_\mu\rightarrow\nu_e} 
17        & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\
18        & +      & (8  c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2)
19                \cos \Delta_{23} \sin\Delta_{31} \sin\Delta_{21} 
20\end{eqnarray}
21As $\Delta_{23} = \Delta_{21} + \Delta_{13}$ then
22$$
23        \cos \Delta_{23} = \cos \Delta_{21} \cos \Delta_{13} - \sin \Delta_{21} \sin \Delta_{13}
24$$
25and in numerical application $\Delta_{21} = 1.27 \delta m^2_{21} L/E \approx O(10^{-2})$. So,
26\begin{eqnarray}
27        P_{\nu_\mu\rightarrow\nu_e} 
28        & \simeq & 4 c_{13}^2 s_{13}^2 s_{23}^2 \sin^2 \Delta_{31} \\
29        & +      & (8  c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23} - 8 s_{12}^2 c_{13}^2 s_{13}^2 s_{23}^2)
30                \Delta_{21}  \cos \Delta_{13} \sin\Delta_{31} 
31\end{eqnarray}
32If one uses $s_{12}^2 = 0.314$ and $s_{23}^2 = 0.44$ then one realizes that in the parenthesis the second term is of the order $s_{13}$ compared to the first term, so it may be neglected hereafter as we will focus on $s_{13} < 10^{-2}$. Then, it yields
33\begin{eqnarray}
34        P_{\nu_\mu\rightarrow\nu_e} 
35        & \simeq & \alpha \cos\beta \sin^2 \Delta_{31} + \alpha \sin\beta \cos \Delta_{13} \sin\Delta_{31} 
36\end{eqnarray}
37with
38\begin{eqnarray}
39        \alpha \cos\beta & \equiv &  4 c_{13}^2 s_{13}^2 s_{23}^2 \\
40        \alpha \sin\beta & \equiv & 8  c_{12} s_{12} c_{13}^2 s_{13} s_{23} c_{23}
41\end{eqnarray}
42It is remarkable that now the oscillation probability may be written as
43\begin{eqnarray}
44        P_{\nu_\mu\rightarrow\nu_e} 
45        & \simeq & \frac{\alpha}{2}\left[
46         \cos\beta - \cos\left( 2\Delta_{13} + \beta\right) \right
47\end{eqnarray}
48The maximum of the probability is obtained at
49\begin{eqnarray}
50\Delta_{31} & = & \frac{\pi}{2} - \frac{\beta}{2} \\
51\mathrm{with}\ \tan \beta & = & 2 \Delta_{21}\frac{c_{12} s_{12}c_{23} }{ s_{13}s_{23}}
52\end{eqnarray}
53The "usual" 2-famillies case is obtain with $\beta = 0$. In case of $E\sim 0.3$~GeV, $L\sim130$~km and $\sin^22\theta_{13} = 10^{-3}$ then
54\begin{eqnarray}
55\left(\delta m_{31}^2\right)_{max} & = & 2.9\, 10^{-3} \ \mathrm{if} \ \beta = 0 \\ 
56                                                                                                                         & = & 1.8\, 10^{-3}
57\end{eqnarray}
58
59
60
61 
62
63
64%----------------------------------------------------------------------------
65\end{document}
Note: See TracBrowser for help on using the repository browser.