source: Backup NB/Talks/NuFact05/NuFact05.tex @ 400

Last change on this file since 400 was 400, checked in by campagne, 16 years ago
File size: 11.4 KB
Line 
1%\documentclass[epj,nopacs,referee]{svjour}
2%remove referee for final version
3\documentclass[fleqn,twoside]{article}
4\usepackage{espcrc2}
5%----------------------------------------------------------------------------
6%
7\usepackage[T1]{fontenc}
8\usepackage[latin1]{inputenc}
9\usepackage{graphicx}
10\usepackage{epsfig}
11\usepackage{amssymb}
12\usepackage{amsmath}
13\usepackage{latexsym}
14%
15\newcommand{\centre}[2]{\multispan{#1}{\hfill #2\hfill}}
16\newcommand{\dotted}{\protect\mbox{${\mathinner{\cdotp\cdotp\cdotp\cdotp\cdotp\cdotp}}$}}
17\newcommand{\dashed}{\protect\mbox{- - - -}}
18\newcommand{\broken}{\protect\mbox{-- -- --}}
19\newcommand{\longbroken}{\protect\mbox{--- --- ---}}
20\newcommand{\chain}{\protect\mbox{--- $\cdot$ ---}}
21\newcommand{\dashddot}{\protect\mbox{--- $\cdot$ $\cdot$ ---}}
22\newcommand{\full}{\protect\mbox{------}}
23%
24% abbreviations for IOPP journals
25%
26\newcommand{\CQG}{{\it Class. Quantum Grav.} }
27\newcommand{\CTM}{{\it Combust. Theory Modelling\/} }
28\newcommand{\DSE}{{\it Distrib. Syst. Engng\/} }
29\newcommand{\EJP}{{\it Eur. J. Phys.} } 
30\newcommand{\HPP}{{\it High Perform. Polym.} }              % added 4/5/93
31\newcommand{\IP}{{\it Inverse Problems\/} }
32\newcommand{\JHM}{{\it J. Hard Mater.} }                    % added 4/5/93
33\newcommand{\JO}{{\it J. Opt.} }
34\newcommand{\JOA}{{\it J. Opt. A: Pure Appl. Opt.} }
35\newcommand{\JOB}{{\it J. Opt. B: Quantum Semiclass. Opt.} }
36\newcommand{\JPA}{{\it J. Phys. A: Math. Gen.} }
37\newcommand{\JPB}{{\it J. Phys. B: At. Mol. Phys.} }      %1968-87
38\newcommand{\jpb}{{\it J. Phys. B: At. Mol. Opt. Phys.} } %1988 and onwards
39\newcommand{\JPC}{{\it J. Phys. C: Solid State Phys.} }   %1968--1988
40\newcommand{\JPCM}{{\it J. Phys.: Condens. Matter\/} }    %1989 and onwards
41\newcommand{\JPD}{{\it J. Phys. D: Appl. Phys.} }
42\newcommand{\JPE}{{\it J. Phys. E: Sci. Instrum.} }
43\newcommand{\JPF}{{\it J. Phys. F: Met. Phys.} }
44\newcommand{\JPG}{{\it J. Phys. G: Nucl. Phys.} }         %1975--1988
45\newcommand{\jpg}{{\it J. Phys. G: Nucl. Part. Phys.} }   %1989 and onwards
46\newcommand{\MSMSE}{{\it Modelling Simulation Mater. Sci. Eng.} }
47\newcommand{\MST}{{\it Meas. Sci. Technol.} }                 %1990 and onwards
48\newcommand{\NET}{{\it Network: Comput. Neural Syst.} }
49\newcommand{\NJP}{{\it New J. Phys.} }
50\newcommand{\NL}{{\it Nonlinearity\/} }
51\newcommand{\NT}{{\it Nanotechnology} }
52\newcommand{\PAO}{{\it Pure Appl. Optics\/} }
53\newcommand{\PM}{{\it Physiol. Meas.} }                        % added 4/5/93
54\newcommand{\PMB}{{\it Phys. Med. Biol.} }
55\newcommand{\PPCF}{{\it Plasma Phys. Control. Fusion\/} }      % added 4/5/93
56\newcommand{\PSST}{{\it Plasma Sources Sci. Technol.} }
57\newcommand{\PUS}{{\it Public Understand. Sci.} }
58\newcommand{\QO}{{\it Quantum Opt.} }
59\newcommand{\QSO}{{\em Quantum Semiclass. Opt.} }
60\newcommand{\RPP}{{\it Rep. Prog. Phys.} }
61\newcommand{\SLC}{{\it Sov. Lightwave Commun.} }               % added 4/5/93
62\newcommand{\SST}{{\it Semicond. Sci. Technol.} }
63\newcommand{\SUST}{{\it Supercond. Sci. Technol.} }
64\newcommand{\WRM}{{\it Waves Random Media\/} }
65\newcommand{\JMM}{{\it J. Micromech. Microeng.\/} }
66%
67% Other commonly quoted journals
68%
69\newcommand{\AC}{{\it Acta Crystallogr.} }
70\newcommand{\AM}{{\it Acta Metall.} }
71\newcommand{\AP}{{\it Ann. Phys., Lpz.} }
72\newcommand{\APNY}{{\it Ann. Phys., NY\/} }
73\newcommand{\APP}{{\it Ann. Phys., Paris\/} }
74\newcommand{\CJP}{{\it Can. J. Phys.} }
75\newcommand{\JAP}{{\it J. Appl. Phys.} }
76\newcommand{\JCP}{{\it J. Chem. Phys.} }
77\newcommand{\JJAP}{{\it Japan. J. Appl. Phys.} }
78\newcommand{\JP}{{\it J. Physique\/} }
79\newcommand{\JPhCh}{{\it J. Phys. Chem.} }
80\newcommand{\JMMM}{{\it J. Magn. Magn. Mater.} }
81\newcommand{\JMP}{{\it J. Math. Phys.} }
82\newcommand{\JOSA}{{\it J. Opt. Soc. Am.} }
83\newcommand{\JPSJ}{{\it J. Phys. Soc. Japan\/} }
84\newcommand{\JQSRT}{{\it J. Quant. Spectrosc. Radiat. Transfer\/} }
85\newcommand{\NC}{{\it Nuovo Cimento\/} }
86\newcommand{\NIM}{{\it Nucl. Instrum. Methods\/} }
87\newcommand{\NP}{{\it Nucl. Phys.} }
88\newcommand{\PL}{{\it Phys. Lett.} }
89\newcommand{\PR}{{\it Phys. Rev.} }
90\newcommand{\PRL}{{\it Phys. Rev. Lett.} }
91\newcommand{\PRS}{{\it Proc. R. Soc.} }
92\newcommand{\PS}{{\it Phys. Scr.} }
93\newcommand{\PSS}{{\it Phys. Status Solidi\/} }
94\newcommand{\PTRS}{{\it Phil. Trans. R. Soc.} }
95\newcommand{\RMP}{{\it Rev. Mod. Phys.} }
96\newcommand{\RSI}{{\it Rev. Sci. Instrum.} }
97\newcommand{\SSC}{{\it Solid State Commun.} }
98\newcommand{\ZP}{{\it Z. Phys.} }
99
100\newcommand{\etal}{{et al.\/}}
101%
102%
103
104\title{The SPL-Fréjus physics potential}
105
106\author{Jean-Eric Campagne\address{Laboratoire de l'Accélérateur Linéaire -
107Univ. Paris-Sud - CNRS - BP 34 -
10891898 Orsay Cedex, France}}
109
110%----------------------------------------------------------------------------
111\begin{document}
112%
113%
114\begin{abstract}
115An optimization of the CERN-SPL beam line has been performed which leads to better sensitivities to the $\theta_{13}$ mixing angle and to the $\delta_{CP}$ violating phase than those advocated considering baseline scenario.
116%\pacs{14.60.Pq, 14.60.Lm}
117\end{abstract}
118
119\maketitle
120
121\section{Introduction}
122%
123An optimization of the energy as well as the secondary particle focusing and decay tunnel has been undertaken in the context of a Super Beam of 4~MW \cite{JECACLAL} using the CERN-SPL \cite{SPL} and searching for $\nu_\mu \rightarrow \nu_e$ ($\bar{\nu}_\mu \rightarrow \bar{\nu}_e$) appearance channels in a 440~kT fiducial volume water Cerenkov detector located in an possible new underground laboratory at the Fréjus tunnel, 130~km from the CERN complex.
124%
125\section{Fluxes}
126%
127The secondary particles from the interaction of proton beam impinging a 30~cm long 1.5~cm diameter mercury target, have been obtained with the FLUKA generator. At kinetic energy of 3.5 (2.2)~GeV, the number of p.o.t per year is 0.69 (1.10) $10^{23}$ while the numbers of $\pi^+/\pi^-/K^+/K^o$ per p.o.t are $0.41/0.37/35 10^{-4}/30 10^{-4}$ ($0.24/0.18/7 10^{-4}/6 10^{-4}$). At higher beam energy, the kaon rates grow rapidly compared to the pion rates,  and needless to emphasize the need of an experimental confirmation \cite{HARP,MINERVA} of such numbers.
128
129The focusing system optimized in the context of a Neutrino Factory \cite{SIMONE1,DONEGA} has been redesigned considering the specific requirements of a Super Beam. The most important points are the phase spaces that are covered by the two types of horns are different, and that the pions to be focused should have an energy of the order of $p_\pi (\mathrm{MeV})/3 \approx E_\nu \gtrsim  2L(\mathrm{km})$ to obtain a maximum oscillation probability. In practice, this means that one should collect $800$~MeV/c pions.
130%
131%\begin{table}
132%\centering
133%\caption{\label{tab:nbPart}Average numbers of the most relevant secondary particles exiting the $30$~cm long, $1.5$~cm diameter mercury target per incident proton (FLUKA).}
134%\begin{tabular}{@{}l*{15}{l}}
135%\hline\noalign{\smallskip}
136%$E_k$ (GeV) &     p.o.t/y        & $\pi^+$ & $\pi^-$ & $K^+$ & $K^0$ \\
137%            & $\times 10^{23}$ &         &         & \multicolumn{2}{c}{$\times 10^{-4}$} \\
138%\noalign{\smallskip}\hline\noalign{\smallskip}
139%$2.2$ & $1.10$  &  $0.24$   &  $0.18$ &   $7$ &   $6$ \\
140%$3.5$ & $0.69$  &  $0.41$   &  $0.37$ &  $35$ &  $30$ \\
141%$4.5$ & $0.54$  &  $0.57$   &  $0.39$ &  $93$ &  $68$ \\
142%$8.0$ & $0.30$  &  $1.00$   &  $0.85$ & $413$ & $340$ \\
143% \noalign{\smallskip}\hline
144%\end{tabular}
145%\end{table}
146%
147The resulting fluxes for the positive ($\nu_\mu$ beam) and the negative focusing ($\bar{\nu}_\mu$ beam) are show on figure \ref{fig:fluxComparison}. The total number of $\nu_\mu$ ($\bar{\nu}_\mu$) in positive (negative) focusing is about $1.18 (0.97) 10^{12}/\mathrm{m}^2/\mathrm{yr}$ with an average energy of $300$~MeV. The $\nu_e$ ($\bar{\nu}_\mu$) contamination in the $\nu_\mu$ beam is around $0.7\%$ ($6.0\%$). Compared to  the fluxes used in references \cite{MEZZETTONF02,DONINI04} the gain is at least a factor $2.5$. Using neutrino cross-sections on water \cite{LIPARIxsec}, the number of expected $\nu_\mu$ charged current is about $95$ per kT.yr.
148%
149\begin{figure}
150\centering
151\includegraphics[height=60mm]{OptiVsOldFlux.eps}
152\caption{\label{fig:fluxComparison}The $\nu_\mu$ and the $\bar{\nu}_\mu$ fluxes obtained by optimizing the SPL for a Super Beam case ("SB Opt.") are compared to those obtained with a focusing system designed for a Neutrino Factory ("NF Opt.").}
153\end{figure}
154%
155\section{Physics potential}
156%
157The physics potential of the new optimized SPL may be determined using GLoBES software \cite{GLOBES}. Both the appearance and the disappearance channels have been used, and also five bins of 200~MeV each have been introduced. The $\pi^o$ background have been rejected using a tighter PID cut compared to standard SuperK analysis \cite{MEZZETTONF02}. The Michel electron has been required for the $\mu$ identification. As ultimate goal suggested by \cite{T2K} a 2\% systematical error is used both for signal and background.
158
159The $90\%$ CL sensitivity contour in the ($\Delta m^2_{31}$,$\sin^22\theta_{13}$) plane after 5 years running with a positive focusing is shown on figure \ref{fig:SPLDmTheta13Comparison}. With the new optimized setup, one expects to reach a limit on $\theta_{13}$ of $0.7^o$.
160%
161\begin{figure}
162\centering
163\includegraphics[height=60mm]{compareOldNewthetaDm.eps}
164\caption{\label{fig:SPLDmTheta13Comparison}Comparison of the sensitivity contours with the new optimized setup and the original SPL design after 5 years of running with positive focusing.}
165\end{figure}
166%
167One may also appreciate on figure \ref{fig:SPLCPSensi} the improvement on the combined sensitivity of $\sin^22\theta_{13}$ and $\delta_{CP}$ with the new optimization compared for instance to the T2K project \cite{T2K}.
168
169\begin{figure}
170\centering
171\includegraphics[height=60mm]{deltaThetaSens5yOldNew.eps}
172\caption{\label{fig:SPLCPSensi}Comparison of the sensitivity on combined $\theta_{13}$ and $\delta_{CP}$ after 5 years of positive focusing. The T2K sensitivity contour has been derived from  reference \cite{T2K}. No mass hierarchy nor octant hierarchy ambiguity has been considered.}
173\end{figure}
174%
175
176So, the optimized SPL beam line operating a Super Beam towards a megaton scale detector at the Fréjus tunnel has a great potential contrary to the strong statement advocated at the last SPSC/PSC Villars meeting \cite{VILLARS}.
177%
178
179\begin{thebibliography}{99}
180%
181\bibitem{JECACLAL}
182J.E Campagne and A. Cazes, LAL-04-102, arXiv:hep-ex/405002 submitted to \EJP
183
184\bibitem{SPL}
185SPL Conceptual Design, CERN 2000-012
186
187\bibitem{HARP}
188C. Catanesi \etal, CERN-SPSC 2002/019
189
190\bibitem{MINERVA} 
191D. Drakoulakos \etal, Fermilab P-938, arXiv:hep-ex/405002
192
193\bibitem{SIMONE1}
194S.~Gilardoni \etal, AIP Conf.\ Proc.\  {\bf 721} (2004) 334.
195
196\bibitem{DONEGA}
197A. Blondel \etal, CERN-NUFACT-Note-78 (2001)
198 
199\bibitem{MEZZETTONF02}
200M. Mezzetto,  \jpg {\bf 29}, 1781-1784 (2003), arXiv:hep-ex/0302005
201
202\bibitem{DONINI04}
203A. Donini \etal, IFT-UAM/CSIC-04-30  (2004), arXiv:hep-ph/0406132
204 
205\bibitem{LIPARIxsec}
206P.~Lipari, M.~Lusignoli and F.~Sartogo,
207  %``The Neutrino cross-section and upward going muons,''
208  \PRL {\bf 74} (1995) 4384, arXiv:hep-ph/9411341
209
210\bibitem{GLOBES}
211P. Hubert, M. Lindner and W. Winter, arXiv:hep-ph/0407333,
212Comput.Phys.Commun. 167 (2005) 195.
213
214\bibitem{T2K}
215T. Kobayashi, \NP B  143  (Proc. Supp.) (2005) 303
216
217\bibitem{VILLARS}
218CERN SPSC and PS Committee, CERN-SPSC-2005-010, SPSC-M-730
219%
220\end{thebibliography}
221%
222\end{document}
223
Note: See TracBrowser for help on using the repository browser.