//std #include #include #include #include #include #include #include //Globes #include // AIDA : #include #include #include #include #include #include /* Sensibility to delta and theta_13 Theta_13=0 and Delta=0 for the true value of the reference experiment use glbChiDeltaTheta to marginalized other all parameters except of the current delta and theta 24/10/05 (JEC) . transfert the #defined variables to Data Cards . polish the code */ float TH12, TH23,DMQ21,DMQ31; //theta12,theta23,Dm^2_21,Dm^2_31 //The true value Theta13 and Delta_CP #define TH13_0 0.0 #define DELTA_0 0.0 int ND; //number of bins to scan delta parameter [-pi,+pi] int NTH; //number of bins to scan theta13 parameter float LOG10MIN; //minimal Log10(sin^2(2theta13)) float LOG10MAX; //minimal Log10(sin^2(2theta13)) /**************************************/ /* main */ /**************************************/ int main(int argc, char *argv[]) { //Process data card file std::string ROOTDIR = getenv("GLBFREJUSROOT"); std::string DATACARD; DATACARD = ROOTDIR + "/run/sensi.data"; std::ifstream fileDataCard; std::cout << "Open DataCard file : " << DATACARD <> DUMMYSTR >> TH12; std::cout << DUMMYSTR << TH12 << std::endl; fileDataCard >> DUMMYSTR >> TH23; std::cout << DUMMYSTR << TH23 << std::endl; fileDataCard >> DUMMYSTR >> DMQ21; std::cout << DUMMYSTR << DMQ21 << std::endl; fileDataCard >> DUMMYSTR >> DMQ31; std::cout << DUMMYSTR << DMQ31 << std::endl; fileDataCard >> DUMMYSTR >> ROOTFILENAME; ROOTFILENAME += ".root"; std::cout << DUMMYSTR <> DUMMYSTR >> ND; std::cout << DUMMYSTR << ND << std::endl; fileDataCard >> DUMMYSTR >> NTH; std::cout << DUMMYSTR << NTH << std::endl; fileDataCard >> DUMMYSTR >> LOG10MIN; std::cout << DUMMYSTR << LOG10MIN << std::endl; fileDataCard >> DUMMYSTR >> LOG10MAX; std::cout << DUMMYSTR << LOG10MAX << std::endl; //init AIDA for Histo/Tuple AIDA::IAnalysisFactory* aida = AIDA_createAnalysisFactory(); if(!aida) { std::cerr << " AIDA not found." << std::endl; return 0; } //ROOT tree : AIDA::ITreeFactory* treeFactory = aida->createTreeFactory(); std::string opts = "export=root"; AIDA::ITree* fTree = treeFactory->create(ROOTFILENAME,"root",false,true,opts); delete treeFactory; //Booking Tuple AIDA::ITupleFactory* tf = aida->createTupleFactory(*fTree); int NumberOfColumn = 7; std::vector column(NumberOfColumn); const char* c_column[] = {"theta12", "theta13", "theta23", "deltaCP", "dm21", "dm31", "chi2"}; std::vector coltype(NumberOfColumn); const char* c_coltype[] = {"double","double","double", "double","double","double", "double"}; for (int icol = 0; icolcreate("SplGlb","Delta-Theta sensibility",column,coltype); //Init Globes glbInit(argv[0]); glbInitExperiment("../data/SPL.glb", &glb_experiment_list[0], &glb_num_of_exps); // true values (reference for future Chi2 computations) glb_params true_values = glbAllocParams(); glbDefineParams(true_values, TH12, TH13_0, TH23, DELTA_0, DMQ21, DMQ31); glbPrintParams(stdout,true_values); glbSetOscillationParameters(true_values); glbSetRates(); // set Starting Values glb_params start_values = glbAllocParams(); glbDefineParams(start_values, TH12, TH13_0, TH23, DELTA_0, DMQ21, DMQ31); glbSetStartingValues(start_values); glbPrintParams(stdout,start_values); glbFreeParams(start_values); // init test values glb_params test_values = glbAllocParams(); glbDefineParams(test_values, TH12, TH13_0, TH23, DELTA_0, DMQ21, DMQ31); glbPrintParams(stdout,test_values); // input errors // 5% on Solar parameters, the atmospheric parameters are // better determined by disappearence channels here 30% to drive the // minimizer glb_params input_errors = glbAllocParams(); glbDefineParams(input_errors, TH12*0.05, 0., TH23*0.30, 0., DMQ21*0.05, fabs(DMQ31)*0.30); glbSetDensityParams(input_errors, 0.05, GLB_ALL); glbSetInputErrors(input_errors); glb_params fit_values = glbAllocParams(); //final minimization std::cout << "Start to loop...." << std::endl; double res; double fit_theta12, fit_theta13,fit_theta23,fit_deltaCP,fit_dmSol,fit_dmAtm; double delta, log10s2, sq2th, th; for(int j = 0; j < ND; j++) { //scan de -Pi a +Pi pour delta_CP delta = -M_PI + 2.0 * M_PI * double(j) / (ND-1); glbSetOscParams(test_values, delta, GLB_DELTA_CP); for(int k = 0; k < NTH; k++) { log10s2 = LOG10MIN + (LOG10MAX-LOG10MIN) * double(k) / (NTH-1); sq2th = pow(10.,log10s2); th = 0.5 * asin(sqrt(sq2th)); glbSetOscParams(test_values, th, GLB_THETA_13); std::cout << "Consider (k,j) = (" << k << "," << j << ")" << std::endl; //Param correlation res = glbChiThetaDelta(test_values,fit_values,0); //For sensitivity plot store the outcome of the fit fit_theta12 = glbGetOscParams(fit_values, GLB_THETA_12); fit_theta13 = glbGetOscParams(fit_values, GLB_THETA_13); fit_theta23 = glbGetOscParams(fit_values, GLB_THETA_23); fit_deltaCP = glbGetOscParams(fit_values, GLB_DELTA_CP); fit_dmSol = glbGetOscParams(fit_values, GLB_DM_SOL); fit_dmAtm = glbGetOscParams(fit_values, GLB_DM_ATM); myTuple->fill(0,fit_theta12); myTuple->fill(1,fit_theta13); myTuple->fill(2,fit_theta23); myTuple->fill(3,fit_deltaCP); myTuple->fill(4,fit_dmSol); myTuple->fill(5,fit_dmAtm); myTuple->fill(6,res); myTuple->addRow(); // std::cout << "Theta_12(rad) " << fit_theta12 << " " // << "Theta_13(rad) " << fit_theta13 << " " // << "Theta_23(deg) " << fit_theta23*180./M_PI << " " // << "Delta_CP(deg) " << fit_deltaCP*180./M_PI << " " // << "DM_21 " << fit_dmSol << " " // << "DM_31 " << fit_dmAtm << " " // << "Chi2 (fin) " << res // << std::endl; }//Loop on Theta13 }//Loop on DeltaCP glbFreeParams(true_values); glbFreeParams(test_values); glbFreeParams(fit_values); //save Tuple fTree->commit(); delete fTree; delete aida; return 0; }