source: Selma/PARISROC/parisroc-jinst.tex @ 482

Last change on this file since 482 was 482, checked in by conforti, 15 years ago
File size: 48.3 KB
Line 
1\documentclass{JINST}
2\usepackage[pdftex]{graphicx}
3\graphicspath{{figures/}}
4\usepackage[figuresright]{rotating}
5%\usepackage{graphicx}
6%\usepackage[T1]{fontenc}
7\usepackage{eurosym}
8%\usepackage{rotating}
9%\usepackage[dvips]{color}
10
11
12%used explicitly in the text
13\newcommand{\refTab}[1]{Tab.~\ref{#1}}
14\newcommand{\refFig}[1]{Fig.~\ref{#1}}
15\newcommand{\refSec}[1]{Sec.~\ref{#1}}
16
17
18
19
20\title{PARISROC, a Photomultiplier Array Integrated Readout Chip.}
21%
22
23\author{Selma Conforti Di Lorenzo$^a$, J. E Campagne$^a$, Christophe De La Taille$^a$, Sebastien Drouet$^b$, Dominique Duchesneau$^c$, Frederic Dulucq$^a$, Nicolas Dumon-Dayot$^c$, Abdelmowafak El Berni$^a$, Alexandre Gallas$^a$, Bernard Genolini$^b$, Kael Hanson$^d$, Richard Hermel$^c$, Gisele Martin-Chassard$^a$, T. Nguyen Trung$^b$, Jean Peyré$^b$, Joël Pouthas$^b$, Emmanuel Rindel$^b$, Philippe Rosier$^b$, Jean Tassan Viol$^c$, Eric Wanlin$^b$, Wei Wei$^e$, Xiongbo Yan$^e$, Beng Yun Ki$^b$, A. Zghiche$^c$.\\
24\\
25\llap{$^a$}Laboratoire de l'Accélérateur Linéaire,IN2P3-CNRS, Université Paris-Sud 11,
26Bât. 200, 91898 Orsay Cedex, France\\
27\llap{$^b$}Institut de Physique Nucléaire d'Orsay,
28IN2P3-CNRS, Université Paris-Sud, 91406 Orsay Cedex, France\\
29\llap{$^c$}Laboratoire d'Annecy-le-vieux de Physique des Particules
30IN2P3-CNRS,Université de Haute Savoie\\
31\llap{$^d$}Université Libre de Bruxelles,
32Université d'Europe Bruxelles\\
33\llap{$^e$}IHEP,
34Beijing, China\\
35
36E-mail: \email{conforti@lal.in2p3.fr}}
37
38
39
40
41\abstract{
42PARISROC is a complete read
43out chip, in AMS SiGe 0.35 \begin{math}\mu{}\end{math}m technology
44\cite{ref1}
45%[1]
46, for photomultipliers array. It allows triggerless acquisition for
47next generation neutrino experiments and it belongs to an R\&D program
48funded by French national agency for research (ANR) called
49PMm2: "`Innovative electronics for photodetectors array
50used in High Energy Physics and Astroparticles"'
51\cite{ref2}
52%[2]
53(ref.ANR-06-BLAN-0186). The ASIC integrates 16 independent and auto
54triggered channels with variable gain and provides charge and time
55measurement by a 12-bit ADC and a 24-bit Counter. The charge
56measurement should be performed from 1 up to 300 pe with a good
57linearity. The time measurement allowed to a coarse time with a 24-bit
58counter at 10 MHz and a fine time on a 100ns ramp to achieve a
59resolution of 1 ns. The ASIC sends out only the relevant data through
60network cables to the central data storage.
61}%end of abstract
62
63%\pacs{13.30.a,14.20.Dh,14.60.Pq,26.65.t+,29.40.Gx,29.40.Ka,29.40.Mc,95.55.Vj,95.85.Ry,
64%97.60.Bw}
65
66%\submitto{Journal of Instrumentation}
67
68\keywords{Keyword1; Keyword2; Keyword3}
69
70\begin{document}
71%use BST file provided by SPIRES for JHEP and modify it to forbid "to lower case" title
72\bibliographystyle{Campagne}
73%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74\section{Introduction}
75\label{sec:Intro}
76%%%%%%%%%%%%%%%%%%%%%%
77The PMm2 project: "`Innovative electronics for
78photodetectors array used in High Energy Physics and
79Astroparticles"' \cite{ref2}
80%[2]
81proposes to segment the large surface of photodetection in macro
82pixel consisting of an array of 16 photomultipliers connected to an
83autonomous front-end electronics (\refFig{fig:1}) and powered by a common High
84Voltage. These large detectors are used in next generation proton decay
85and neutrino experiment (i.e. the post-SuperKamiokande detectors as
86those that will take place in megaton size water tanks) and will
87require very large surfaces of photo detection and a large volume of
88data. The micro-electronics group's (OMEGA from the LAL at Orsay)
89purpose is the front-end electronics conception and
90realization. This R\&D \cite{ref2}
91%[2]
92involves three French laboratories (LAL Orsay, LAPP Annecy, IPN
93Orsay) and ULB Bruxells for the DAQ. It is funded for three years by
94the French National Agency for Research (ANR) under the reference
95ANR-06-BLAN-0186.
96
97
98LAL Orsay is in charge of the design and tests of the readout chip
99named PARISROC which stands for Photomultiplier ARrray Integrated in
100Si-Ge Read Out Chip.
101
102\begin{figure}[!htbp]
103\begin{center}
104\includegraphics[width=0.5\columnwidth,height=10cm]{img1.jpg}
105\caption{Principal of PMm2 proposal for megaton scale Cerenkov water
106tank.}
107\label{fig:1}
108\end{center}
109\end{figure}
110
111The detectors such as SuperKamiokande, are large tanks covered by a
112significant number of large photomultipliers (20"),
113the next generation neutrino experiments will require a bigger surface
114of photo detection and thus more photomultipliers. As a consequence the
115total cost has an important relief \cite{ref1}.
116The project proposes to use 12" PMts with an improved cost ( by factor of 1.6 in comparison to 20 ") per unit of surface area and detected p.e (cost/QE*CE). This is mainly due to the different industrial fabrication of the PMTs, the better photon detection efficiency and a better reliability.
117The reduced costs are, also, due to:
118
119\begin{itemize}
120        \item A smaller number of electronics, thanks to the 16 PMTs macropixel with
121a common electronics, even if it induces more electronic channels;
122        \item A common High Voltage for the 16 PMTs so a reduced number of
123underwater cables, cables  that are also used to brought the DATA to
124the surface;
125        \item The front-end closed to the PMTs that allow a suppression of
126underwater connector.
127\end{itemize}
128
129The general principle of PMm2 project is that the ASIC and a FPGA
130manage the dialog between the PMTs and the surface controller (\refFig{fig:2}).
131Alternative options may be chosen considering an analysis of the risks of this
132full underwater strategy,one of these is that the Front-End electronics can be used
133in a traditional schema with the electronic "in surface".
134PARISROC can be perfectly integrated in a surface scheme.
135
136\begin{center}
137\begin{figure}[!!htbp]
138\includegraphics[width=0.7\columnwidth,height=6cm]{img2.jpg}
139\caption{Principle of the PMm2 project.}
140\label{fig:2}
141\end{figure}
142\end{center}
143
144\section{PARISROC architecture}
145\label{sec:PARISROCArchi}
146%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
147\subsection{Requirements}
148\label{ssec:Requirements}
149%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
150The physics events, researched in this detectors, produce Cerenkov light that is spread over the PMTs. The number of events in this kind of experiences is "rare" and the number of pe per Mev deposed in the water is of 10pe/MeV on one circular scheme over 10000 PMTs. So for few MeV events the small number of p.e is spread over a large number of PMTs and as consequence is necessary being fully efficient to detect a single photo-electron (p.e).
151For large energy events (such as supernova events) it is shown, in Superkamiokande experiment, that the dynamic range for a single PM should cover up to few hundred p.e (300pe).
152All the type of events considered must be registered without any direct external trigger, this later is called 'triggerless mode'.
153A precise time stamp of each event is required to reconstruct the topology of the events and so to synchronize the events among PMTs in each array and among the different arrays.
154This aspect brought to an requirement: an electronic with full independent channels.
155The most demanding in term of timing is the vertex reconstruction that needs typically 1 ns resolution.
156The pe, reached by the PMTs, are multiplied with a gain G of 3*106; this value is owed to a cost reason. The array of PMTs is not homogeneous in terms of gain because of the common HV. A better homogeneity should have brought to an increasing of the costs.
157It was estimate from a study that the gain dispersion at a given voltage is such that the ratio between the highest and the lowest gain is not more than 12. It is possible for the manufacturer to sort the PMTs at a reasonable cost when they are produced at a very large scale: the gain ratio can be reduced ton 6 in a batch of 16 PMTs.
158To compensate this not homogeneity a preamplifier with a variable and adjustable gain is required (structure explain in the next section.
159Finally the electronic requirements must be:
160\begin{itemize}
161        \item 1pe of efficiency
162        \item triggerless       
163        \item 1ns of time resolution
164        \item high granularity
165        \item scalability
166        \item low cost
167        \item independent channels
168        \item charge and time measurement
169        \item water-tight, common High Voltage
170        \item only one wire out (DATA + VCC)
171\end{itemize}
172
173%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
174%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
175\subsection{Analogue Channel description and simulations}
176\label{ssec:AnalogChannel}
177%%%%%%%%%%%%%%%%%%%%%%%%%%%
178The ASIC Parisroc is composed of 16 analogue channels managed by a
179common digital part (\refFig{fig:3}).
180
181\begin{center}
182\begin{figure}[!htbp]
183\includegraphics[width=0.7\columnwidth,height=6cm]{img3.jpg}
184\caption{PARISROC global schematic.}
185\label{fig:3}
186\end{figure}
187\end{center}
188
189Each analog channel is made of a low noise preamplifier with variable and adjustable gain. 
190The variable gain is common for all channels and it can change on 4 bits thanks to the input variable capacitance
191(Cin from 1 to 4 pF). The gain is also tuneable channel by channel, to adjust the input detector not homogeneous gains,
192on 8 bit thanks to a feedback variable capacitance (Cf from 1 to 0.007pF with step of 1/2).
193The gain (G=Cin/Cf) can be adjustable on 8 bit for each channel.
194The preamplifier is followed by a slow channel for the charge
195measurement in parallel with a fast channel for the trigger output.
196
197The slow channel is made by a slow shaper followed by an analogue
198memory with a depth of 2 to provide a linear charge measurement up to
19950~pC; this charge is converted by a 12-bits Wilkinson ADC. One follower
200OTA is added to deliver an analogue multiplexed charge measurement.
201
202The fast channel consists in a fast shaper (15~ns) followed by 2 low
203offset discriminators to auto-trig down to 50~fC. The thresholds are
204loaded by 2 internal 10-bit DACs common for the 16 channels and an
205individual 4bit DAC for one discriminator. The 2 discriminator outputs
206are multiplexed to provide only 16 trigger outputs. Each output trigger
207is latched to hold the state of the response until the end of the clock
208cycle. It is also delayed to open the hold switch at the maximum of the
209slow shaper. An "`OR"' of the 16 trigger gives a 17th output.
210
211
212For each channel, a fine time measurement is made by an analogue
213memory with depth of 2 which samples a 12-bit ramp, common for all
214channels, at the same time of the charge. This time is then converted
215by a 12 bit Wilkinson ADC.
216
217The two ADC discriminators have a common ramp, of 8/10/12 bits, as
218threshold to convert the charge and the fine time. In addition a bandgap bloc provides all voltage references.
219
220\begin{center}
221\begin{figure}[!htbp]
222\includegraphics[width=0.7\columnwidth,height=6cm]{img4.jpg}
223\caption{PARISROC Layout.}
224\label{fig:4}
225\end{figure}
226\end{center}
227
228\refFig{fig:5} represents, in a schematic way, the detail of one channel analogue
229part.
230
231\begin{center}
232\begin{figure}[!htbp]
233\includegraphics[width=0.7\columnwidth,height=6cm]{img5.jpg}
234\caption{PARISROC one channel analogue part schematic.}
235\label{fig:5}
236\end{figure}
237\end{center}
238
239
240%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
241\subsection{Preamplifier}
242\label{ssec:Preamplifier}
243%%%%%%%%%%%%%%%%%%%%%%%%%%%
244The input preamplifier is a low noise preamplifier with variable gain
245thanks to the switched input ($C_{in}$) and feedback ($C_f$) capacitors that
246can be adjusted (\refFig{fig:6}).
247
248This gain can vary changing $C_{in}$, which is
249common to the 16 channels, over 4 bits and $C_{f}$, to adjust preamplifier
250gain channel by channel. This adjustment allows correction of the PMT
251gain dispersion due to a use of a common HV.
252
253\begin{center}
254\begin{figure}[!htb]
255\includegraphics[width=0.7\columnwidth,height=6cm]{img6.jpg}
256        \caption{PARISROC preamplifier schematic.}
257        \label{fig:6}
258\end{figure}
259\end{center}
260
261The preamplifier is designed as a voltage
262preamplifier in p-type Cascode structure to allow the acquisition of a
263fast input signal with a large dynamic range.
264
265The input transistor is a PMOS in common source
266configuration: $W = 800~\mu$m; $L = 0.35~\mu$m; the big input transistor is
267chosen to keep the preamplifier noise contribution low and to achieve a
268high gm. It supplies the output (the drain terminal) to the input
269terminal (source terminal) of the second stage transistor: $W = 100~\mu$m;
270$L = 0.35~\mu$m; the output transistor must be small to reach preamplifier
271high speed performances. The utility of the cascode preamplifier is in
272the large input impedance of the common source (with also the
273characteristic of Current Buffer) and better frequency response of a
274common Gate. An output buffer stage is designed in order to adapt the
275output impedance to the loaded impedance. The input dc level is high
276(about 2.6~V) while the output dc level is low (about 1~V). Because of
277the single side structure of preamplifier, it is hard to use the
278external reference voltage to set the dc operating point; the idea is
279to use an OTA as the dc feedback amplifier.
280
281In \refFig{fig:7} are shown preamplifier's output waveforms
282for fixed gain and different input signal (left panel) and for fixed
283input signal and different preamplifier gain (right panel).
284
285\begin{center}
286\begin{figure}[!htbp]
287\begin{tabular}{rl}
288\includegraphics[width=0.5\columnwidth,height=6cm]{img7a.jpg} & 
289\includegraphics[width=0.5\columnwidth,height=6cm]{img7b.jpg}
290\end{tabular} 
291        \caption{Simulated preamplifier output waveforms for different input
292signals with fixed gain (left panel) and for fixed input
293signal at different gain (different input capacitor values (right
294panel).}
295        \label{fig:7}
296\end{figure}
297\end{center}
298
299The input signal, used in simulation, is a triangle signal with 4.5~ns
300rise and fall time and 5~ns of duration as shown in \refFig{fig:8}. This current
301signal is sent to an external resistor (50~Ohms) and varies from 0 to 5~mA
302in order to simulate a PMT charge from 0 to 50~pC which represents 0
303to 300 photo-electrons when the PM gain is $10^{6}$.
304
305\begin{center}
306\begin{figure}[!htbp]
307\includegraphics[width=0.7\columnwidth,height=6cm]{img8.jpg}
308\caption{Simulation input signal.}
309\label{fig:8}
310\end{figure}
311\end{center}
312
313The \refFig{fig:9} displays the input dynamic range allowed to the preamplifier
314linearity performance. \refTab{tab:1} lists the residuals obtained for different
315gains and shows a good linearity (better than $\pm 1\%$).
316
317\begin{center}
318\begin{figure}[!htbp]
319\includegraphics[width=0.7\columnwidth,height=6cm]{img9.jpg}
320\caption{Preamplifier linearity.}
321\label{fig:9}
322\end{figure}
323\end{center}
324
325
326\begin{table}
327\centering
328        \caption{TO BE COMPLETED}
329        \label{tab:1}
330\begin{tabular}{|c|c|c|c|}
331\hline
332$G_{pa}$ &  $V_{out-max}$ &  $Qi_{max}/n_{pe}$ & Residuals (\%) \\
333\hline
334 8 & 1.394~V  & 40~pC/250~pe & -0.6 to 0.2 \\
335 4 & 0.841~V  & 48~pC/300~pe & -0.1 to 0.3 \\
336 2 & 0.417~V  & 48~pC/300~pe & -0.2 to 0.3 \\
337\hline
338\end{tabular}
339\end{table}
340
341
342 
343The \refFig{fig:10} displays the preamplifier noise with an
344rms value of 13~fC and a Signal to Noise ratio of $\approx 12$.
345\refTab{tab:2} summarizes the results obtained.
346
347\begin{center}
348\begin{figure}[!htbp]
349\includegraphics[width=0.7\columnwidth,height=6cm]{img10.jpg}
350\caption{Preamplifier noise simulation; $G_{pa}=8$; $C_{in}=4$~pF and
351$C_{f}=0.5$~pF.}
352\end{figure}
353\label{fig:10}
354\end{center}
355
356\begin{table}
357\centering
358\caption{TO BE COMPLETED}
359\label{tab:2}
360\begin{tabular}{|c|c|c|}
361\hline
362RMS  & SNR & $V_{out}(1 p.e)$  \\
363\hline
364$468~\mu$V ($\approx 1/12$~p.e, $\approx 13$~fC ) & 11.6 & 5.43~mV\\
365\hline
366\end{tabular}
367\end{table}
368
369%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
370\subsection{Trigger output}
371\label{ssec:Trigger}
372%%%%%%%%%%%%%%%%%%%%%%%%%%%
373The PARISROC is a self-triggered device. The fast channel has been
374conceived for this purpose.The amplified signal flows in a fast shaper that is a CRRC filter with
375a time constant of 15~ns. Its high gain allows to send high signal to
376the discriminator and thus to trigger easily on 1/3 of photo-electron.
377It has a classical design: differential pair is followed by a buffer.
378
379\begin{figure}[!htbp]
380\centering
381\includegraphics[width=0.7\columnwidth,height=6cm]{img11.jpg}
382\caption{Fast shaper schematics.}
383\label{fig:11}
384\end{figure}
385
386The \refFig{fig:12} represents the fast shaper output
387waveforms for a variable input signal. The \refTab{tab:3} lists the fast
388shaper principal characteristics obtained in simulation.
389
390\begin{figure}[!htbp]
391\centering
392\begin{tabular}{rl}
393\includegraphics[width=0.5\columnwidth,height=6cm]{img12a.jpg} &
394\includegraphics[width=0.5\columnwidth,height=6cm]{img12b.jpg}
395\end{tabular}
396\caption{Simulated fast shaper outputs ($G_{pa} = 8$ with input from 1-10~pe (left panel) 
397and from 1/3~pe to 2~pe (right panel).}
398\label{fig:12}
399\end{figure}
400
401\begin{table}
402\centering
403        \caption{To be completed}
404        \label{tab:3}
405        \begin{tabular}{|c|c|c|c|}
406        \hline
407RMS  & SNR & $V_{out}(1 p.e)$  & $T_p$  \\
408\hline
409$2.36~\mu$V ($\approx 1/16$~p.e, $\approx 10$~fC ) & 16 & 37.85~mV & 8~ns\\
410        \hline
411        \end{tabular}
412\end{table}
413
414The fast shaper (15~ns) is followed by a low
415offset discriminator to auto-trig down to 50~fC (1/3~pe at $10^6$ gain).
416
417
418The two discriminators can be used alone or
419simultaneously. Their outputs are multiplexed to ease the choice. Both
420are simple low offset comparators with the same schematic. The
421difference comes from the way to set the threshold. The first
422discriminator has the threshold sets by one 10-bit DAC, common to all
42316 channels, and one 4-bit DAC for each channel. The second
424discriminator has the threshold sets by only the 10 bit common DAC.
425Each output trigger is latched to hold the state of the response in SCA
426channel. In  \refFig{fig:13} are shown the triggers and the zoom of the triggers rise
427time in order to see the time walk of around 4~ns.
428
429
430\begin{figure}[!htbp]
431\centering
432                \begin{tabular}{rl}
433                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13a.jpg}&
434                        \includegraphics[width=0.5\columnwidth,height=6cm]{img13b.jpg}
435                \end{tabular}
436\caption{Simulated trigger output (input charge from 0 to 10~p.e;
437threshold at 1/3~p.e). Zoom of trigger rise time on right
438pannel.}
439\label{fig:13}
440\end{figure}
441
442Each output trigger is latched to hold the
443state of the response in SCA channel.  SCA channel is the also called
444"`Analogue memory"'. The SCA has a
445depth equal to two; this means that there are two T\&H for time
446measurement as well as for charge measurement.
447
448\begin{figure}[!htbp]
449\centering
450\includegraphics[width=0.7\columnwidth,height=6cm]{img14.jpg}
451\caption{SCA (switched capacitor array) scheme.}
452\label{fig:14}
453\end{figure}
454
455The voltage level of the signal coming from
456slow shaper or ramp TDC cell is memorised in the T\&H capacitor (500~fF)
457so "`Track \& Hold Cell"' allows
458to lock the capacitor value only when a calibrated trigger (from fast
459channel) occurs within the selected column. The SCA column is selected, read and erased by
460the digital part.
461
462\begin{figure}[!htbp]
463\centering
464\includegraphics[width=0.7\columnwidth,height=6cm]{img15.jpg}
465\caption{Operation of T\&H cell.}
466\label{fig:15}
467\end{figure}
468
469On  \refFig{fig:15} is illustrated the T\&H cell mode of
470operation: when a signal arrives in the discriminator cell is detected
471and the output trigger signal is sent to the T\&H cell.
472The output trigger is delayed and calibrated before being sent.
473
474
475%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
476\subsection{Charge channel}
477\label{ssec:Charge}
478%%%%%%%%%%%%%%%%%%%%%%%%%%%
479The charge channel is the slow channel: the signal amplified by the
480variable gain preamplifier is sent to the slow shaper, a typical
481$\mathrm{CRRC}^2$ filter with variable peaking time. The
482peaking time can be set from 50~ns (default value) to 200~ns thanks to
483the switched feedback capacitors.
484
485On left part of \refFig{fig:16} are represented the slow shaper waveforms for
486different shaping times and the same input signal. The noise value (\refTab{tab:4}
487and right part of \refFig{fig:16}), from $980~\mu$V to $1.6$~mV (simulation results), foresee
488good noise performance.
489
490\begin{figure}[!htbp]
491\centering
492                \begin{tabular}{rl}
493                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16a.jpg}&
494                        \includegraphics[width=0.5\columnwidth,height=6cm]{img16b.jpg}
495                \end{tabular}
496\caption{Slow shaper output waveforms simulation (left panel). Slow shaper
497output noise simulation (right panel).}
498\label{fig:16}
499\end{figure}
500
501\begin{table}
502\centering
503\caption{TO BE COMPLETED. $G_{pa} = 8$}
504\label{tab:4}
505\begin{tabular}{|c|c|c|c|}
506\hline
507Time constant & RMS  & SNR & $V_{out}(1 p.e)$ \\
508\hline
50950~ns & \parbox[t]{20mm}{$1.68$~mV \\ $\approx 1/17$~p.e \\ $ \approx 9$~fC}
510     &  11
511                        & \parbox[t]{20mm}{$29$~mV \\ $T_p = 48$~ns } \\
512100~ns & \parbox[t]{20mm}{$1.26$~mV\\$\approx 1/12$~p.e \\ $ \approx 20$~fC}
513     &  8
514                        & \parbox[t]{20mm}{$15$~mV \\ $T_p = 78$~ns }\\
515200~ns & \parbox[t]{20mm}{$0.98$~mV\\$\approx 1/5$~p.e \\ $ \approx 32$~fC}
516     &  5
517                        & \parbox[t]{23mm}{$8$~mV \\ $ T_p = 141.5$~ns } \\
518\hline                 
519\end{tabular}
520\end{table}
521
522The \refFig{fig:17}  and \refTab{tab:5} illustrate the linearity performance for
523different time constants.  Simulations show a good linearity with
524residuals from -0.5\% to 0.2\% at $T_p = 50$~ns, from
525-1\% to 0.3\% at $T_p =100$~ns and -0.7\% to 0.3\% at
526$T_p=200$~ns.
527
528\begin{figure}[!htbp]
529\centering
530\includegraphics[width=0.7\columnwidth,height=6cm]{img17.jpg}
531\caption{Slow shaper linearity simulation.}
532\label{fig:17}
533\end{figure}
534
535\begin{table}
536\centering
537\caption{TO BE COMPLETED}
538\label{tab:5}
539\begin{tabular}{|c|c|c|c|}
540\hline
541Time constante & $V_{out-max}$ & $Qi_{max}/n_{pe}$ & Residuals (\%) \\
542\hline
543 50~ns &  1.437~V &  13~pC/80~pe &  -0.5 to 0.2 \\
544100~ns &  1.493~V &  24~pC/150~pe &  -1.0 to 0.3 \\
545200~ns &  1.385~V &  48~pC/300~pe &  -0.7 to 0.3 \\
546\hline
547\end{tabular}
548\end{table}
549
550The Slow shaper maximum value, therefore the charge value, is then
551memorized in the analogue memory, with a depth of 2, thanks to the
552delayed trigger. \refFig{fig:18} gives the simulated slow shaper and SCA
553signals.
554
555\begin{figure}[!htbp]
556\centering
557\includegraphics[width=0.7\columnwidth,height=6cm]{img18.jpg}
558\caption{Slow shaper \& SCA simulation.}
559\label{fig:18}
560\end{figure}
561This charge, stored as a voltage value, is then converted in digital
562value thanks to the 8/10/12 bit Wilkinson ADC.
563
564%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
565\subsection{Time measurement}
566\label{ssec:Timemeas}
567%%%%%%%%%%%%%%%%%%%%%%%%%%%
568For each channel, a fine time measurement is performed by the analogue
569memory with a depth of 2 which samples a 12 bit ramp (100~ns), common
570for all channels, at the same time of the charge.
571
572In \refFig{fig:19} is represented the TDC Ramp general schematic. The current,
573which flows in feedback, charges the capacitance $C_f$ when the switch is
574off. When the switch is turned off, $C_f$ discharges. Signals \verb|start\_ramp| and
575\verb|start\_ramp\_b| manage the switches. The rising signal starts the ramp
576and the falling signal stop the ramp (\refFig{fig:19}).
577
578\begin{figure}[!htbp]
579\centering
580\begin{tabular}{rl}
581\includegraphics[width=0.5\columnwidth,height=6cm]{img19a.jpg}&
582\includegraphics[width=0.5\columnwidth,height=6cm]{img19b.jpg}
583\end{tabular}
584\caption{TDC Ramp general schematic.}
585\label{fig:19}
586\end{figure}
587In order to avoid the large falling time of the ramp due to the $C_f$
588discharge time and the problem of non linearity at the start and the
589end of ramp signal (\refFig{fig:20}), the real ramp is created from two
590ramps.
591
592\begin{figure}[!htbp]
593\centering
594\includegraphics[width=0.7\columnwidth,height=6cm]{img20.jpg}
595\caption{TDC Ramp.}
596\label{fig:20}
597\end{figure}
598
599The signal start ramp, coming from the digital
600part, enters in two delay cells. The two delayed signals create the
601first and second ramps. Commutating alternatively two switches the 100~ns ramp TDC is created
602(\refFig{fig:21} and \refFig{fig:22}).
603
604\begin{figure}[!htbp]
605\centering
606\includegraphics[width=0.7\columnwidth,height=6cm]{img21.jpg}
607\caption{TDC Ramp scheme.}
608\label{fig:21}
609\end{figure}
610
611\begin{figure}[!htbp]
612\centering
613\includegraphics[width=0.7\columnwidth,height=6cm]{img22.jpg}
614\caption{TDC Ramp simulation.}
615\label{fig:22}
616\end{figure}
617
618This time value, stored as a voltage value, is then converted in
619digital value tanks to the 8/10/12 bit Wilkinson ADC.
620
621%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
622\subsection{ADC ramp}
623\label{ssec:ADCramp}
624%%%%%%%%%%%%%%%%%%%%%%%%%%%
625In \refFig{fig:23} is represented the Ramp ADC general scheme. It is the
626same as TDC ramp one, the difference is in a variable current source
627which allows obtaining 8bit/10bit/12bit ADC according to the injected
628current. \refTab{tab:6} gives, for each ramp, the time duration to reach 3.3~V.
629
630\begin{figure}[!htbp]
631\centering
632\includegraphics[width=0.7\columnwidth,height=6cm]{img23.jpg}
633\caption{ADC ramp schematic.}
634\label{fig:23}
635\end{figure}
636
637\begin{table}
638\centering
639\caption{TO BE COMPLETED}
640\label{tab:6}
641\begin{tabular}{|l|l|}
642\hline
643 Header 1      & Header 2 \\
644 12 bit ADC & From 0.9~V to 3.3~V in $102.0~\mu{}$s \\
645 10 bit ADC & From 0.9~V to 3.3~V in $25.6~\mu{}$s \\
646 \phantom{ }8 bit ADC & From 0.9~V to 3.3~V in $6.4~\mu{}$s \\
647\hline
648\end{tabular}
649\end{table}
650
651Then the ADC ramp is compared thanks to a Discriminator to the voltage
652values, which corresponds to charge and fine time values, stored in the
653SCA. The digital converted DATA are then treated by the digital part.
654%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
655\subsection{Digital part}
656\label{ssec:Digital}
657%%%%%%%%%%%%%%%%%%%%%%%%%%%
658The digital part of PARISROC is built around 4 modules which are "`acquisition"', "`conversion"', "`readout"' and "`top manager"'. Actually, PARISROC is based on 2 memories. During acquisition,
659discriminated analog signals are stored into an analog memory (the SCA:
660switched capacitor array). The analog to digital conversion module
661converts analog charges and times from SCA into 12 bits digital values.
662These digital values are saved into registers (RAM). At the end of the
663cycle, the RAM is readout by an external system. The block diagram is
664given on \refFig{fig:24}.
665
666
667\begin{figure}[!htbp]
668\centering
669\includegraphics[width=0.7\columnwidth,height=6cm]{img24.jpg}
670\caption{Block diagram of the digital part.}
671\label{fig:24}
672\end{figure}
673
674This sequence is made thanks to the top manager module which controls
675the 3 other ones. When 1 or more channels are hit, it starts ADC
676conversion and then the readout of digitized data. The maximum cycle
677length is about $200~\mu$s. During
678conversion and readout, acquisition is never stopped. It means that
679discriminated analog signals can be stored in the SCA at any time of
680the sequence shown in on \refFig{fig:25}.
681
682\begin{figure}[!htbp]
683\centering
684\includegraphics[width=0.7\columnwidth,height=6cm]{img25.jpg}
685\caption{Top manager sequence.}
686\label{fig:25}
687\end{figure}
688
689The first module in the sequence is the acquisition
690which is dedicated to charge and fine time measurements. It manages the
691SCA where charge and fine time are stored as a voltage like. It also
692integrates the coarse time measurement thanks to a 24-bit gray counter
693with a resolution of 100~ns. Each channel has a depth of 2 for the SCA
694and they are managed individually. Besides, SCA is treated like a FIFO
695memory: analog voltage can be written, read and erased from this
696memory.
697
698
699\begin{figure}[!htbp]
700\centering
701\includegraphics[width=0.7\columnwidth,height=6cm]{img26.jpg}
702\caption{SCA analogue voltage}
703\label{fig:26}
704\end{figure}
705
706Then, the conversion module converts analog values stored in
707the SCA (charge and fine time: cf. \`refFig{fig:26}) in digital ones thanks to a 12-bit
708Wilkinson ADC. The counter clock frequency is 40~MHz, it implies a
709maximum ADC conversion time of $103~\mu$s
710when it overflows. This module makes 32 conversions in 1 run (16
711charges and 16 fine times).
712
713Finally, the readout module permits to empty all the registers
714to an external system. As it will only transfer hit channels, this
715module will tag each frame with its channel number: it works as a
716selective readout. The pattern used is composed of 4 data: 4-bit
717channel number, 24-bit coarse time, 12-bit charge and 12-bit fine time.
718The total length of one frame is 52 bits. The maximum readout time
719appears when all channels are hit. About 832 bits of data are
720transferred to the concentrator with a 10~MHz clock: the readout takes
721about $100~\mu$s with $1~\mu$s between 2 frames.
722
723%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
724\section{ASIC Laboratory tests}
725\label{sec:ASICLAbTest}
726%%%%%%%%%%%%%%%%%%%%%%%%%%%
727The PARISROC has been submitted in June 2008; a first batch of 6 ASICs
728has been produced and received in January 2009 (a second batch of 14
729ASICs in May 2009.
730
731The ASIC test has been a critical step in the PARISROC planning due to
732the ASIC complexity.A dedicated test board has been designed and realized for this purpose
733(\refFig{fig:27}). Its role is to allow the characterization of the chip and the
734communication between photomultipliers and ASIC. This is possible
735thanks to a dedicated Labview program that allows sending the ASIC
736configuration (slow control parameters; ASIC parameters, etc) and
737receiving the output bits via a USB cable connected to the test board.
738The Labview is developed by LAL.
739
740\begin{figure}[!htbp]
741\centering
742\includegraphics[width=0.7\columnwidth,height=6cm]{img27.jpg}
743\caption{Test Board.}
744\label{fig:27}
745\end{figure}
746
747%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
748\subsection{General tests}
749\label{ssec:GeneralTest}
750%%%%%%%%%%%%%%%%%%%%%%%%%%%
751On  \refFig{fig:28} is shown the Test Bench used in laboratory. It is composed by a
752test board, a signal generator, an oscilloscope, multimeters and PC to
753run labview program.
754
755\begin{figure}[!htbp]
756\centering
757\includegraphics[width=0.7\columnwidth,height=6cm]{img28.jpg}
758\caption{Test Bench.}
759\label{fig:28}
760\end{figure}
761
762The signal generator is a TEKTRONIX single
763channel function generator. It is used to create the input charge
764injected in the ASIC. The signal injected has the shaping as similar as
765possible to the PMT signal. On \refFig{fig:28} is represented the generator input
766signal and its characteristics.
767
768\begin{figure}[!htbp]
769\centering
770\includegraphics[width=0.7\columnwidth,height=6cm]{img29.jpg}
771%%%% NOT USED \includegraphics[width=0.5\columnwidth,height=6cm]{img34.jpg}
772\caption{Input signals}
773\label{fig:29}
774\end{figure}
775
776At the beginning all the standard electrical
777characteristics have been tested: DC levels, analogue output signals,
778the analogue part characteristics and then the pedestals, the DAC
779linearity, S\-curves (trigger efficiency as a function of the injected
780charge or the threshold), the ADC linearity. The first purpose is the
781comparison between simulation results and test measurements; most of
782them are in agreement with the ASIC characteristics, obtained in
783simulation.
784%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
785\subsection{Analogue tests}
786\label{ssec:AnalogueTest}
787%%%%%%%%%%%%%%%%%%%%%%%%%%%
788The DC level characterization is the first step in ASIC
789characterization; in particular the DC uniformity of the analogue part
790DC level for the different channels has to be measured.
791
792In \refFig{fig:30} are represented the preamplifier, slow
793shaper and fast shaper DC uniformity plots. The DC uniformity test has a small dispersion
794of 0.4\%, 0.1\% and 0.05\% respectively for the preamplifier, the slow
795shaper and the fast shaper (\refTab{tab:7}).
796
797\begin{figure}[!htbp]
798\centering
799\begin{tabular}{c}
800\includegraphics[width=0.7\columnwidth,height=6cm]{img30a.jpg}\\
801\includegraphics[width=0.7\columnwidth,height=6cm]{img30b.jpg}\\
802\includegraphics[width=0.7\columnwidth,height=6cm]{img30c.jpg}
803\end{tabular}
804\caption{DC uniformity.}
805\label{fig:30}
806\end{figure}
807
808\begin{table}
809\centering
810\caption{TO BE COMPLETED}
811\label{tab:7}
812\begin{tabular}{|l|c|c|c|}
813\hline
814DC level & RMS \\
815Preamplifier & 3.8~mV (0.40~\%) \\ 
816Slow shaper  & 1.3~mV (0.10~\%) \\
817Fast shaper  & 1.0~mV (0.05\%\\
818\hline
819\end{tabular}
820\end{table}
821
822The second step is the analogue part output signals: Injecting a
823charge equivalent to 10~pe, and setting a preamplifier gain at 8, are
824observed and compared with simulation results all the output waveforms.
825
826There is a good agreement in preamplifier results ( \refFig{fig:31} and \refTab{tab:8}), the
827amplitude has the same value while time rise value has a difference of
8283~ns. This difference is due to the output buffer placed in the test
829board.
830
831\begin{figure}[!htbp]
832\centering
833                \begin{tabular}{rl}
834                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31a.jpg}&
835                        \includegraphics[width=0.5\columnwidth,height=6cm]{img31b.jpg}
836                \end{tabular}
837\caption{Measurement and simulation of the preamplifier output for
838an input charge of 10~pe.}
839\label{fig:31}
840\end{figure}
841
842\begin{table}
843\centering
844\caption{TO BE COMPLETED. Preamplifier parameters.... $G_{pa} = 8$. WHY not same parameters 1~pe and 10~p.e}
845\label{tab:8}
846\begin{tabular}{|l|c|c|}
847\hline
848             &  Measurement    & Simulation \\
849\hline
850Maximum voltage (10~pe) & 50.00~mV  & 50.83~mV \\
851Rise time (10~pe) & 7.78~ns & 4.79~ns \\
852RMS noise &       1~mV       & 0.47~mV \\
853without USB cable & 0.66~mV  &         \\
854Noise in pe   & 0.2  & 0.086 \\
855without USB cable & 0.132 &         \\
856Maximum voltage (1~pe) & 5.00~mV  & 5.43~mV \\
857SNR (1~pe ????) & 5 & 11.6 \\
858without USB cable & 7.5 &         \\
859\hline
860\end{tabular}
861\end{table}
862
863The slow shaper waveforms are shown in \refFig{fig:32} while \refTab{tab:9} 
864summarizes the results. The first differences appear: a different value
865in amplitude for slow shaper signal and fast shaper signal that is
866probably associate, also, to the Output Buffer. The second relevant
867difference is in noise value, in particular in slow shaper noise
868performance (\refTab{tab:9}).
869
870\begin{figure}[!htbp]
871\centering
872                \begin{tabular}{rl}
873                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32a.jpg}
874                        \includegraphics[width=0.5\columnwidth,height=6cm]{img32b.jpg}
875                \end{tabular}
876\caption{Measurement and simulation of the slow shaper output for an
877input charge of 10~pe.}
878\label{fig:32}
879\end{figure}
880
881\begin{table}
882\centering
883\caption{TO BE COMPLETED. $G_{pa} = 8$ and $RC = 50$~ns.}
884\label{tab:9}
885\begin{tabular}{|l|c|c|}
886\hline
887             &  Measurement    & Simulation \\
888\hline
889Maximum Voltage (10~pe) & 117~mV & 290~mV \\
890Rise time (10~pe) & 18.0~ns & 19.1~ns \\
891RMS noise &  4.0~mV & 1.7~mV \\
892Noise in pe &  0.3 & 0.08 \\
893Maximum Voltage (1~pe) & 12~mV & 19~mV \\
894SNR &  3 & 11  \\
895\hline
896\end{tabular}
897\end{table}
898
899The Fast shaper results are shown in \refFig{fig:33}
900and \refTab{tab:10}.
901\begin{figure}[!htb]
902        \centering
903                \begin{tabular}{rl}
904                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33a.jpg}
905                        \includegraphics[width=0.5\columnwidth,height=6cm]{img33b.jpg}
906                \end{tabular}
907        \caption{Measurement and simulation of the fast shaper output for an
908input charge of 1 pe.}
909        \label{fig:33}
910\end{figure}
911
912
913\begin{table}
914\centering
915\caption{TO BE COMPLETED. $G_{pa} = 8$.}
916\label{tab:10}
917\begin{tabular}{|l|c|c|}
918\hline
919             &  Measurement    & Simulation \\
920\hline
921RMS noise &  2.5~mV & 2.4~mV \\
922Noise in pe &  0.08 & 0.05 \\
923Maximum Voltage (1~pe) & 30~mV & 42~mV \\
924SNR &  12 & 18  \\
925\hline
926\end{tabular}
927\end{table}
928Another important characteristic is the
929linearity. The output voltage in function of the input injected charge
930is plotted for the different analogue signals. \refFig{fig:34} gives few examples for
931the preamplifier at different gains. \refTab{11} summarizes the fit
932results of these linearities. Good linearity performances are shown by
933residuals (better than $\pm 2~\%$) value but for a
934smaller dynamic range than simulation.
935
936\begin{figure}[!htbp]
937\centering
938                \begin{tabular}{c}
939                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34a.jpg}
940                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34b.jpg}
941                        \includegraphics[width=0.7\columnwidth,height=6cm]{img34c.jpg}
942                \end{tabular}
943\caption{Preamplifier linearity for different gains.}
944\label{fig:34}
945\end{figure}
946
947\begin{table}
948\centering
949        \caption{TO BE COMPLETED}
950        \label{tab:11}
951\begin{tabular}{|c|c|c|c|}
952\hline
953Preamplifier Gains & Maximum voltage & Charge/Nb of pe & Residuals \\
954\hline
9558                  &   0.52~V        & 12~pC / 78~pe & -1.0~\% to 0.8~\% \\
9564                  &   0.64~V        & 32~pC / 198~pe & -1.0~\% to 1.0~\% \\
9572                  &   0.51~V        & 50~pC / 312~pe & -2.0~\% to 1.5~\% \\
958\hline
959\end{tabular}
960\end{table}
961
962
963\refFig{fig:35} represents an example of slow shaper
964linearity for a time constant of 50~ns and  a preamplifier gain of 8
965with residuals better than $pm 1~\%$.
966
967\begin{figure}[!htbp]
968\centering
969\includegraphics[width=0.7\columnwidth,height=6cm]{img35.jpg}
970\caption{Slow shaper linearity; $RC =50$~ns and $G_{pa}=8$.}
971\label{fig:35}
972\end{figure}
973
974\refFig{fig:36} gives an example of the fast shaper linearity until an injected
975charge of 10~pe. Residuals better than $ \pm 2~\%$
976are obtained.
977
978\begin{figure}[!htbp]
979\centering
980\includegraphics[width=0.7\columnwidth,height=6cm]{img36.jpg}
981\caption{Fast shaper linearity up to 10~pe.}
982\label{fig:36}
983\end{figure}
984
985The preamplifier linearity in function of
986variable feedback capacitor value with an input charge of 10~pe and
987with residuals from $-2.5~\%$ to $1.4~\%$ is represented on \refFig{fig:37} . The gain
988adjustment linearity is nice at 2~\% on 8 bits.
989
990\begin{figure}[!htbp]
991\centering
992\includegraphics[width=0.7\columnwidth,height=6cm]{img37.jpg}
993\caption{Preamplifier linearity vs feedback capacitor value.}
994\label{fig:37}
995\end{figure}
996
997On \refFig{fig:38}  is given the gain uniformity. For the
998different preamplifier gains is plotted the maximum voltage value for
999all channels in order to investigate the homogeneity among the whole
1000chip, essential for a multichannels ASIC. Residual dispersion of 0.05~\%,
10010.013~\% and 0.012~\% have respectively been obtained for gain 8, 4 and
10022.
1003
1004\begin{figure}[!htbp]
1005\centering
1006\includegraphics[width=0.7\columnwidth,height=6cm]{img38.jpg}
1007\caption{Gain uniformity for $G_{pa}=8, 4, 2$.}
1008\label{fig:38}
1009\end{figure}
1010
1011%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1012\subsection{DAC linearity}
1013\label{ssec:DAClinearity}
1014%%%%%%%%%%%%%%%%%%%%%%%%%%%
1015The DAC linearity has been measured and it consists in measuring the
1016voltage DAC ($V_{dac}$) amplitude obtained for different DAC register
1017values. \refFig{fig:39} gives the evolution of $V_{dac}$ as a function of the register for the two
1018DACs and residuals from $-0.1~\%$ to $0.1~\%$.
1019
1020\begin{figure}[!htbp]
1021\centering
1022                \begin{tabular}{rl}
1023                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39a.jpg}&
1024                        \includegraphics[width=0.5\columnwidth,height=6cm]{img39b.jpg}
1025                \end{tabular}
1026\caption{DAC linearity; DAC1 and DAC2 respectively.}
1027\label{fig:39}
1028\end{figure}
1029%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1030\subsection{Trigger output}
1031\label{ssec:TriggerMeas}
1032%%%%%%%%%%%%%%%%%%%%%%%%%%%
1033The trigger output behavior was studied scanning the threshold for
1034different injected charges. At first no charge was injected which
1035corresponds to measure the fast shaper pedestal. The result is
1036represented on \refFig{fig:40}  for each channel. The  S-curves
1037are superimposed meaning good homogeneity. The spread
1038is of one DAC count ($LSB DAC = 1.78$~mV) or 0.06~pe.
1039
1040\begin{figure}[!htbp]
1041\centering
1042\includegraphics[width=0.7\columnwidth,height=6cm]{img40.jpg}
1043\caption{Pedestal S-curves for channel 1 to 16.}
1044\label{fig:40}
1045\end{figure}
1046
1047The trigger efficiency was then measured for a
1048fixed injected charge of 10~pe. On \refFig{fig:41} are represented the S-curves
1049obtained with 200 measurements of the trigger for all channels varying
1050the threshold. The homogeneity is proved by a spread of 7 DAC unit (0.4~pe) and a noise of 0.07 pe ($RMS =2.19$).
1051
1052\begin{figure}[!htbp]
1053\centering
1054                \begin{tabular}{rl}
1055                        \multicolumn{2}{c}{\includegraphics[width=0.5\columnwidth,height=6cm]{img41a.jpg}}\\
1056                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41b.jpg}&
1057                        \includegraphics[width=0.5\columnwidth,height=6cm]{img41c.jpg}
1058                \end{tabular}
1059\caption{Fast shaper and trigger (top panel); S-curves for input of 10~pe (left panel);
1060uniformity plot for channel 1 to 16 (right panel).}
1061\label{fig:41}
1062\end{figure}
1063
1064The trigger output is studied also by scanning
1065the threshold for a fixed channel and changing the injected charge. On \refFig{fig:42}
1066on the left panel  is shown the trigger efficiency versus the DAC unit and on
1067the right panel is plotted the threshold versus the injected charge but only
1068until 0.5~pC. From these measurements a noise of 10~fC has been
1069extrapolated. Therefore the threshold is only possible above $10~\sigma$ of the noise due to the discriminator coupling
1070(\refFig{fig:43}).
1071
1072\begin{figure}[!htbp]
1073\centering
1074                \begin{tabular}{rl}
1075                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42a.jpg}
1076                        \includegraphics[width=0.5\columnwidth,height=6cm]{img42b.jpg}
1077                \end{tabular}
1078\caption{Trigger efficiency vs DAC count up to 300~pe (left panel) and
1079until 3~pe (right panel).}
1080\label{fig:42}
1081\end{figure}
1082
1083\begin{figure}[!htbp]
1084\centering
1085\includegraphics[width=0.7\columnwidth,height=6cm]{img43.jpg}
1086\caption{Threshold vs injected charge up to 500~fC. It is shown the 1~p.e threshold for a PMT gain of $10^6$.}
1087\label{fig:43}
1088\end{figure}
1089
1090The trigger coupling illustrated in \refFig{fig:44} with the
1091injected charge in channel 1 and output signal observed in channel 2,
1092shows a coupling signal around 25~mV (10~fC). This coupling signal is
1093due, probably, to the input power supply ($V_{dd-pa}$ and $V_{ss}$).
1094
1095\begin{figure}[!htbp]
1096\includegraphics[width=0.7\columnwidth,height=6cm]{img44.jpg}
1097\caption{Trigger coupling signal.}
1098\label{fig:44}
1099\end{figure}
1100
1101%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1102\subsection{ADC characterisation}
1103\label{ssec:ADCMeas}
1104%%%%%%%%%%%%%%%%%%%%%%%%%%%
1105The ADC performance has been studied alone and with the whole chain. Injecting to the
1106 ADC input directly a DC voltage by the internal DAC,
1107in order to have a voltage level as stable as possible, were measured
1108the ADC values for all channels (\refFig{fig:45}).
1109
1110The measurement is repeated 10000 times for
1111each channel and in the first plot of the LabView front panel window (\refFig{fig:45}). The
1112minimal, maximal and mean values, over all acquisitions, for each
1113channel are plotted. In the second plot there is the rms charge value
1114versus channel number with a value in the range $[0.5, 1]$ ADC unit.
1115Finally the third plot shows an example of charge amplitude
1116distribution for a single channel: a spread of 5 ADC counts is
1117obtained.
1118
1119\begin{figure}[!htbp]
1120\centering
1121\includegraphics[width=0.7\columnwidth,height=6cm]{img45.jpg}
1122\caption{ADC measurements with DC input 1.45~V (middle scale).}
1123\label{fig:45}
1124\end{figure}
1125
1126The ADC is suited to a multichannel conversion
1127so the uniformity and linearity are studied in order to characterize
1128the ADC behaviour. On \refFig{fig:46} is represented the ADC transfer function for the
112910-bit ADC versus the input voltage level. All channels are represented
1130and have plots superimposed.
1131
1132\begin{figure}[!htbp]
1133\centering
1134\includegraphics[width=0.7\columnwidth,height=6cm]{img46.jpg}
1135\caption{10  bits ADC transfer function vs input charge.}
1136\label{fig:46}
1137\end{figure}
1138
1139The good homogeneity observed is confirmed by
1140the linear fit parameters comparison. In  are plotted the slope and the
1141intercept distributions for all channels. The RMS slope value of 0.143
1142and the RMS intercept value of 0.3 confirm the 10-bits ADC uniformity
1143(\refTab{tab:12}).
1144
1145\begin{figure}[!htbp]
1146\centering
1147                \begin{tabular}{rl}
1148                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47a.jpg}&
1149                        \includegraphics[width=0.5\columnwidth,height=6cm]{img47b.jpg}
1150                \end{tabular}
1151\caption{Evolution of the fit parameters (slope on the
1152left panel and intercept on the right panel) as a function of the channel
1153number.}
1154\label{fig:47}
1155\end{figure}
1156
1157\begin{table}
1158\centering
1159\caption{TO BE COMPLETED. 10 bits ADC parameter fits.... 25 acquisitions per channel, $LSB = 1.06$~mV...}
1160\label{tab:12}
1161\begin{tabular}{|l|c|c|}
1162\hline
1163   & Slope      & Intercept \\
1164Mean & 936.17   & 859.8 \\
1165RMS  & 0.14     & 0.3   \\ 
1166\hline
1167\end{tabular}
1168\end{table}
1169
1170In \refFig{fig:48} are shown respectively the 12, 10 and 8 bits ADC
1171linearity plots with the 25 measurements made for each input voltage
1172level. The average ADC count value is plotted versus the input signal.
1173The residuals from $-1.5$ to $0.9$ ADC units for the 12-bits ADC; from $-0.5$
1174to $0.4$ for the 10-bit ADC and from $-0.5$ to $0.5$ for the 8-bit ADC. This prove
1175the good ADC behaviour in terms of Integral non linearity.
1176
1177\begin{figure}[!htbp]
1178\centering
1179                \begin{tabular}{c}
1180                        \includegraphics[width=0.7\columnwidth,height=6cm]{img48a.jpg}\\
1181                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48b.jpg}\\
1182                        \includegraphics[width=0.5\columnwidth,height=6cm]{img48c.jpg}
1183                \end{tabular}
1184\caption{12, 10, 8 bit ADC linearity.}
1185\label{fig:48}
1186\end{figure}
1187In terms of Differential non linearity, the
1188value from $-1.0$ to $0.65$ for the 10 bit ADC and from $-0.3$ to $0.2$ for the 8
1189bit ADC, show us a good behaviour even if the plots are the results of
1190preliminary measurements.
1191
1192\begin{figure}[!htb]
1193        \centering
1194                \begin{tabular}{rl}
1195                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49a.jpg}
1196                        \includegraphics[width=0.5\columnwidth,height=6cm]{img49b.jpg}
1197                \end{tabular}
1198\caption{Differential non linearity.}
1199\label{fig:49}
1200\end{figure}
1201
1202Once the ADC performances have been tested
1203separately, the measurements are performed on the complete chain. The
1204results of the input signal autotriggered, held in the T\&H and
1205converted in the ADC are illustrated in  where are plotted the 10-bit
1206ADC counts in function of the variable input charge (up to 50~pe). A
1207good linearity of $1.4~\%$ and a noise of 6 ADC units are obtained. In \refTab{tab:13}
1208are listed the setting value for measurements.
1209
1210\begin{table}
1211        \centering
1212        \caption{TO BE COMPELTED. $G_{pa}=14$ ($C_{in}=7$~pF , $C_f=0.5$~pF),
1213Slow shaper $RC=50$~ns,
1214DAC delay: $bit<0> = 1$ \& $bit<2> = 1$.
1215}
1216        \label{tab:13}
1217\begin{tabular}{|l|c|c|c|}
1218\hline
1219Parameters & 12 bits ADC & 10 bits ADC & 8 bits ADC\\
1220\hline 
1221LSB         & $0.27$ & $1.06$~mV  & $4.26$~mV\\
1222Min ADC count at 3~pe& $509$ &  $132$ & $33$  \\
1223Max ADC count at 50~pe & $3873$ &  $989$ & $241$ \\
1224Residuals in ADC units &$[21,54]$ & $[6,14]$  & $[2,3]$ \\
1225\hline
1226\end{tabular}
1227\end{table}
1228
1229\begin{figure}[!htbp]
1230\centering
1231\includegraphics[width=0.7\columnwidth,height=6cm]{img50.jpg}
1232\caption{10 bit ADC linearity.}
1233\label{fig:50}
1234\end{figure}
1235
1236On \refFig{fig:51} is plotted the 8-bit linearity at $1.4~\%$
1237and a noise of 1.53 ADC unit. In \refTab{tab:13} are listed the setting value for
1238measurements.
1239
1240\begin{figure}[!htbp]
1241\centering
1242\includegraphics[width=0.7\columnwidth,height=6cm]{img51.jpg}
1243\caption{8 bit ADC linearity.}
1244\label{fig:51}
1245\end{figure}
1246
1247On  \refFig{fig:53} is plotted the 12-bit linearity
1248at $1.4~\%$ and a noise of 23.69 ADC unit. In \refTab{tab:13} are listed the setting
1249value for measurements.
1250
1251\begin{figure}[!htbp]
1252\centering
1253\includegraphics[width=0.7\columnwidth,height=6cm]{img52.jpg}
1254\caption{12 bit ADC linearity.}
1255\label{fig:52}
1256\end{figure}
1257
1258%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1259\section{Measurements with PMTs}
1260\label{sec:MeasWithPMT}
1261%%%%%%%%%%%%%%%%%%%%%%%%%%%
1262The first measurements with a photomultiplier at input are started in
1263IPNO at Orsay.
1264
1265\begin{figure}[!htbp]
1266\centering
1267\includegraphics[width=0.7\columnwidth,height=6cm]{img53.jpg}
1268\caption{TO BE COMPLETED}
1269\label{fig:53}
1270\end{figure}
1271
1272\acknowledgments
1273%\begin{acknowledgments}
1274This work, especially one of the author, is supported by the National Reasaerch Agency under contract ANR-06-BLAN-0186.
1275%\end{acknowledgments}
1276%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1277\newpage
1278%\section*{References}
1279\bibliography{campagne}
1280\end{document}
1281
1282
Note: See TracBrowser for help on using the repository browser.