Present status and perspectives of neutrino oscillation phenomenology

Michele Maltoni

C.N. Yang Institute for Theoretical Physics State University of New York at Stony Brook

HEP 2005 Conference, Lisbon — July 23, 2005

I. Present status of neutrino oscillations

- Interpretation of the experimental data
- Global analysis in a 3v scenario

Conclusions

II. Potentialities of future experiments

- Man-made neutrino experiments
- Natural-source neutrino detectors
- The role of New Physics

Solar Neutrino Oscillations

• **Problem**: disagreement between **expected** and **observed** fluxes of v_e from the Sun:

• Solution: flavor conversion ($v_e \rightarrow v_{\mu,\tau}$) during the flight from source to detector:

$$i\frac{d\vec{\mathbf{v}}}{dt} = \begin{bmatrix} \frac{\Delta m^2}{4E_{\mathbf{v}}} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} \pm \sqrt{2} G_F \begin{pmatrix} N_e & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix} \vec{\mathbf{v}}, \quad \text{with} \quad \vec{\mathbf{v}} = \begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_a \end{pmatrix}$$

Solar neutrinos: keystones in the new millennium

- April 2000: LMA, SMA, LOW, VAC, sterile, ... [Gonzalez-Garcia, Peña-Garay, hep-ph/0002186]
- June 2001: SNO-I data (241 days, CC only, no spectrum):

10-3

104

 10^{-5}

10-6

10

10⁻⁸ -

10-9

10⁻¹⁰

 10^{-1}

 Δm^2_{sol} [eV²]

- \Rightarrow Flavor conversion established;
 - \Rightarrow **SMA** and sterile disfavored.
- April 2002: SNO-I data (306 days, CC/NC/ES spectrum+DN):
 - \Rightarrow **SMA** and sterile disappear.

- September 2003: SNO-II data (CC/NC/ES):
 - \Rightarrow Solar neutrino problem solved;
 - \Rightarrow LMA singled out (by solar data alone);
 - \Rightarrow maximal mixing ($\theta_{sol} = 45^{\circ}$) excluded;

February 2005: SNO-II data (CC/NC/ES spectrum+DN):

 \Rightarrow solar solution stable; new data have no significant impact.

 10° tan² θ

 10^{1}

The KamLAND experiment

- *Evidence* of \bar{v}_e disappearance ($E_{vis} > 2.6$ MeV, average length ≈ 180 km); CPT conservation \Rightarrow same osc. channel as solar data \Rightarrow same parameters ($\Delta m_{sol}^2, \theta_{sol}$).
- **December 2002**: first data release (86.8 events expected, 54 observed):
 - \Rightarrow LMA solution singled out, and split into LMA-I and LMA-II;
- June 2004: second data release (365.2 events expected, 258 observed):
 ⇒ LMA-II disappears, only one solution remains.

Atmospheric neutrino oscillations

• **Problem**: disagreement between **expected** and **observed** fluxes of atmospheric v_{μ} :

M. Maltoni <maltoni@insti.physics.sunysb.edu>

Progress in ATM & K2K data

- Progress in ATM neutrinos mostly limited to increase in statistics; shift in Δm_{atm}^2 due to improved calculation of ATM fluxes (1D \rightarrow 3D);
- K2K: accelerator experiment (length ≈ 250 km, $\langle E_{\rm v} \rangle \approx 1.3$ GeV); search for v_{μ} disappearance:
 - **release I**: 44 single-ring μ -like events expected, 29 observed;
 - **release II**: 88 single-ring μ -like events expected, 56 observed;

⇒ same osc. channel as ATM data ⇒ same param. ($\Delta m_{\rm atm}^2$, $\theta_{\rm atm}$).

∆m²_{atm} [10^{−3} eV²]

0.2 GeV

Three neutrino oscillations • $2\nu \rightarrow 3\nu$: $(\Delta m_{sol}^2, \theta_{sol}) \rightarrow (\Delta m_{21}^2, \theta_{12}), (\Delta m_{atm}^2, \theta_{atm}) \rightarrow (\Delta m_{32}^2, \theta_{21}), \theta_{rea} \rightarrow \theta_{13}, \text{ new } \delta_{CP}$: $i\frac{d\vec{\mathbf{v}}}{dt} = \mathbf{H}\vec{\mathbf{v}}; \qquad \mathbf{H} = \mathbf{O}\cdot\mathbf{H}_0^d\cdot\mathbf{O}^\dagger + \mathbf{V};$ $\mathbf{O} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23} \end{pmatrix}, \qquad \vec{\mathbf{v}} = \begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \\ \mathbf{v}_\tau \end{pmatrix};$ $\mathbf{H}_{0}^{d} = \frac{1}{2F_{..}} \operatorname{diag} \left(-\Delta m_{21}^{2}, 0, \Delta m_{32}^{2} \right); \qquad \mathbf{V} = \operatorname{diag} \left(\pm \sqrt{2}G_{F}N_{e}, 0, 0 \right).$ The hierarchy approximation m²atr 10-1

- From SOL and ATM data, we have $\Delta m_{21}^2 \ll \Delta m_{32}^2$;
- **SOL**: $\Delta m_{32}^2 \approx \infty \Rightarrow$ only **3** parameters: Δm_{21}^2 , θ_{12} , θ_{13} ;
- ATM: $\Delta m_{21}^2 \approx 0 \Rightarrow$ only 3 parameters: Δm_{32}^2 , θ_{23} , θ_{13} ;
- From Chooz: $\theta_{13} \approx 0 \Rightarrow$ SOL and ATM decoupled.

Bound on θ_{13}

• $\theta_{13} \neq 0$: $\begin{cases} solar region moves to larger values of \Delta m_{21}^2; \\ KamLAND region only weakly affected. \end{cases}$

• bounds on θ_{13} : { from Chooz+atmospheric data (best); from Solar+KamLAND data (good).

•
$$3\sigma$$
 range: $\sin^2 \theta_{13} \le 0.051$.

Intrinsic features of the three-neutrino scenario

Anything left out?

- LSND claimed *evidence* of $\bar{\mathbf{v}}_{\mu} \rightarrow \bar{\mathbf{v}}_{e}$ conversion (L = 30 m, $\langle E_{\mathbf{v}} \rangle \sim 30$ MeV);
- v-oscillations: need $\Delta m^2 \gtrsim 0.1 \text{ eV}^2 \Rightarrow$ incompatible with SOL+ATM data in a 3v scenario;
- proposed solutions:

. . .

- four neutrino oscillations;
- <u>3v osc. with CPT violation;</u>
- -4ν osc. with CPT violation;
- -4v with neutrino decay;
- MiniBOONE data expected soon.

Why mass-induced neutrino oscillations?

- Theoretically, many different mechanisms have been proposed;
- some anomalies (e.g., solar) can be perfectly explained also by alternative mechanisms;
- however, different experiments require different solutions;
- ⇒ mass-induced neutrino oscillations is *the only* mechanism which can account for **all** the data.
- $\Rightarrow \Delta m^2$ -oscillations is the Minimal Model.

What about other mechanisms?

- Still theoretically acceptable, but *must coexist with oscillations*;
- should not spoil the good description of Δm^2 -oscillations \Rightarrow **bounded**!

Future perspectives of neutrino physics

 \Leftrightarrow

Man-made neutrinos

• Long-baseline, reactor, $0\nu\beta\beta$, ...

Main goal: accurate reconstruction of the neutrino mass matrix.

MINOS, ICARUS, OPERA, T2K, NEMO3, KA-TRIN, . . .

Natural-source neutrinos

• Solar, ATM, SN, HEV, cosmo-V, ...

Main goal: Use neutrinos as a <u>tool</u> to study other aspects of Physics.

ANTARES, ICECUBE, BOREXINO, WMAP, PLANCK...

New Physics

Whatever the outcome, we will learn a lot about Physics Beyond the Standard Model:

- If data **disagree** with the expectations \Rightarrow New Physics beyond 3v oscillations;
- If data **agree** with the expectations \Rightarrow Strong bounds on New Physics.

Potentialities and limitations of long-baseline experiments

- Goal of LBL experiments is precision but challenged by parameter degeneracies:
 - *intrinsic* or $(\delta_{CP}, \theta_{13})$: $P_{V_e V_u}(\theta_{13}, \delta_{CP}) = P_{V_e V_u}(\theta'_{13}, \delta'_{CP})$
 - *hierarchy* or sgn(Δm_{31}^2): $P_{V_e V_u}(\Delta m_{31}^2, \delta_{CP}) = P_{V_e V_u}(-\Delta m_{31}^2, \delta'_{CP})$
 - *octant* or θ_{23} : $P_{\nu_{\mu}\nu_{\mu}} \propto \sin^2 2\theta_{23}$, $P_{\nu_{e}\nu_{\mu}}(\theta_{23}, \theta_{13}, \delta_{CP}) = P_{\nu_{e}\nu_{\mu}}(\pi/2 \theta_{23}, \theta_{13}', \delta_{CP}')$
- if only total number of $v_{e,\mu}$ and $\bar{v}_{e,\mu}$ at a given L/E are measured \Rightarrow 8-fold degeneracy;

• Solutions: $\begin{cases} \text{use "silver" channels } \nu_e \to \nu_\tau \text{ and } \nu_\mu \to \nu_\tau; \\ \text{use wide-band superbeams for } E_\nu \text{ spectrum;} \\ \text{combine measurements at different } L; \\ \text{combine LBL with other data (ATM, reactor);} \end{cases}$

- single experiment: not enough (even with E_{ν} spectrum);
- combined analyses of different data sets required.

Example: solving parameter degeneracies with ATM+LBL data

Why atmospheric neutrinos?

- Contrary to LBL, ATM data naturally span a very large range of energies and distances;
- future LBL experiments \Rightarrow huge (\sim Mton) detectors \Rightarrow lots of ATM ν events for free!

Combined analysis of LBL and ATM data

Neutrino telescopes: the IceCube detector

• Geometry: hexagon of 80 strings (separation: 125 m), each carrying 60 photo-multipliers (distance: 17 m). Total size: $\sim 1 \text{ km}^3$ (20000 times bigger than Super-Kamiokande).

- Detection technique: observation of Cerenkov light;
- Threshold: ~ 80 GeV for v_{μ} , ~ 10 TeV for v_{e} and v_{τ} ; [Halzen & Hooper, Rept. Prog. Phys. 65 (2002) 1025]
- Resolution (μ): angular $\leq 1^{\circ}$, energy $\leq 30\%$ in logarithm; [Astropart. Phys. 20 (2004) 507]
- Status: under construction; Neutrino flavor
- Physics reach:

. . .

- atmospheric v's;
- astrophysical v's;
- ultra-high energy v's;

Example: bound on New Physics from IceCube data

 $\vec{\mathbf{v}} = (\mathbf{v}_{\boldsymbol{\mu}}, \mathbf{v}_{\tau})^t$

Viol. of Lorentz Invariance

$$i\frac{d\vec{v}}{dt} = \left[\frac{\Delta m^2}{4E_v} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} + \frac{\Delta c}{c} \frac{E_v}{2} \begin{pmatrix} -\cos 2\xi & \sin 2\xi \\ \sin 2\xi & \cos 2\xi \end{pmatrix}\right] \vec{v};$$

- from SK atmospheric data: $|\Delta c/c| \le 1.6 \times 10^{-24}$ (3 σ);
- after 10 yr of IceCube: $|\Delta c/c| \le 2 \times 10^{-28}$ (3 σ , $\xi = 45^{\circ}$);
- ⇒ SK bound improved by 4 order of magnitude. [Halzen, Gonzalez-Garcia & MM, PRD 71 (2005) 093010]

Quantum decoherence

• Expected flux of TeV anti-v from Cygnus OB2;

•
$$P_{\bar{\mathbf{v}}_{\alpha} \to \bar{\mathbf{v}}_{\beta}} = \frac{1}{3} + e^{-\bar{\mathbf{v}}L} f_{\bar{\mathbf{v}}_{\alpha} \to \bar{\mathbf{v}}_{\beta}}, \quad \bar{\mathbf{\gamma}} = \kappa_n \left(\frac{E_{\mathbf{v}}}{[\text{GeV}]}\right)^n;$$

• bounds in table are for 15 yr of IceCube data.

SK: [Lisi, Marrone & Montanino, PRL 85 (2000) 1166]

	SK-atm [GeV]	IceCube [GeV]
κ_{-1}	$2.0 imes 10^{-21}$	$1.0 imes 10^{-34}$
κ ₀	$3.5 imes 10^{-23}$	$3.2 imes 10^{-36}$
κ_1	_	$1.6 imes 10^{-40}$
κ2	$9.0 imes 10^{-28}$	$2.0 imes 10^{-44}$
к3	—	$3.0 imes 10^{-47}$

IceCube: [Anchordoqui et al., hep-ph/0506168]

- Solar, Atmospheric, Reactor, Accelerator (except LSND) data are perfectly compatible:
 - solar & KamLAND favor $\Delta m_{sol}^2 \approx 8 \times 10^{-5} \text{ eV}^2$ and *large but non-maximal* mixing;
 - atmospheric & K2K data favor $\Delta m_{\rm atm}^2 \approx 2 \times 10^{-3} \text{ eV}^2$ and *nearly maximal* mixing; subleading effects start being visible;
 - $-\,$ all data sets indicate $\theta_{rea}\approx 0;$
- MiniBOONE is running to test LSND; results expected soon (by the end of the year?)
- Future experiments will:
 - improve out knowledge of the neutrino mass matrix;
 - use neutrinos as a tool to study other aspects of physics;
 - open a unique door on Physics
 Beyond the SM.

Man-made neutrinos

• Long-baseline, reactor, 0vββ, ... Main goal: accurate reconstruction of the neutrino mass matrix. MINOS, ICARUS, OPERA, T2K, NEMO3, KATRIN, ...

Whatever the outcome, we will learn a lot about Physics Beyond the Standard Model:

- If data <code>disagree</code> with the expectations \Rightarrow New Physics beyond 3ν oscillations;
- If data agree with the expectations \Rightarrow Strong bounds on New Physics.