UH HEPG Particle Astrophysics: Radio Detection of High Energy Particles

- 1. GZK neutrinos revisited, update
- 2. ANITA update
- 3. Saltdome Shower array R&D
- 4. Radio Bremsstrahlung experiment (RaBID)

Prof. P. Gorham, Prof. J. Learned, Prof. G. Varner+ (presenter)

Mr. M. Chasse*, Mr. J. Kowalski*, Dr. J. Link, Dr. S. Matsuno, Mr. R. Milincic, Dr. P. Miocinovic, Dr. B. Stokes

> * New group members +New faculty!

(Ultra-)High Energy Physics of Cosmic rays & Neutrinos

- Neither origin nor acceleration mechanism known for cosmic rays above 10¹⁹ eV
- A paradox:
 - No <u>nearby</u> sources observed
 - distant sources <u>excluded</u> due to GZK process
- Neutrinos at 10¹⁷⁻¹⁹ eV required by standard-model physics* through the GZK process--observing them is crucial to resolving the GZK paradox

* Berezinsky et al. 1971.

8/25/2005

UH DOE review 2005

Neutrinos: The only known messengers at PeV energies and above

- Photons lost above 30 TeV: pair production on IR & μwave background
- Charged particles: scattered by B-fields or GZK process at all energies
- Sources extend to <u>10⁹ TeV</u> !
- => Study of the highest energy processes and particles throughout the universe *requires* PeV-ZeV neutrino detectors
- To guarantee EeV neutrino detection, design for the GZK neutrino flux

What is needed for a GZK ν detector?

- Standard model GZK ν flux: <1 per km² per day over 2π sr
 - Interaction probability per km of water = 0.2%
 - Derived rate of order 0.5 event per year per cubic km of water or ice

→ A teraton (1000 km³ sr) target is required!

Problem: how to scale up from current water Cherenkov detectors

- One solution: exploit the Askaryan effect: coherent radio Cherenkov emission
 - Particle showers in solid dielectric media yield strong, coherent radio pulses
 - Neutrinos can shower in many radio-clear media: air, ice, rock-salt, etc.
 - Economy of scale for a radio detector (antenna array + receivers) is very competitive for giant detectors

8/25/2005

Design for discovery of GZK ν flux

- Huge Volume of solid medium: Antarctic Ice
- Broadband antennas & low noise amplifiers to watch it
- A very high vantage point, but not too high or too far away
- The end result: ANITA

Antarctic Impulsive Transient Antenna

Instantaneous balloon field of view

- •ANITA: First in line of ALL high energy neutrino detectors for cosmogenic (GZK) neutrino detection
- first flight: December 2006

ANITA concept

Flight Payload Design

A radio "feedhorn array" for the Antarctica Continent

- Quad-ridged horn antennas provide superb impulse response & bandwidth
- Interferometry & beam gradiometry from multiple overlapped antenna measurements

ANITA as a neutrino telescope

8/25/2005

- Pulse-phase interferometer (150ps timing) gives intrinsic resolution of <1° elevation by ~1° azimuth for arrival direction of radio pulse
- Neutrino direction constrained to ~<2° in elevation by earth absorption, and by ~3-5° in azimuth by polarizationeangle

ANITA-lite Prototype flight

- Piggyback Mission of Opportunity on the 03-04 TIGER* flight, completed mid-January 04
- ANITA prototypes & off-the-shelf hardware used
 - 2 dual-pol. ANITA antennas w/ low-noise amps
 - 4 channels at 1 GHz RF bandwidth, 2 GHz sampling
- 18.4 days flight time, 40% net livetime due to slow (4sec per event) GPS time readout
 - "Heartbeat" event rate of several per minute, with~100K events recorded:
 - payload generated EMI + thermal noise + calibration triggers + forced/timeout triggers

Anita-lite & other limits & projections

)

- RICE limits for 3500 hours livetime in embedded South Pole array
- ✤ GLUE limits ~120 hours livetime, Lunar regolith observations
- FORTE limits on 3 days of satellite observations of Greenland ice sheet

- **ANITA-lite**: 18.4 days of data, net 40% livetime with 60% analysis efficiency for detection
- · Ice coverage & average depths included
- No candidates survive impulse cuts in 2 independent analyses (UH & UCI)
- Z-burst model (vv annihilation --> UHECR) strongly excluded: we expect 20-30 events, see none
- ANITA projected sensitivity:
 - $v_e v_\mu v_\tau$ included, full-mixing assumed
 - 1.5-2.5 orders of magnitude gain!

8/25/2005

UH DOE review 2005

ANITA Engineering Model Payload

- Ft. Sumner hangar webcam
- Lower truss section ~16' diameter
- EM flight August 26th
- Full payload Antarctic flight in Dec. 2006

• August 22, 2005: Gondola nearing completion for flight this week

8/25/2005

UH DOE review 2005

Saltdome Shower Array:

- Goal: Precision HEP and Particle Astrophysics with GZK neutrinos
- Publication of Final T460 Askaryan-in-salt analysis (PRD 2005) & full SalSA simulations
- Significant hardware design & development
- Site selection studies: Richton & Vacherie salt domes

Saltdome Shower Array (SalSA) concept

- Rock salt can have extremely low RF loss, as radio-clear as Antarctic ice
- ~2.4 times as dense as ice
- typical: **50-100 km³** water equivalent in top ~3.5km =>**300-600 km³ sr w.e.**

T460 rock-salt target

- 4lb high-purity synthetic rocksalt bricks (density=2.07)
- + some filler from local grocery store...
- Beam exit point shown above
- Depth ~ 15 radiation lengths
 - good indicator of transverse size of shower!

Detector layout; EGS simulation

PLAN VIEW (FROM ABOVE ANTENNA LAYER) 200 cm (antenna layer shown) 48.5 cm 46 cm Bremsstrahlung target 80cm= gamma-ray beamline beamline 70 cm 🖽 10 degrees salt sta table 4' x 8' polyethylene sheet LPDA microwave horn antenna concrete wall ~20cm ~20cm SIDE ELEVATION VIEW 8 feet ~15 m 4 block layer above antennas antenna layer (printed-circuit boards) 84 cm Bremsstrahlung target beamline gamma-ray beamline 33 cm plywood table Deflected electron beam To beam dump 200 cm cm () UH DOE review 2005

- Salt block target
- Contained about 98% of shower as per Electron-Gamma Shower (EGS) simulation

8/25/2005

RF Coherence vs. energy & frequency

- Much wider energy range covered than previously: 1PeV up to 10 EeV
- Coherence (quadratic rise of pulse power with shower energy) observed over 8 orders of magnitude in radio pulse power
- Differs from actual EeV showers only in leading interactions==> radio emission almost unaffected

Ultra-wideband data on Askaryan pulse

- 2000 & 2002 SLAC Experiments confirm extreme coherence of Askaryan radio pulse
- 60 picosecond pulse widths measured for salt showers
- Flat spectrum radio emission extends well into microwave regime

SalSA simulations

- A 2.5 km³ array with 225 m spacing, $12^2=144$ strings, $12^3=1728$ antenna nodes, 12 antennas per node, dual polarization ==> $V_{eff} \Omega = 380$ km³ sr w.e. at 1 EeV
- Threshold <10¹⁷ eV, few 100s antennas hit at 1 EeV, >1000 hits at 10 EeV
- Rate: at least 20 events per year from rock-bottom minimal GZK predictions

8/25/2005

UH DOE review 2005

Estimated SalSA Energy threshold

- Ethr < 300 PeV (3 x 10¹⁸ eV) best for full GZK spectral measurement
- Threshold depends on average distance to nearest detector and local antenna trigger voltage above thermal noise
 - Vnoise = $k T \Delta f$
 - Tsys = Tsalt+Tamp = 450K
 - $\hfill\square$ Δf of order 200 MHz
- 225 m spacing gives 30 PeV
- Margin of at least 10x for GZK neutrino energies

Angular resolution

- Of order 1 degree angular resolution required for neutrino cross section measurements
- Studied in detail for 12x12 string array, using Chi-squared minimization
- For GZK energies:
 - 0.1° achieved for contained events-inside the array
 - 1° achieved for external events, parallel to face, 250 m outside of array (partial Cherenkov cone seen)
- Polarization information + unscattered Cherenkov cone leads to excellent angular resolution!

Existing Neutrino Limits and Potential Future Sensitivity

- RICE limits for 3500 hours livetime
- GLUE limits ~120 hours livetime
- ANITA sensitivity, 45 days total:

 ~5 to 30 GZK neutrinos
- IceCube: high energy cascades

 ~1.5-3 GZK events in 3 years
- Description of the second seco

SalSA sensitivity, 3 yrs live 70-230 GZK neutrino events

GZK neutrino sensitivity details, 1 yr

- 2 independent MC calculations: UCLA & UH
- UCLA: Saltzberg 2002 SPIE; also 2005 Nobel symposium
 - Simplified 10x10 strings, 10 antenna nodes per string
 - Did not truncate dome, so high energies extended
- UH: Gorham et al. PRD 2005
 - 12x12 strings, 12 nodes with realistic trigger sims
 - Even 4-string array sees GZK events in 1 year!

Richton Dome

- Richton Dome has excellent seismic, gravity & direct drilling measurements of salt body
- Among the largest of all Gulf coast domes

8/25/2005

UH DOE review 2005

Vacherie Salt dome, LA

Figure 8. Northeast-southwest geologic section of Vacherie Salt Dome. From Law Engineering Testing Company (1981).

Figure 7. Geologic map of Vacherie Salt Dome. From Law Engineering Testing Company (198 1).

- 2500' core analyzed by DOE in 80's
- Salt extremely dry (25ppm brine)
- Low economic usage, no oil or gas

Basic string architecture

Node = 12 antennas and center housing

In hole digitization

Digitizer n' Readout, In-situ Transient Observation in Salt [D'RITOS]

- To avoid several watts per channel for a commercial Gsample/s digitizer:
- Use analog storage of GHz-rate samples (SCA) in ring-buffer
- Separate logic decides if signal is present at \sim 2-3 σ level
- Issue a "hold," then "digitize" and read out with low-power ADCs

0.25µ CMOS process

3rd generation switched-capacitor array (SCA) architecture (Varner)

8/25/2005

GEISER Data flow

(Giga-bit Ethernet Instrumentation for SalSA Electronics Readout)

SalSA Node-controller readout board architecture

Radio Bremsstrahlung

- "Radio fluorescence-equivalent" detection of ultra-high energy cosmic ray air showers
- Could provide 100% duty-cycle alternative to N2 fluorescence detection (<10% duty cycle typical)
- Two accelerator experiments: Argonne Wakefield Accelerator (2002) & SLAC-T471 (summer 2004) indicate stronger-thanexpected microwave emission for 20-50ns after shower passage
- Radio Bremsstrahlung Impulse Detector (RaBID): 2005 experiment to verify for UHE real air showers

AWA 2002 & SLAC T471

time relative to shower passage, ns

8/25/2005

UH DOE review 2005

RaBID Detection scheme

8/25/2005

Next step: try it on real air showers

- G. Varner designed custom compact-PCI DAQ system
- 12 microwave channels on two cPCI boards
- Based on commercial sat-TV, wireless & cellular technology to keep cost low (<\$10K per station)

Data from RaBID

 Triggered event, sequential in 2-different feedhorns, at both 4 & 10 GHz (feed-1 10GHz data dropped out here)

RaBID status & plans

- Single-dish prototype already operational on Watanabe roof
- B. Stokes/M. Chasse developing Monte Carlo, firmware, & analysis software
- Proposal to NSF Small Grants For Exploratory Research (SGER) to be submitted this week
 - 4-dish system to be deployed at the Telescope Array in Utah
 - Will get shower trigger from TA ground & N2FI array
- UH prototype can still set first limits or achieve detection if NSF declines support this year

Summary

UH Radio detection group is a world leader!

ANITA is setting the pace for UHE/GZK neutrino detectors

SalSA: Has the Potential to bridge HEP to Particle Astro like no other detector

RaBID: new directions & possibilities for radio detection

The Z-burst model

- Original idea, proposed as a method of Big-bang relic neutrino detection via resonant annihilation (T. Weiler PRL 1986):
 - $10^{23} \text{ eV } v + 1.9 \text{ K} \overline{v} \longrightarrow Z_0$ produces a dip in a cosmic neutrino source spectrum, *IF one has a source of 10²³ eV neutrinos*
- More recently: Z₀ decay into hadron secondaries gives 10²⁰⁺ eV protons to explain any super-GZK particles, again *IF there is an appropriate source of neutrinos at super-mega-GZK energies*

- The Z-burst proposal *had* the virtue of solving three completely unrelated (and very difficult) problems at once: relic neutrino detection AND super-GZK cosmic rays AND direct v mass
 - ==> " N³" physics....(Nobel³ ?), no more!

 ⁽Many authors including Tom Weiler have explored this revived version)

Cherenkov polarization tracking

Cherenkov radiation predictions:

- 100% linearly polarized
- plane of polarization aligned with plane containing Poynting vector S and particle/cascade velocity U

- Radio Cherenkov:
 polarization measurements
 are straightforward
- Two antennas at different parts of cone:
 - Will measure different projected plane of E, S
 - Intersection of these planes defines shower track

Polarization tracking

• Measured with dual-polarization embedded bowtie antenna array in salt