NOW 2006

Comparison of the C2M^{*} and T2HK LBL experiments

Thomas Schwetz SISSA, Trieste

based on J.-E. Campagne, M. Maltoni, M. Mezzetto, T.S., hep-ph/0603172 (v2)

T.S. is supported by an Intra-European Marie Curie fellowship of the European Commission within the 6th framework program

*CERN-to-MEMPHYS

Neutrino oscillation physics is entering the era of long-baseline experiments:

- K2K (finished)
- MINOS, CNGS (running)
- T2K, NOνA, (up-coming)

Neutrino oscillation physics is entering the era of long-baseline experiments:

- K2K (finished)
- MINOS, CNGS (running)
- T2K, NO ν A, (up-coming)

What will be the best option for the next step?

Three options for future LBL exps

	etaB	SPL	T2HK
Baseline:	130 km (CERI	N-Frejus)	295 km (Tokai-Kamioka)
WC Detector:	MEMPHYS (440 kt)		Hyper-K (440 kt)
$\langle E_{\nu} \rangle$:	400 MeV	300 MeV	760 MeV
Channel:	$\overset{(-)}{\nu}_{e} \rightarrow \overset{(-)}{\nu}_{\mu}$	$\overset{(-}{ u}$	$^{\mu}\mu \rightarrow \overset{(-)}{\nu}_{e}$
Time ($\nu + \overline{\nu}$):	5 + 5 y	2	2 + 8 y
Beam:	$^{5.8}_{2.2} \ 10^{18} \ ^{ m He}_{ m Ne}$ dcy/y	2	4 MW
Systematics:	2%–5% uncertainty on signal & background		

Sensitivity to θ_{13}

CP violation

The impact of systematics

The most relevant systematic is the uncertainty on the background:

$$\frac{\text{systematical}}{\text{statistical}} = \frac{\sigma_{\text{BG}}B}{\sqrt{B}} = \sigma_{\text{BG}}\sqrt{B}$$

experiment becomes systematics dominated for $\sigma_{\rm BG}\gtrsim 1/\sqrt{B}$

The most relevant systematic is the uncertainty on the background:

$$\frac{\text{systematical}}{\text{statistical}} = \frac{\sigma_{\text{BG}}B}{\sqrt{B}} = \sigma_{\text{BG}}\sqrt{B}$$

experiment becomes systematics dominated for $\sigma_{\rm BG}\gtrsim 1/\sqrt{B}$

The impact of systematics

Energy shape is very important

energy shape of BG is very different from signal for βB

Neutrino energy reconstruction (QE kinematics)

Below 0.5 GeV the energy resolution is optimal and the non QE contamination negligible.

M. Mezzetto, Nufact 06, UCI Irvine, August 24-30, 2006

7

Pion background in βB

makes a significant difference in the final sensitivity!!

β B-CPV sensitivity and number of ion decays

our "standard" fluxes: $5.8(2.2) \cdot 10^{18}$ He (Ne) dcys/yr (twice the values of the EURISOL baseline design)

Parameter degeneracies

Degeneracies

Fortunately degeneracies have a rather small impact on the CPV sensitivity ...

Degeneracies and CPV at $\beta \mathbf{B}$

Impact of the true values

..., nevertheless it would be nice to determine the neutrino mass hierarchy and the $\theta_{23}\text{-}\mathrm{octant}$

..., nevertheless it would be nice to determine the neutrino mass hierarchy and the θ_{23} -octant

use atmospheric neutrino data in your Mt detector!

P. Huber, M. Maltoni, T.S., Phys. Rev. D71, 053006 (2005) [hep-ph/0501037]

Three-flavour effects in atmospheric ν

Thanks to the huge statistics there is sensitivity to sub-leading three flavour effects in ATM data:

Three-flavour effects in atmospheric ν

Thanks to the huge statistics there is sensitivity to sub-leading three flavour effects in ATM data:

 θ₁₃ > 0 leads to resonant matter effect for core-crossing neutrinos (multi-GeV energies) sensitivity to the mass hierarchy

Three-flavour effects in atmospheric ν

Thanks to the huge statistics there is sensitivity to sub-leading three flavour effects in ATM data:

- $\theta_{13} > 0$ leads to resonant matter effect for core-crossing neutrinos (multi-GeV energies) sensitivity to the mass hierarchy
- effects of the solar Δm_{21}^2 provides sensitivity to the octant of θ_{23} (sub-GeV)

Sensitivity to the mass hierarchy

dashed: LBL only, solid: LBL+ATM

Sensitivity to the octant of θ_{23}

Resolving degeneracies

solid: LBL only

Resolving degeneracies

solid: LBL only, shaded: LBL+ATM

Synergies of $\beta \mathbf{B} \text{ and } \mathbf{SPL}$

Synergies of βB and SPL

CPT invariance:

$$P_{\bar{\nu}_{\mu} \to \bar{\nu}_{e}} = P_{\nu_{e} \to \nu_{\mu}}$$

 \Rightarrow replace the anti-neutrinos from the superbeam with neutrinos from the βB

 \Rightarrow if βB and superbeam are available simultaneously anti-neutrino running is not needed

 \Rightarrow can do the same measurement in about half of the time

β B+SPL(ν only): θ_{13} sensitivity

β B+SPL(ν only): CP violation

If all four CP and T conjugated probabilities

SPL
$$(\nu)$$
: $P_{\nu_{\mu} \rightarrow \nu_{e}}$
SPL $(\bar{\nu})$: $P_{\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}}$
 β B (ν) : $P_{\nu_{e} \rightarrow \nu_{\mu}}$
 β B $(\bar{\nu})$: $P_{\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}}$

are available the tiny matter effect from CERN to MEMPHYS (130 km) provides sensitivity to the neutrino mass hierarchy.

β B+SPL: mass hierarchy

dashed: LBL only, solid: LBL+ATM

Before concluding...

Before concluding...

These results have been obtained with the GLoBES software package: http://www.ph.tum.de/~globes

BB.glb, SPL.glb, T2HK.glb files are availble.

