KamLAND Results

Neutrino Oscillation Workshop Sep. 8, 2008 I. Shimizu (Tohoku Univ.)

KamLAND Collaboration

S. Abe,1 T. Ebihara,1 S. Enomoto,1 K. Furuno,1 Y. Gando,1 K. Ichimura,1 H. Ikeda,1 K. Inoue,1 Y. Kibe,1 Y. Kishimoto,1 M. Koga,1 A. Kozlov,1 Y. Minekawa,1 T. Mitsui,1 K. Nakajima,1, * K. Nakajima,1 K. Nakamura,1 M. Nakamura,1 K. Owada,1 I. Shimizu,1 Y. Shimizu,1 J. Shirai,1 F. Suekane,1 A. Suzuki,1 Y. Takemoto,1 K. Tamae,1 A. Terashima,1 H. Watanabe,1 E. Yonezawa,1 S. Yoshida,1 J. Busenitz,2 T. Classen,2 C. Grant,2 G. Keefer,2 D.S. Leonard,2 D. McKee,2 A. Piepke,2 M.P. Decowski,3 J.A. Detwiler,3 S.J. Freedman,3 B.K. Fujikawa,3 F. Gray,3, † E. Guardincerri,3 L. Hsu,3, ‡ R. Kadel,3 C. Lendvai,3 K.-B. Luk,3 H. Murayama,3 T. O'Donnell,3 H.M. Steiner,3 L.A. Winslow,3 D.A. Dwyer,4 C. Jillings,4, Åo C. Mauger,4 R.D. McKeown,4 P. Vogel,4 C. Zhang,4 B.E. Berger,5 C.E. Lane,6 J. Maricic,6 T. Miletic,6 M. Batygov,7 J.G. Learned,7 S. Matsuno,7 S. Pakvasa,7 J. Foster,8 G.A. Horton-Smith,8 A. Tang,8 S. Dazeley,9, Å[~] K.E. Downum,10 G. Gratta,10 K. Tolich,10 W. Bugg,11 Y. Efremenko,11 Y. Kamyshkov,11 O. Perevozchikov,11 H.J. Karwowski,12 D.M. Markoff,12 W. Tornow,12 K.M. Heeger,13 F. Piquemal,14 and J.-S. Ricol14

(The KamLAND Collaboration)

1Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan 2Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA 3Physics Department, University of California, Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125. USA 5Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA 6Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA 7Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA 8Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA 10Physics Department, Stanford University, Stanford, California 94305, USA 11Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 12Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Physics Departments at Duke University, North Carolina Central University, and the University of North Carolina at Chapel Hill 13Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA 14CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I, F-33175 Gradignan Cedex, France

Reactor Neutrino

Kamioka Liquid Scintillator Anti-Neutrino Detector

2 flavor neutrino oscillation

34% photo-coverage with 1325 17" and 554 20" PMTs

,000 ton LS

most sensitive region

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \sin^2\left(\frac{1.27\Delta m^2 [\text{eV}^2]l[m]}{E[\text{MeV}]}\right)$$

 $\Delta m^{2} = (1/1.27) \cdot (E[\text{MeV}]/L[m]) \cdot (\pi/2)$ ~ $3 \times 10^{-5} \text{eV}^{2}$

reactor neutrino : sensitive to LMA solution

Physics Target in KamLAND

observed energy (MeV) 0.4 2.6 8.5 1.0 solar neutrino geo neutrino supernova neutrino reactor neutrino solar neutrino reactor neutrino ν_x geo neutrino prompt ν_x ν_e р delayed mean capture time ~ 200 µsec on proton neutrino detection by electron scattering anti-neutrino detection by inverse beta-decay

Reactor and Geo Neutrino Analysis

(1) efficient accidental background rejection(2) combined analysis of reactor and geo neutrinos

Anti-Neutrino Event Selection

(a) accidental B.G. discrimination

- 0.5 < ΔT < 1000 µs
- ∆R < 2 m
- 1.8 MeV < $E_{delayed}$ < 2.6 MeV or
- $4.0 \text{ MeV} < \text{E}_{\text{delayed}} < 5.8 \text{ MeV}$
- 0.9 MeV < E_{prompt} < 8.5 MeV
- R_{prompt}, R_{delayed} < 6.0 m
- L-selection from 6 parameters

(b) µ spallation cut

- ΔT_{μ} > 2 s after showing μ
- ΔT_{μ} > 2 s or ΔL > 3 m after

non-showering μ ($\Delta Q < 10^6$ p.e.)

Likelihood Selection

Systematic Uncertainty "full volume" calibration lowered the fiducial volume error (4.7% in previous analysis) **Detector related Reactor related** 1.8% **Fiducial volume** 2.4% \overline{v}_e spectra 2.1% 1.5% **Energy scale Reactor power** 0.6% 1.0% L-selection eff. **Fuel composition** 0.2% Long-lived nuclei 0.3% **OD** veto 0.2% **Cross section** 0.01% **Time lag** 3.4% 2.4%

Total systematic uncertainty : 4.1%

Full Volume Calibration

(a, n) Background Estimation

Cross section for each branch should be measured

Cross Section Measurement

direct measurement of ${}^{13}C(\alpha, n){}^{16}O$ reaction in KamLAND

(α, n) background estimation
163.3 ± 18.0 events for ground state
18.7 ± 3.7 events for excited state

Estimation uncertainty

11% for ground state20% for excited state

Rate Analysis above 2.6 MeV

Energy Spectrum above 0.9 MeV

exposure : 2881 ton-year (3.8 × 766 ton-year for "KamLAND 2004")

Scaled no oscillation spectrum is excluded at 5.1 σ

L/E Plot

L/E Plot

Alternate Hypothesis

V. D. Barger et al., Phys. Rev. Lett. 82, 2640 (1999)E. Lisi et al, Phys. Rev. Lett. 85, 1166 (2000)

best model is neutrino oscillation

Alternate Wavelength

LMA 0 and LMA II are disfavored at more than 4σ

Oscillation Parameters

Precise Measurement of Δm^2

 Δm^2 is measured at 2.8% precision by KamLAND

 χ^2 Map Release

<u>http://www.awa.tohoku.ac.jp/KamLAND/</u> <u>chi2map_3rdresult/chi2map.html</u>

'KamLAND-only'

best-fit parameters : $(\tan^2\theta, \Delta m^2) = (0.56, 7.58 \times 10^{-5} \text{ eV}^2)$

<u>'KamLAND + Solar'</u>

best-fit parameters : $(\tan^2\theta, \Delta m^2) = (0.47, 7.59 \times 10^{-5} \text{ eV}^2)$

Please use the constraints on oscillation parameters

Geo Neutrino

Inner Structure of the Earth

- Inner structure of the earth was investigated by the seismic wave measurement
- Total heat flow from the earth

<u>44TW or 31 TW</u>

(U ~ 8 TW, Th ~ 8 TW, K ~ 3 TW)

Radiogenic heat contribution is important to understand the earth dynamics

Neutrino from the Earth

"Geo neutrino" directly tests radiogenic heat generation

Geo Neutrino Estimation

Geo Reactor Constraint

Natural nuclear fission reactor at the Earth's center

KamLAND data with the solar oscillation constraints

Geo reactor power < 6.2 TW (90% C.L.)

Future Prospects (Solar Phase)

Neutrino from the Sun

 Solar neutrinos are produced by nuclear fusion reactions in the sun

- Small fraction from the CNO cycle (no direct measurement by neutrinos)

Standard Solar Model

- New abundance model

strongly disagree with helioseismological measurement

- Precise nuclear cross section

LUNA result : ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ ${}^{14}\text{N}(p,\gamma){}^{15}\text{O}$

	5.14. Daricali and A.W. Ociciicili, Astro. 1 (193. 5. 021, 05 (2005))								
	Model	pp	pep	hep	$^{7}\mathrm{Be}$	⁸ B	^{13}N	$^{15}\mathrm{O}$	17 F
	BP04(Yale)	5.94	1.40	7.88	4.86	5.79	5.71	5.03	5.91
	BP04(Garching)	5.94	1.41	7.88	4.84	5.74	5.70	4.98	5.87
GS98 AGS05	BS04	5.94	1.40	7.86	4.88	5.87	5.62	4.90	6.01
	$BS05(^{14}N)$	5.99	1.42	7.91	4.89	5.83	3.11	2.38	5.97
	BS05(OP)	5.99	1.42	7.93	4.84	5 <u>.6</u> 9	3.07	2.33	5.84
	BS05(AGS,OP)	6.06	1.45	8.25	4.34	4.51	2.01	1.45	3.25
	BS05(AGS,OPAL)	6.05	1.45	8.23	4.38	4.59	2.03	1.47	3.31
				-10%			-38%		

J.N. Bahcall and A.M. Serenelli, Astro. Phys. J. 621, 85 (2005)

KamLAND will measure ⁷Be and CNO solar neutrinos and test the lower abundance of heavy element (AGS05)

S₃₄: 2.5% S_{1.14}: 8.4%

Solar Neutrino Observation

KamLAND singles spectra

⁷Be v observation

B.G. reduction requirement ~ 1 μ Bq / m³

Purification of Liquid Scintillator

distillation method

separation of substances based on boiling point differences

1st Purification (2007)

- Total 1699 m³ of LS was purified through Aug. 1, 2007
- Purified volume / KamLAND volume = 1.4

Reduction efficiency is not sufficient

2nd Purification (2008)

Improvement of purification

(1) Avoid mixing of Liquid Scintillator

- precise control of LS density and temperature
- boundary monitoring by onsite analysis tool

(2) Find gas leakage in distillation system and detector

- Fixed some leakage points at PPO distillation tower and near top of the detector

(3) Upgrade of PPO tower for better performance

- Low pressure (low temperature) distillation gives efficient removal of impurities in LS

We started the 2nd purification in June Total purified volume (~ Aug. 31) = 1,200 m^3

2nd Purification Status

We can keep the LS boundary by the precise density control
 The ⁸⁵Kr background was reduced by almost two orders of magnitude for full volume LS circulation ~ 1,200 m³

need ~ a few more cycle?

Summary

- KamLAND improved sensitivity to $\overline{\nu}_e$ observation. data-set : 766 ton-yr \rightarrow 2881 ton-yr (α , n) B.G. uncertainty : E threshold : 2.6 MeV \rightarrow 0.9 MeV 32% \rightarrow 10% (ground state) syst. uncertainty : 6.5% \rightarrow 4.1% 100% \rightarrow 20% (excited state)
- In the reactor neutrino analyses, we showed
 - Oscillatory shape ~ 2 cycle of neutrino oscillation.
 - Exclusion of LMA II and 0 at more than 4σ C.L.
 - Precise measurement of oscillation parameters.
- Geo neutrino flux was measured with better precision.
- We started the 2nd purification in June (total purified volume = 1,200 m³), it is going on, and the B.G. reduction status will be reported soon.