200 days of Borexino data

Livia Ludhova INFN Milano (on behalf of Borexino collaboration)

NOW 2008, Otranto, 6-13 September 2008

Solar neutrino energy spectrum

NOW 2008, Otranto, 6-13 September 2008

Standard Solar Model: Neutrino fluxes vs solar metallicity

(metallicity – abundance of the elements above Helium)

Ф (ст ⁻² s ⁻¹)	рр (х 10 ¹⁰)	рер (х 10 ⁸)	⁷ Be (x 10 ⁹)	⁸ B (x 10 ⁶)	¹³ N:CNO (x 10 ⁸)	¹⁵ O:CNO (x 10 ⁸)	¹⁷ F:CNO (x 10 ⁶)
BS05 ⁽¹⁾ GS 98 ⁽²⁾	5.99	1.42	4.84	5.69	3.07	2.33	5.84
BS05 ⁽¹⁾ AGS05 ⁽³⁾	6.06	1.45	4.34	4.51	2.01	1.45	3.25
Δ	+1%	+2%	-10%	-21%	-35%	-38%	-44%

⁽¹⁾BS05: Bahcall, Serenelli & Basu, AstropJ 621 (2005) L85

⁽²⁾Based on <u>high metalicity model</u> GS98: Grevesse & Sauval, Space Sci. Rev. 85, 161 (1998)
 ⁽³⁾Based on new <u>low metalicity model</u> AGS05:

Asplund ,Grevesse & Sauval 2005, Nucl. Phys. A 777, 1 (2006).

BUT: incompatible with helioseismological measurements

Both (2) and (3) use Opacity Project opalicity

MEASURING for the first time the CNO-neutrino fluxes

would help to resolve the controversy!

NOW 2008, Otranto, 6-13 September 2008

Solar -v survival probability **BEFORE BOREXINO**

Low energy neutrinos: flavor change dominated by vacuum oscillations;

High energy neutrinos: Resonant oscillations in matter (MSW effect): Effective electron neutrino mass is increased due to the charge

current interactions with electrons of the Sun

Transition region: Decrease of the v_e survival

probability (P_{ee})

Solar –v survival probability **BEFORE BOREXINO**

Low energy neutrinos: flavor change dominated by vacuum oscillations;

High energy neutrinos: Resonant oscillations in matter (MSW effect): Effective electron neutrino mass is increased due to the charge current interactions with electrons of the Sun

Transition region: Decrease of the v_e survival probability (P_{ee})

Scientific goals of Borexino

- The first real-time measurement of sub-MeV solar neutrinos;
- The first simultaneous measurement of solar neutrinos from the vacuum dominated region (7Be-v two measurements published) and from the matter-enhanced oscillation region (8B-v the first measurement below 5 MeV recently submitted, see also talk of D. Franco in paralel session)
- Precision measurement (at or below the level of 5%) of the ⁷Be-v rate: to test the SSM and MSW-LMA solution of the Standard Solar Problem and look for indications of the mass varying neutrinos or non-standard neutrino-matter interactions influencing P_{ee};
- To test the balance between the neutrino and photon luminosity of the Sun;
- Check the 7% seasonal variation of the neutrino flux (confirm solar origin);
- Under study: first measurement of the CNO neutrinos (sun metallicity controversy);
- Under study: *pep* neutrinos indirect constrain on the pp-flux;
- High energy tail of *pp* neutrinos ?
- Antineutrinos and **geoneutrinos**;
- Supernovae neutrinos and antineutrinos;

NOW 2008, Otranto, 6-13 September 2008

Detection principles in Borexino

- Neutrino elastic scattering on electrons of liquid scintillator: $e+v \rightarrow e+v$;
- Scattered electrons cause the scintillation light production;
- Advantages:
 - Low energy threshold (o.2 MeV);
 - Good energy resolution;
 - Good position reconstruction;
- Drawbacks
 - Info about the neutrino directionality is lost ;
 - v-induced events can't be distinguished from the events of β/γ natural radioactivity;

Extreme radiopurity is a must!!!

Experimental site

Borexino is located at the Laboratori Nazionali del Gran Sasso, near L'Aquila, shielded by 1400 m of Rocks (3500 m water equivalent)

NOW 2008, Otranto, 6-13 September 2008

Borexino Detector

NOW 2008, Otranto, 6-13 September 2008

Filling 1/3

Nylon Vessels Inner: 8.5 m Outer: 11.0 m LAKN – Low Argon and Krypton Nitrogen <u>Ultra-pure water</u> Foto taken with one of 7 CCD cameras placed inside the detector

End October 2006

NOW 2008, Otranto, 6-13 September 2008

March 2007

Liquid scintillator

Livia Ludhova (Borexino collaboration)

NOW 2008, Otranto, 6-13 September 2008

Detector fully filled on May 15^{th,} 2007 DAQ STARTS

NOW 2008, Otranto, 6-13 September 2008

Data acquisition and data structure

- Charged particles and γ produce scintillation light: photons hit inner PMTs;
- DAQ trigger: > 25 inner PMTs (from 2212) are hit within 60-95 ns:

• Outer detector gives a muon veto if at least 6 outer PMTs (from 208) fire;

NOW 2008, Otranto, 6-13 September 2008

- how to define fiducial volume of 100 tons?
 - rescaling background components known to be uniformly distributed within the scintillator (¹⁴C bound in scintillator itself, capture of μ-produced neutrons on protons)
 - 2) using the sources with known position:
 - (Th emitted by the IV-nylon, γ external background, teflon diffusers on the IV surface)

the ⁸⁵Kr contamination (29+14) counts/day/100 ton

More statistics is needed \rightarrow taken as a free parameter in the total fit

Simulated spectrum of solar neutrinos

(detected via elastic scattering off electrons)

A measured neutrino flux depends on:

- neutrino flux produced in the Sun (SSM: Standard Solar Model)
- neutrino survival probability

(LMA – Large Mixing Angle solution in the $\Delta m^2 - \sin^2 2\theta$ parameter space)

• interaction cross section (cca. 10⁻⁴⁴ cm²!!)

NOW 2008, Otranto, 6-13 September 2008

Expected MC spectrum: signal+irreducible background

giving consistent results

•Light yield: a free fit parameter;

•Light quenching included Birks' parametrization;

• ¹⁴C, ¹¹C and ⁸⁵Kr free fit parameters;

Fit region 160-2000 keV

Livia Ludhova (Borexino collaboration)

NOW 2008, Otranto, 6-13 September 2008

Systematic uncertainties

Source	Syst.error (1σ)			
		$49 \pm 3_{\text{stat}} \pm 4_{\text{sys}}$	<mark>cpd/100 tons</mark>	
Tot. scint. mass	0.2%			
Live Time	0.1%		Expected rate	
Efficiency of Cuts	0.3%		(cpd/100 t)	
Detector	6%	No oscillation	75 ± 4	
Resp.Function		BPS07(GS98)	48 ± 4	
Fiducial Mass	6%	HighZ		
тот	8.5%	BPS07(AGS05) LowZ	44 ± 4	

No-oscillation hypothesis rejected at 4σ level

Neutrino magnetic moment

NOW 2008, Otranto, 6-13 September 2008

Constraints on pp- & CNO-v fluxes after the ⁷Be measurement

- •It is possible to combine the results obtained by Borexino on ⁷Be flux with those obtained by other experiments to constraint the fluxes of pp and CNO v_e ;
- •The measured rate in Clorine and Gallium experiments can be written as:

$$R_{k} = \sum_{i,k} f_{i}R_{i,k}P_{ee}^{i,k}$$

$$k = \text{Homestake,Gallex}$$

$$i = pp, pep, CNO, ^{7}Be, ^{8}B$$

$$f_{i} = \frac{\phi_{i} (\text{measured})}{\phi_{i} (\text{predicted})}$$

$$R_{i,k} = \text{expected rate of source ''i'' in experiment ''k'' (no oscill.)}$$

$$P_{ee}^{e,k} = \text{average survival probability for source ''i'' in experiment ''k''}$$

- $\cdot R_{i,k}$ and $P_{ee}^{i,k}$ are calculated in the hypothesis of **high-Z SSM and MSW LMA**, ;
- •R_k are the rates actually measured by Clorine and Gallium experiments;
- **f**_{8B} = **o.8**7 ± **o.0**7, measured by **SNO** and **SuperK**;
- $f_{7Be} = 1.02$ 0.10 is given by **Borexino results**;

•Performing a χ^2 based analysis with the additional luminosity constraint;

$$f_{pp} = 1.005^{+0.008}_{-0.020} (1\sigma)$$

 $f_{CNO} < 3.80 (90\% C.L.)$

Which is the best determination of pp flux (with luminosity constraint)

NOW 2008, Otranto, 6-13 September 2008

⁸B-V fluxes (see talk of D. Franco & arXiv 0808.2868 for details)

- The first simultaneous measurement of solar-v from the vacuum region (7Be-v) and from the matter-enhanced oscillation region (⁸B-v);
- The first measurement of ⁸B-v in real time below 5 MeV;

NOW 2008, Otranto, 6-13 September 2008

⁸B-ν fluxes (see talk of D. Franco & arXiv 0808.2868 for details)

First real-time measurement above 2.8 MeV:

 $Rate_{>28MeV} = (0.26 \pm 0.04 \text{stat} \pm 0.02 \text{sys}) \text{ counts/day/100 tons}$

$$\left(\Phi_{\exp}^{ES} / \Phi_{th}^{ES}\right)_{>2.8 \,\mathrm{MeV}} = (0.96 \pm 0.19)$$

Above 5 MeV in agreement with SNO and SuperK:

 $Rate_{>5MeV} = (0.14 \pm 0.03 \text{stat} \pm 0.01 \text{sys}) \text{ counts/day/100 tons}$

$$\left(\Phi_{\exp}^{ES} / \Phi_{th}^{ES}\right)_{>5 \text{ MeV}} = (1.02 \pm 0.23)$$

Survival probability after Borexino

Assuming high-Z SSM (BPS 07) the ⁸B rate measurement corresponds to

 P_{ee} (⁸Be) = 035 0.10 @ 8.6 MeV mean energy

NOW 2008, Otranto, 6-13 September 2008

First simultaneous measurement in both vacuum-dominated and matter-enhanced regions

Assuming high-Z SSM (BPS 07), the ⁷Be rate measurement corresponds to

 P_{ee} (7Be) = 0.56 0.10 (1 σ)

which is consistent with the number derived from the global fit to all solar and reactor experiments (S. Abe et al., arXiv: 0801.4589v2)

 $P_{ee}(^{7}Be) = 0.541 \quad 0.017$

We determine the survival probability for ⁷Be and pp- v_e , assuming BPSo7 and **using input from all solar experiments** (Barger *et al.*, PR (2002) 88, 011302)

$$P_{ee} (7Be) = 0.56 \quad 0.08$$

 $P_{ee}(pp) = 0.57$ 0.09

Future: pep- and CNO-v fluxes

The main background for pep and CNO analysis is "C

 ${}^{\mathrm{n}}\mathbf{C} \rightarrow {}^{\mathrm{n}}\mathbf{B} + \mathbf{e}^{+} + \mathbf{v}_{\mathrm{e}} \quad \mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma \ (2.2 \text{ MeV})$

- Changes in the electronics (Dec o7):
 after each muon, 1.6 ms gate opened
- FADC implementation in parallel;

NOW 2008, Otranto, 6-13 September 2008

Borexino potential on geo-v (antineutrinos from the Earth, chains of U & Th, and K)

Mantovani et al., TAUP 2007 TNU = 1 event / 10^{32} target proton / year Np (Borex) = $1.8 \ 10^{31}$ target proton

Prompt signal energy spectrum (model)

5.7 events from reactors (in geo- ν E range) BSE: 6.3 events from geoneutrinos (per year and 300 tons, $\varepsilon = 80\%$, 1-2.6 MeV) (Balata *et al.*, 2006, ref. model Mantovani *et al.*, 2004)

BSE: 3_o evidence of geoneutrinos expected in 4 years of data

NOW 2008, Otranto, 6-13 September 2008

Borexino potential on supernovae neutrinos

Standard SN @ 10kpc

Borexino E_{tresh} = 0.25 MeV target mass 300 t

Detection channel	N events		
ES (E _v > 0.25 MeV)	5		
Electron anti- neutrinos (E _v > 1.8 MeV)	78		
v-p ES (E _v > 0.25 MeV)	52	Can be used as an early alarm	
$^{12}C(v,v)^{12}C*$ (E γ = 15.1 MeV)	18		
¹² C(anti-v,e ⁺⁾¹² B (E _{anti-v} > 14.3 MeV)	3	Borexino plans to enter	
$^{12}C(v,e-)^{12}N$ (E _v > 17.3 MeV)	9	SINEVVS	

Conclusions

DONE

- Borexino performed the first real-time measurement of solar-v below the barrier of natural radioactivity (4 MeV);
- The two measurements reported for **7Be-v** favor MSW-LMA solution;
- The first real-time measurement of ***B-v above 2.8 MeV**;
- The first simultaneous measurement of solar neutrinos from the vacuum region (7Be-v) and from the matter-enhanced oscillation region (8B-v);
- Best limits for pp- and CNO-v, combining information from all solar and reactor experiments;

TO BE DONE

- Precision measurement (at or below the level of 5%) of the 7Be-v rate;
- Check the 7% seasonal variation of the neutrino flux (confirm solar origin);
- Under study: measurement of the CNO, pep and high-energy pp neutrinos;
- Strong potential in antineutrinos (geoneutrinos, reactor, from the Sun) and in supernovae neutrinos and antineutrinos;

NOW 2008, Otranto, 6-13 September 2008

Additional slides

NOW 2008, Otranto, 6-13 September 2008

Cosmic µ's

μ are identified by the OD and by the ID

- OD eff: ~ 99%
- ID analysis based on pulse shape variables
 - Deutsch variable: ratio between light in the concentrator and total light
 - Cluster mean time, peak position in time
- Estimated overall rejection factor > 10⁴ (still preliminary)
- After cuts, m not a relevant background for ⁷Be
 - Residual background: < 1 count /day/ 1 00 t

NOW 2008, Otranto, 6-13 September 2008

Muon flux:(1.21±0.05)h⁻¹m⁻²

Position reconstruction algorithms

- Base on time of flight fit to hit-time distribution
- developed with MC, tested and validated in Borexino prototype CTF
- cross checked and tuned in Borexino on selected events (14C, 214Bi-214Po, 11C)

Techinques towards low-radioactivity

- Low background nylon vessel fabricated in hermetically sealed low radon clean room (~1 yr)
- Rapid transport of scintillator solvent (PC) from production plant to underground lab to avoid cosmogenic production of radioactivity (⁷Be)
- Underground purification plant to distill scintillator components.
- Gas stripping of scintllator with special nitrogen free of radioactive ⁸⁵Kr and ³⁹Ar from air
- All materials electropolished SS or teflon, precision cleaned with a dedicated cleaning module

cannot be disentangled, in the ⁷Be energy range, from the CNO

NOW 2008, Otranto, 6-13 September 2008

Proton-proton cycle: the main energy source in the Sun

NOW 2008, Otranto, 6-13 September 2008

We determine the survival probability for ⁷Be and pp- ν_{e} , assuming BPSo7 and **using input from all solar experiments** (Barger *et al.*, PR (2002) 88, 011302)

 $P_{ee}(7Be) = 0.56$ 0.08

 $P_{ee}(pp) = 0.57 \quad 0.09$

NOW 2008, Otranto, 6-13 September 2008

Under the assuptions of High-Z SSM (BPS 07) the ⁷Be rate measurement corresponds to

 $P_{ee} (7Be) = 0.56 \quad 0.1 (1\sigma)$

which is consistent with the number derived from the global fit to all solar and reactor experiments (S. Abe et al., arXiv: 0801.4589v2)

 P_{ee} (7Be) = 0.541 0.017

What can Borexino say about other solar v sources?

