Results from the Sudbury Neutrino Observatory (SNO) Phase III

Gersende Prior (LBNL)

For the SNO Collaboration

NOW 2008, Conca Specchiulla, September 8th 2008

Solar neutrinos

The pp chain reaction:

Standard Solar Model (SSM):

The three SNO phases

D₂O phase:

 $n + d \rightarrow t + \gamma + 6.25 \text{ MeV}$ $\varepsilon = 14\%$

Salt phase (D₂O + 2 tons of NaCI):

$$n + {}^{35}CI \rightarrow {}^{36}CI + \gamma's + 8.6 \text{ MeV}$$

 $\epsilon = 41\%$

NCD phase (³He proportional counters):

$$n + {}^{3}\text{He} \rightarrow p + t + 0.76 \text{ MeV}$$

 $\epsilon = 21\%$

Salt phase results

Fluxes and ratio (10⁶ cm⁻² s⁻¹):

$$\phi_{CC} = 1.68 \ ^{+0.06}_{-0.06}(\text{stat.}) \ ^{+0.08}_{-0.09}(\text{syst.})$$

$$\phi_{NC} = 4.94 \ ^{+0.21}_{-0.21}(\text{stat.}) \ ^{+0.38}_{-0.34}(\text{syst.})$$

$$\phi_{ES} = 2.35 \ ^{+0.22}_{-0.22}(\text{stat.}) \ ^{+0.15}_{-0.15}(\text{syst.})$$

 $\frac{\phi_{CC}}{\phi_{NC}} = 0.340 \pm 0.023 (\text{stat.})^{+0.029}_{-0.031} (\text{syst.})$

 $(\phi_{CC}/\phi_{NC} \sim \sin^2\theta_{12})$

Mass:

 $\Delta m^2 = 0.8^{+0.6}_{-0.4} \times 10^{-5} \text{ eV}^2$ Mixing angle:

 $\theta = 33.9^{+2.4}_{-2.2}$ degrees

Neutral Current Detectors (NCD)

Why:

- Different systematics compared to previous phases
- Better CC flux measurement
- Correlation between CC and NC signals greatly reduced

Challenges:

- Low signal rate: ~1000 neutrons/year detected
- Ultra-low background materials needed
- Some light loss (~10%) due to array

36 ³He strings and 4 ⁴He strings deployed on a 1x1 m grid.

Total length 398 m.

NCD string

High purity CVD nickel:

 $gTh/gNCD = 3.43 + 1.49 - 2.11 \times 10^{-12}$ $gU/gNCD = 1.81 + 0.80 - 1.12 \times 10^{-12}$ (100 times purer than previous counters)

NCD electronics and signal

Energy Spectrum from ³He(n,p)t

Neutron capture efficiency

1- ²⁴Na method: mimic the signal with mixed ²⁴Na which generates neutrons by: $\gamma + d \rightarrow n + p$.

2- Monte Carlo method: calibrate the Monte Carlo with point AmBe and ²⁵²Cf sources.

 $\epsilon_{n} = 0.210 \pm 0.003$

Neutron background

(PD = photodisintegration)

Instrumental background

NCD pulse simulation

- wall U/Th alphas

Blindness scheme and observables

First month of neutrino data open

1- Subtract an unknown fraction of neutrino candidates

2- Add an unknown amount of muon follower neutrons

Log-likelihood fit L = L_{PMT} + L_{NCD} :

$$L_{PMT} = -\sum_{d=1}^{N_d} \log\left(\sum_{s=1}^{N_s} n_s f_s(\bar{x_d})\right) + \sum_{s=1}^{N_s} n_s - \frac{1}{2} \sum_{p=1}^{N_p} \left(\frac{\lambda_p - \bar{\lambda_p}}{\bar{\sigma_p}}\right)^2$$
$$L_{NCD} = -\sum_{d=1}^{N'_d} \log\left(\sum_{s=1}^{N'_s} n'_s f'_s(\bar{x_d})\right) + \sum_{s=1}^{N'_s} n'_s - \frac{1}{2} \sum_{p=1}^{N'_p} \left(\frac{\lambda'_p - \bar{\lambda_p}}{\bar{\sigma_p}}\right)^2$$

Signal: $f(T, cos\theta_{sun}, \rho)$ $f(E_{ACD})$ Background: $f(T) \times f(cos\theta_{sun}) \times f(\rho)$ $f(E_{ACD})$

Box Opened May 2, 2008:

 ~10% difference in NC flux uncertainties between the 3 signal extraction codes: after correction of the input energy resolution systematic constraint the errors agree, no effect on the central fit values.

• Parametrization failure of the algorithm (for one extraction code) used to fit the peak value from each ES bin 's distribution: more robust fit method implemented, ES fluxes agree.

Markov Chain Monte Carlo

The physics parameters ("fluxes") are fitted allowing nuisance parameters (calibration constants, etc.) to vary weighted by their external uncertainties. The likelihood is maximized via randomized search steps.

Algorithm:

```
Initial step i
parameter guesses p<sub>i</sub>
calculate likelihood L<sub>i</sub>
```

Add random amounts to all parameters $p_{i+1} = p_i + Norm(0,\sigma_i)$ calculate likelihood L_{i+1}

```
Keep p_i or p_{i+1}:
p_{keep} = max(1, L_{i+1} / L_i)
```

62-parameter likelihood function

- 13 CC flux energy bins
- 13 ES flux energy bins
- NC flux
- 35 systematic parameters

Results

Fluxes and number of events

Fluxes (in unit of $10^6 \text{ cm}^{-2} \text{ s}^{-1}$):

CC	1.67	+ 0.05 - 0.04 (stat) + 0.07 - 0.08 (sys)
ES	1.77	+ 0.24 - 0.21 (stat) + 0.09 - 0.10 (sys)
NC	5.54	$^{+0.33}_{-0.31}$ (stat) $^{+0.36}_{-0.34}$ (sys)

PMT events:

CC	1867 <mark>+ 91</mark> - 101
ES	171 <mark>+ 24</mark> - 22
NC	267 <mark>+ 24</mark> - 22
Backgrou	nd 77 + 12 - 10

Correlation Matrix for the Salt phase:

- CC ES NC CC 1.00 ES -0.16 1.00
- NC -0.52 -0.06 1.00

Correlation matrix for the NCD phase:

	CC	ES	NC
СС	1.00		
ES	0.24	1.00	
NC	-0.19	0.02	1.00

NCD events:	
NC	983 + 77 - 76
Background	185 + 25 - 22

Salt and NCD phases comparison

ES results deviation from prior results due to a statistical fluctuation.

Better measurement of the CC flux.

Lower ES flux.

Comparisons

Comparisons

Agreement with previous measurements (estimated p-value = 0.328)

Agreement with standard solar models

Fluxes (in unit of 10⁴ cm⁻² s⁻¹)

CC: 167(9)

ES: 177(26)

NC: 554(49)

SSM: 569(91) [BSB05-OP: Ap. J. 621, L85, 2005]

Super-K: 235(8) [PRD 73, 112001, 2006]

2-neutrinos oscillation contours

Conclusion

Results from the NCD phase:

Independent measurement of the ⁸B flux. NCD results agree well with previous SNO phases. Reduced correlations between CC and NC. Different systematics. New precision on θ_{12} , 40% improvement on our previous result.

More from SNO:

LETA (Low Energy Threshold Analysis) Three phase analysis Three neutrino analysis *hep* flux Day-night, other variations Muons, atmospheric v

Phase III results available online in PRL September 9th.

The SNO Collaboration

B. Aharmim,⁶ S.N. Ahmed,¹⁴ J.F. Amsbaugh,¹⁸ A.E. Anthony,¹⁶ J. Banar,⁹ N. Barros,⁸ E.W. Beier,¹³ A. Bellerive,⁴ B. Beltran,^{1,14} M. Bergevin,^{7,5} S.D. Biller,¹² K. Boudjenline,⁴ M.G. Boulay,^{14,9} T.J. Bowles,⁹ M.C. Browne,^{18,9} T.V. Bullard,¹⁸ T.H. Burritt,¹⁸ B. Cai,¹⁴ Y.D. Chan,⁷ D. Chauhan,⁶ M. Chen,¹⁴ B.T. Cleveland,¹² G.A. Cox-Mobrand,¹⁸ C.A. Currat,⁷ X. Dai,^{14,12,4} H. Deng,¹³ J. Detwiler,^{18,7} M. DiMarco,¹⁴ P.J. Doe,¹⁸ G. Doucas,¹² P.-L. Drouin,⁴ C.A. Duba,¹⁸ F.A. Duncan,^{15,14} M. Dunford,^{13,*} E.D. Earle,¹⁴ S.R. Elliott,^{9,18} H.C. Evans,¹⁴ G.T. Ewan,¹⁴ J. Farine,⁶ H. Fergani,¹² F. Fleurot,⁶ R.J. Ford,^{15,14} J.A. Formaggio,^{11,18} M.M. Fowler,⁹ N. Gagnon,^{18,9,7,12,15} J.V. Germani,^{18,9} A. Goldschmidt,^{9,†} J.TM. Goon,¹⁰ K. Graham,^{4,14} E. Guillian,¹⁴ S. Habib,^{1,14} R.L. Hahn,³ A.L. Hallin,^{1,14} E.D. Hallman,⁶ A.A. Hamian,¹⁸ G.C. Harper,¹⁸ P.J. Harvey,¹⁴ R. Hazama,^{18,‡} K.M. Heeger,^{18,§} W.J. Heintzelman,¹³ J. Heise,^{14,9,2} R.L. Helmer,¹⁷ R.J. Hemingway,⁴ R. Henning,^{7,¶} A. Hime,⁹ C. Howard,^{1,14} M.A. Howe,¹⁸ M. Huang,^{16,6} P. Jagam,⁵ B. Jamieson,² N.A. Jelley,¹² K.J. Keeter,^{14, **} J.R. Klein,¹⁶ L.L. Kormos,¹⁴ M. Kos,¹⁴ A. Krüger,⁶ C. Kraus,¹⁴ C.B. Krauss,^{1, 14} T. Kutter,¹⁰ C.C.M. Kyba,¹³ R. Lange,³ J. Law,⁵ I.T. Lawson,^{15,5} K.T. Lesko,⁷ J.R. Leslie,¹⁴ J.C. Loach,^{12,7} R. MacLellan,¹⁴ S. Majerus,¹² H.B. Mak.¹⁴ J. Maneira,⁸ R. Martin,¹⁴ K. McBryde,¹⁰ N. McCauley,^{13,12, ††} A.B. McDonald,¹⁴ S. McGee,¹⁸ C. Mifflin,⁴ G.G. Miller,⁹ M.L. Miller,¹¹ B. Monreal,¹¹ J. Monroe,¹¹ B. Morissette,¹⁵ A. Myers,¹⁸ B.G. Nickel,⁵ A.J. Noble,¹⁴ N.S. Oblath,¹⁸ H.M. O'Keeffe,¹² R.W. Ollerhead,⁵ G.D. Orebi Gann,¹² S.M. Oser,² R.A. Ott,¹¹ S.J.M. Peeters,^{12, ‡‡} A.W.P. Poon,⁷ G. Prior,⁷ S.D. Reitzner,⁵ K. Rielage,^{9,18} B.C. Robertson,¹⁴ R.G.H. Robertson,¹⁸ E. Rollin,⁴ M.H. Schwendener,⁶ J.A. Secrest,¹³ S.R. Seibert,¹⁶ O. Simard,⁴ J.J. Simpson,⁵ L. Sinclair,⁴ P. Skensved,¹⁴ M.W.E. Smith,^{18,9} T.D. Steiger,¹⁸ L.C. Stonehill,^{9,18} G. Tešić,⁴ P.M. Thornewell,^{12,9} N. Tolich,^{7,18} T. Tsui,² C.D. Tunnell,¹⁶ T. Van Wechel,¹⁸ R. Van Berg,¹³ B.A. VanDevender,¹⁸ C.J. Virtue,⁶ T.J. Walker,¹¹ B.L. Wall,¹⁸ D. Waller,⁴ H. Wan Chan Tseung,¹² J. Wendland,² University of Alberta, University of British Columbia, Carleton University, University of Guelph Laurentian University, Queen's University SNOLAB, TRIUMF

Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, Louisiana State University, MIT, University of Pennsylvania, University of Texas at Austin, University of Washington

LIP (Lisbon)

University of Oxford

SNO gratefully acknowledges...

Canada	
	Natural Sciences and Engineering Research Council
	Notional December Council
	National Research Council
	Nonnem Ontario Hentage Fund
	Atomic Energy of Canada, Ltd.
	Untario Power Generation
	High Performance Computing Virtual Laboratory
	Canada Foundation for Innovation
	Canada Research Chairs
	Westgrid
US:	
	Department of Energy
	NERSC PDSF
UK:	
	SIFC (formerly Particle Physics and Astronomy Research Council
Portuga	
	FCI

Backup Slides

Change in parameterization for ES fit

Angular distributions for ES

Distribution for the energy bin 6.5-7.0 MeV: no peak at $cos(\theta_{sun})=1$ as expected.

Statistical fluctuation (1.3% probable to obtain such a low number in this bin assessed by a MC of 10000 trials).

χ^2 map (SNO collaboration)

