AUGER results and implications for UHE neutrinos

PIERRE AUGER OBSERVATORY

Lukas Nellen* I de Ciencias Nucleares, UNAM *for the Pierre Auger Collaboration

- Motivation for the Pierre Auger Observatory
- Status of the Observatory
- First Science results
- Outlook and plans

NOW 2008, Conca Specchiulla, Otranto, Italy, September 11, 2008

10⁰ **Energies** above Akeno[12] 10¹⁸ eV or 10¹⁹ eV KASCADE

Ultra-High Energy Cosmic Rays

- Center of mass energies larger than that of the LHC
- Low flux: 1 per 100 km² per 9 year (or even less)
- Acceleration mechanism not known Have hints...
- Sources not known

Goals of the Observatory

3

Petection of cosmic rays with energies $>10^{19}$ eV.

- 🟺 Spectrum
 - Requiers a good energy determination \approx 20 30 %
- 🏺 Arrival directions
 - Energy resolution $\approx 1^{\circ}$
- 🏺 Composition
 - Fast electronics to measure details of the shower front (SP)
 - Field of view to observe shower development (FD)
- Good statistics
 - Size matters: area of 3000 km²

Hybrid design

Fluorescence detector

- Direct, calorimetric energy measurement
- Observes longitudinal development
- Surface detector
 - 🗧 100% duty cycle
 - Measures lateral distribution
- Geometrical aperture
- Hybrid reconstruction as good as stereo fluorescence

Auger Location

The Auger Site

The Auger Site

The Auger Site

A surface detector station

A surface detector station

Calibration and Atmospheric monitoring

Also: Weather stations, Cloud cameras Balloon launches

Energy Determination

Lukas Nellen - AUGER results, and implications for UHE neutrinos - NOW 2008, Conca Specchiulla, September 11, 2008

11

Constant Intensity Cut

- Isotropy of Cosmic Rays
 Integrated constant
 Intensity
- $\bigcirc Constant Intensity \\ \Rightarrow Constant Energy$
- Relate S(1000) to S38 (signal at 38°)
 - 38° is the average zenith angle of events

Calibration curve

FD Energy Uncertainty

Stereo events \Rightarrow reconstruction uncertainty

💡 10%, consistent with MC

Spectrum: Flux supression

Flux suppression at the highest energy

Significance does not depend on energy scale

Auger and HiRes compatible within 15%

Consistent with the uncertainties of the experiments

Prescription to reject Isotropy

- Cover sky with search windows, following sources from the Veron-Cetty, Veron Catalogue
- Select parameters, using data Jan 1, 2004 to May 27, 2006
 - 🗳 Zmax = 0.018
 - $\Rightarrow \psi = 3.1^{\circ}$
 - 🗳 Eth = 56 EeV
 - Sovered fraction of sky p = 0.21
- Start on May 27, 2006, get 6 of 8 events in search windows on May 25, 2007
- By August 31, 2007, we had 8 of 18 events in search windows

 Reject isotropy with >99% confidence

Correlation with AGN

20 of 27 events correlate with AGN from the VC catalogue

Tagging primaries:

Currently: Cross-section

Future will also use: details of shower signal

Mass composition and X_{max}

Elongation rate

FD photon discrimination

SD photon discrimination

Lukas Nellen - AUGER results, and implications for UHE neutrinos - NOW 2008, Conca Specchiulla, September 11, 2008

24

Limit on the photon fraction

Neutrino detection in Auger

26

- We can tag neutrino events in very inclined showers
- Sertical atmosphere: ≈1000 g/cm²
- General atmosphere: ≈36000 g/cm²

- Only neutrino induced showers can start deep in the atmosphere
- Θ Caveat: or showers from exotics with low cross-section

Inclined shower detection

up-going τ -neutrinos

top of atmosphere

up-going au-neutrinos

τ-identification

29

PIERRE AUGER

τ -identification

29

τ -identification

Lukas Nellen - AUGER results, and implications for UHE neutrinos - NOW 2008, Conca Specchiulla, September 11, 2008

Systematics

Simulations

Ş	Tau transport	±5%	
---	---------------	-----	--

- \neq EAS interations +20%, -5%
- Pierre Auger Observatory
 - Acceptance +2%
 - Topography +18%

Gau Physics

- Polarisation +17%, -10%
- Section Cross section
- 🗳 Energy losses 🗧 +2

Combined

+25%, -10% +132%, -45%

+5%, -9%

ᡖ¹⁰¹⁷ S Acceptance [cm² s 0¹⁰ 0¹⁵ Tau physics **All contributions 10**¹⁴ 17 18 20 19 $Log_{10}(E_{intial v_{\tau}}[eV])$ Factor 3 between best and worst case flux limits

Flux limit

Down-going neutrinos

32

Auger North

34

Why Auger North

- Auger was always designed for full sky coverage
 - Is the northern sky different from the southern sky?
- Sorthern hemisphere air-shower detector complements icecube on the south-pole
- Flux suppression: we need bigger area
- Would like to get spectra from individual sources: we need bigger area
- \bigcirc Additional benefit: more statistics for neutrino detection

Low Energy extensions

- Transition from galactic to extragalactic cosmic rays
- Different models predict different composition

Classic model of ankle Pair-prod. model 1.0 protons protons 0.8 0.8 Fe **Relative abundances** $(21 \le Z \le 26)$ 0.6 0.6 0.4 0.4 He 0.2 0.2 CNO Fe nuclei $12 \leq Z \leq 20$ 17.5 18 18.5 19 17.5 19.5 20 18 18.5 19 log10(E/eV)log10(E/eV)

In-fill and muon detectors

Lukas Nellen - AUGER results, and implications for UHE neutrinos - NOW 2008, Conca Specchiulla, September 11, 2008

37

High-Elevation telecopes

38

- 3 ``standard'' Auger telescopes tilted to cover 30 60° elevation
- Custom-made metal enclosures
- Also prototype study for northern Auger Observatory

