

Tetrahedron:

Model Predictions for Neutrino Oscillations

Mu-Chun Chen, University of California - Irvine

NOW 08, Conca Specchiulla, Italy, September 6-13, 2008

Neutrino Mass beyond the SM

- SM: effective low energy theory with non-renormalizable terms
- new physics effects suppressed by powers of small parameter $\frac{M_W}{M}$
- neutrino masses generated by dim-5 operators

 $\frac{\lambda_{ij}}{M} HHL_i L_j \implies m_{\nu} = \lambda_{ij} \frac{v^2}{M}$ $\lambda_{ij} \text{ are dimensionless couplings; } M \text{ is some high scale}$ • m_{ν} small: non-renormalizable terms (M is high)

lowest higher dimensional operator that probes high scale physics

- total lepton number and family lepton numbers broken
 - ➡ lepton mixing and CP violation expected
 - $\implies \mu \rightarrow e \gamma$; $\tau \rightarrow \mu \gamma$; $\tau \rightarrow e \gamma$ decays; μ -e conversion

See: Talk by A. de Gouvea

Current Status of Oscillation Parameters

- oscillation probability: $P(\nu_a \to \nu_b) = |\langle \nu_b | \nu, t \rangle|^2 \simeq \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$
- 3 neutrinos global analysis: [solar+KamLAND+CHOOZ+atmospheric +K2K+Minos]
 Maltoni, Schwetz, Tortola, Valle (updated Sep 2007)

 $\sin^2 \theta_{23} = 0.5 \ (0.38 - 0.64), \quad \sin^2 \theta_{13} = 0 \ (< 0.028) \qquad \sin^2 \theta_{12} = 0.30 \ (0.25 - 0.34)$

 $\Delta m^2_{23} = (2.38^{+0.2}_{-0.16}) \times 10^{-3} \text{ eV}^2, \quad \Delta m^2_{12} = (8.1 \pm 0.6) \times 10^{-5} \text{ eV}^2$

• indication of non-zero θ_{13} :

 $\sin^2 \theta_{13} = 0.016 \pm 0.010 \ (1\sigma)$

Fogli, Lisi, Marrone, Palazzo, Rotunno, June 2008

Tri-bimaximal Neutrino Mixing:

 $U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$

 $\sin^2 \theta_{\text{atm, TBM}} = 1/2 \quad \sin \theta_{13,\text{TBM}} = 0.$ $\sin^2 \theta_{\odot,\text{TBM}} = 1/3 \quad \tan^2 \theta_{\odot,\text{TBM}} = 1/2$ $\tan^2 \theta_{\odot,\text{exp}} = 0.429$ new KamLAND result: $\tan \theta_{\odot,exp}^2 = 0.47^{+0.06}_{-0.05}$

Discovery phase into precision phase for some oscillation parameters

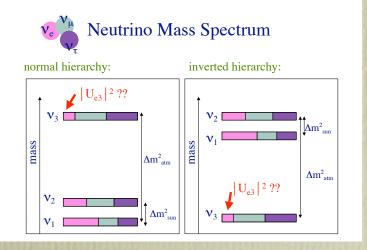
Neutrino Mass Spectrum

- search for absolute mass scale:
 - end point kinematic of tritium beta decays:

Tritium $\rightarrow He^3 + e^- + \overline{\nu}_e$ KATRIN: increase sensitivity ~ 0.2 eV

- WMAP + 2dFRGS + Lya: $\sum (m_{v_i}) < (0.7-1.2) \text{ eV}$
- neutrinoless double beta decay

current bound: | < m > | < (0.19 - 0.68) eV (CUORICINO, Feb 2008)



The known unknowns:

- How small is θ₁₃?
- $\theta_{23} > \pi/4, \theta_{23} < \pi/4, \theta_{23} = \pi/4?$
- Neutrino mass hierarchy (Δm_{13}^2) ?
- CP violation in neutrino oscillations?

Need for Precision Measurements

- current data post two challenges:
 - why $m_v \ll m_{u,d,l}$
 - why lepton mixing large while quark mixing small
- To answer the first question => Seesaw mechanism: most appealing scenario
- Seesaw: not sufficient to explain the whole mass matrix with mass hierarchy and two large and one small mixing angles
 - * neutrino anarchy: no parametrically small numbers [Hall, Murayama, Weiner, '00; Haba, Murayama, '01; de Gouvea, Murayama, '04]
 - * flavor symmetry: there is a structure
 - Possible symmetries show up only in the lepton sector
 - Connection between quark and lepton sectors (GUT symmetry)
- These scenarios have drastically different predictions
- To tell these models apart: Precision measurements important

Flavor Structure

- there are parametrically small numbers
 - $m_2/m_3 << 1$, $\theta_{13} << 1$
- In general, large mixing \Leftrightarrow no hierarchy

$$m = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$$

- $a \gg b, c \Rightarrow \sin^2\theta \ll 1, m_1/m_2 \ll 1$
- $a,b,c \sim 1 \Rightarrow det(m) \sim 1 \Rightarrow sin^2\theta \sim 1, m_1/m_2 \sim 1$
- $a,b,c \sim 1 \Rightarrow det(m) \ll 1 \Rightarrow sin^2\theta \sim 1, m_1/m_2 \ll 1$

Texture	Hierarchy	$ U_{e3} $	$ \cos 2\theta_{23} $ (n.s.)	$ \cos 2\theta_{23} $	Solar Angle
$ \frac{\sqrt{\Delta m_{13}^2}}{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} $	Normal	$\sqrt{\frac{\Delta m^2_{12}}{\Delta m^2_{13}}}$	O(1)	$\sqrt{\frac{\Delta m_{12}^2}{\Delta m_{13}^2}}$	O(1)
$ \frac{1}{\sqrt{\Delta m_{13}^2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}} $	Inverted	$\frac{\Delta m^2_{12}}{ \Delta m^2_{13} }$	_	$\frac{\Delta m^2_{12}}{ \Delta m^2_{13} }$	O(1)
$\frac{\sqrt{\Delta m_{13}^2}}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	Inverted	$\frac{\Delta m^2_{12}}{ \Delta m^2_{13} }$	O(1)	$\frac{\Delta m^2_{12}}{ \Delta m^2_{13} }$	$ \cos 2\theta_{12} \sim \frac{\Delta m_{12}^2}{ \Delta m_{13}^2 }$
$\sqrt{\Delta m_{13}^2} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	Normal ^a	> 0.1	O(1)	_	O(1)

Altarelli, Feruglio, Masina, 02; Hall, Murayama, Weiner; Sato, Yanagida; Barbieri et al; ...

Leptonic µ - τ Family Symmetry

• two possibilities

 $\begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & 1 & 1 \\ \bullet & 1 & 1 \end{pmatrix} \Rightarrow \text{normal hierarchy}$

$$\begin{pmatrix} \bullet & 1 & 1 \\ 1 & \bullet \\ 1 & \bullet \end{pmatrix} \Rightarrow \text{ inverted hierarchy}$$

(I) normal hierarchy

$$\begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & 1 & 1 \\ \bullet & 1 & 1 \end{pmatrix} \longrightarrow \Delta m_{21}^2 = 0, \ \theta_{13} = 0, \ \theta_{23} = \pi / 4 \qquad \theta_{12} = 0$$

to have $\Delta m_{12}^2 \neq 0$ in μ - τ symmetric limit:

Leptonic μ - τ Family Symmetry

• breaking of μ - τ symmetry

$$M_{\mathcal{V}} = \frac{\sqrt{\Delta m_{atm}^2}}{2} \begin{pmatrix} c\varepsilon & d\varepsilon & b\varepsilon \\ d\varepsilon & 1 + a\varepsilon & -1 \\ b\varepsilon & -1 & 1 + \varepsilon \end{pmatrix}$$

- breaking in the e-sector: $a = 1, b \neq d$
- breaking in the μ τ sector: $a \neq 1$, b = d

R. N. Mohapatra ('04)

Symmetry breaking	θ_{13}	θ ₂₃ - π/4
none	0	0
μ-τ sector only	$\sim \Delta m_{12}^2 / \Delta m_{31}^2$	$\leq 8^o \sim \sqrt{\Delta m_{12}^2 / \Delta m_{31}^2}$
e-sector only	$\sim \sqrt{\Delta m_{12}^2 / \Delta m_{31}^2}$	$\leq 4^{o} \sim \Delta m_{12}^2 / \Delta m_{31}^2$
dynamical	$\sim \sqrt{\Delta m_{12}^2 / \Delta m_{31}^2}$	large

Leptonic L_e - L_{μ} - L_{τ} Family Symmetry

• (II) Inverted hierarchy case: enhanced ($L_e - L_\mu - L_\tau$) symmetry

$$\begin{pmatrix} \bullet & 1 & 1 \\ 1 & \bullet & \bullet \\ 1 & \bullet & \bullet \end{pmatrix} \longrightarrow M_{\nu} = \sqrt{\Delta m_{atm}^2} \begin{pmatrix} z & \sin\theta & \cos\theta \\ \sin\theta & y & d \\ \cos\theta & d & x \end{pmatrix}, \quad \mathbf{x}, y, d << 1 \qquad \text{Barbieri, Hall, Smith, Strumia, Weiner (*98)}$$

• exact ($L_e - L_\mu - L_\tau$) limit:

$$M_{v} = \sqrt{\Delta m_{atm}^{2}} \begin{pmatrix} \bullet & \sin\theta & \cos\theta \\ \sin\theta & \bullet & \bullet \\ \cos\theta & \bullet & \bullet \end{pmatrix} \longrightarrow \qquad \Delta m_{sol}^{2} = 0, \quad \theta_{12} = \frac{\pi}{4}, \quad \sin^{2} 2\theta_{atm} = \sin^{2} 2\theta_{atm} = \sin^{2} 2\theta_{atm}$$

• soft breaking of $(L_e - L_\mu - L_\tau)$ symmetry:

R, N, Mohapatra ('04)

Smith.

$$x, y, d \neq 0 \longrightarrow$$

 $\sin^2 2\theta_{sol} \approx 1 - \left(\frac{\Delta m_{sol}^2}{4\Delta m_{atm}^2} - z\right)^2$

correlations not as strong as in normal hierarchy case

• breaking of μ-τ symmetry:

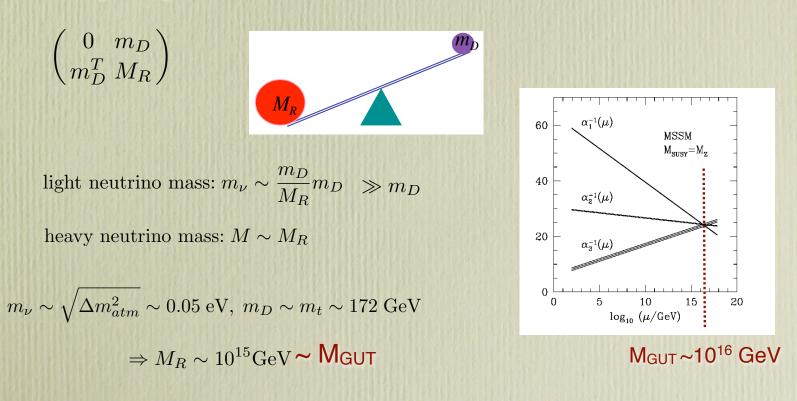
(i)
$$\cos\theta = \sin\theta = \frac{1}{\sqrt{2}}, x \neq y: \quad \theta_{13} = \frac{1}{2}(x - y), \quad \frac{\Delta m_{sol}^2}{\Delta m_{atm}^2} = 2(x + y + z + d)$$

(ii) $\cos\theta \neq \sin\theta, x = y: \quad \theta_{13} \approx -d\cos 2\theta_{23}$

Seesaw Mechanism

Minkowski, 1977; Gell-mann, Ramond, Slansky, 1981; Yanagida, 1979; Mohapatra, Senjanovic, 1981

- Introduce right-handed neutrinos, which are SM gauge singlets [predicted in many GUTs, e.g. SO(10)]
- integrating out RH neutrinos: effective mass matrix



SO(10) GUT

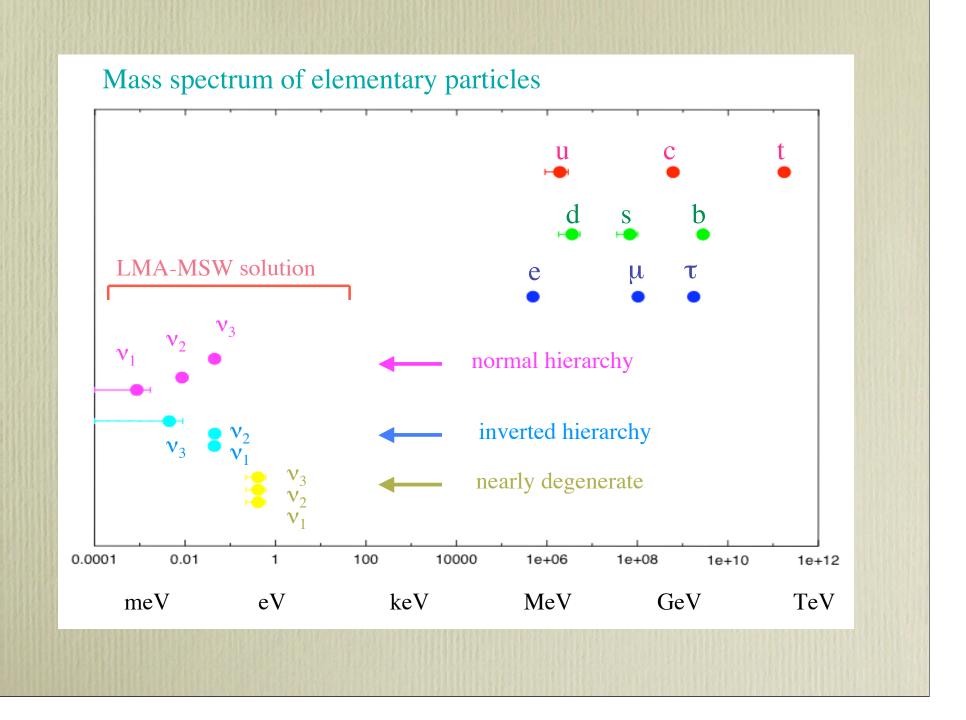
• RH neutrino accommodated in the model

$$16 = \overline{5} + 10 + 1$$

$$\nu_R$$

 $\overline{16} = (3, 2, 1/6) \sim \begin{bmatrix} u & u & u \\ d & d \end{bmatrix}$ $+ (3^*, 1, -2/3) \sim (u^c & u^c & u^c)$ $+ (3^*, 1, 1/3) \sim (d^c & d^c & d^c)$ $+ (1, 2, -1/2) \sim \begin{bmatrix} v \\ e \end{bmatrix}$ $+ (1, 1, 1) \sim e^c$ $+ (1, 1, 0) \sim v^c$

- Natural for seesaw: offer both ingredients, i.e. RH neutrino & heavy scale neutrino oscillation strongly support SO(10)!!
- Quark & Leptons reside in the same GUT multiplets
- One set of Yukawa coupling for a given GUT multiplet
 - \Rightarrow SO(10) relates quarks and leptons (intra-family relations)
 - reduce # of parameters in Yukawa sector



CKM Matrix \iff PMNS Matrix

• Quark mixings are small

		0.219 - 0.224	
$V_{CKM} \sim$	0.218 - 0.224	0.9736 - 0.9750	0.036 - 0.046
	0.004 – 0.014	0.034 - 0.046	0.9989 – 0.9993

• Lepton mixings are large

$$U_{MNS} \sim \begin{pmatrix} 0.79 - 0.86 & 0.50 - 0.61 & 0.0 - 0.16 \\ 0.24 - 0.52 & 0.44 - 0.69 & 0.63 - 0.79 \\ 0.26 - 0.52 & 0.47 - 0.71 & 0.60 - 0.77 \end{pmatrix}$$

- How to realize this when quarks and leptons are unified??
- family symmetries \rightarrow flavor structure
- two sources of large neutrino mixing $U_{MNS} = U_{e,L}^{\dagger} U_{\nu,L}$ either U_{e,L} or U_{v,L} (RH neutrino sector)

Models Based on SUSY SO(10)

large neutrino mixing from neutrino sector

 $U_{MNS} = U_{e,L}^+ U_{v,L}$

SO(10) GUT + SU(2) family symmetry Barbieri, Hall, Raby, Romanino; ...

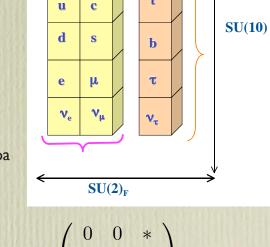
SO(10) → SU(4) × SU(2)_L × SU(2)_R → SU(3) × SU(2)_L × U(1)_Y

• symmetric mass matrices:

M.-C.C & K.T. Mahanthappa

Up-type quarks \Leftrightarrow Dirac neutrinos

Down-type quarks \Leftrightarrow charged leptons



seesaw
$$\Rightarrow M_{\nu} \sim \left(\begin{array}{ccc} 0 & 1 & 1 \\ * & 1 & 1 \end{array}\right)$$

12 parameters accommodate 22 fermion masses, mixing angles and CP phases in both quark and lepton sectors

prediction for θ_{13} :

$$\sin \theta_{13} \sim \left(\frac{\Delta m_{sun}^2}{\Delta m_{atm}^2}\right)^{1/2} \sim O(0.1) \Rightarrow \text{LMA}$$

Models Based on SUSY SO(10)

Albright & Barr

large neutrino mixing from charged lepton sector

$$U_{MNS} = U_{e,L}^{\dagger} U_{\nu,L}$$

• lopsided mass matrices:

 $SO(10) \rightarrow SU(5)$ $\rightarrow SU(3) \times SU(2)_{L} \times U(1)_{Y}$

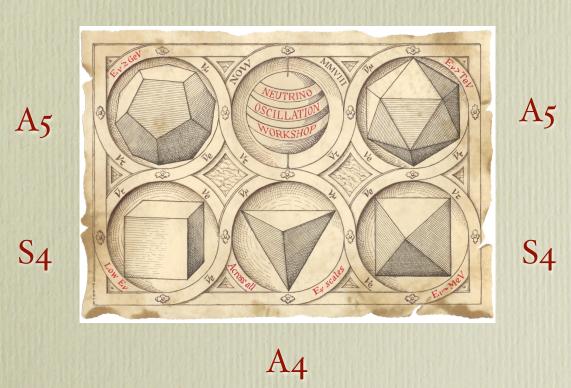
$$M_d^T = M_e \sim \left(\begin{array}{cccc} * & * & * \\ * & * & 1 \\ * & * & 1 \end{array} \right)$$

- large mixing in U_{e,L}
 - large mixing in Ud,R (effects in B physics)
 - large $\mu \rightarrow e + \gamma$ rate
- prediction for θ_{13} : can be small; sin $\theta_{13} \sim 0.05$

Perfect Geometric Solids & Family Symmetries

solid	faces	vert.	Plato	Hindu	sym.
tetrahedron	4	4	fire	Agni	A_4
octahedron	8	6	air	Vayu	S_4
cube	6	8	earth	Prithvi	S_4
icosahedron	20	12	water	Jal	A_5
dodecahedron	12	20	quintessence	Akasha	A_5

From E. Ma, talk at WHEPP-9, Bangalore



Tri-bimaximal Neutrino Mixing

• neutrino oscillation parameters

Maltoni, Schwetz, Tortola, Valle (updated Sep 2007)

 $\sin^2 \theta_{12} = 0.30 \ (0.25 -$

$$\sin^2 \theta_{23} = 0.5 \ (0.38 - 0.64), \quad \sin^2 \theta_{13} = 0 \ (< 0.028)$$
$$\tan^2 \theta_{\odot, exp} = 0.429$$

• tri-bimaximal neutrino mixing

Harrison, Perkins, Scott, 1999

 $\sin \theta_{13,\text{TBM}} = 0.$

$$U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix} \qquad \begin{aligned} & \sin^2 \theta_{\text{atm, TBM}} = 1/2 \\ & \sin^2 \theta_{\odot, \text{TBM}} \neq 1/3 \\ & \tan^2 \theta_{\odot, \text{TBM}} = 1/2 \end{aligned}$$

• new KamLAND result: $\tan \theta_{\odot,exp}^2 = 0.47_{-0.05}^{+0.06}$ • indication for non-zero θ_{13} : $\sin^2 \theta_{13} = 0.0$

 $\sin^2 \theta_{13} = 0.016 \pm 0.010 \ (1\sigma)$

Fogli, Lisi, Marrone, Palazzo, Rotunno, June 2008

Parametrizing deviations from TBM \Rightarrow Talk by Werner Rodejohan

Tri-bimaximal Neutrino Mixing

• Neutrino mass matrices:

 $M = \begin{pmatrix} A & B & B \\ B & C & D \\ B & D & C \end{pmatrix} \longrightarrow \sin^2 2\theta_{23} = 1 \qquad \theta_{13} = 0$ solar mixing angle NOT fixed

• S3 Mohapatra, Nasri, Yu, 2006; ...

- D4 Grimus, Lavoura, 2003; ...
- μ-τ symmetry Fukuyama, Nishiura, '97; Mohapatra, Nussinov, '99; Ma, Raidal, '01; ...

• if
$$A+B = C + D \longrightarrow \tan^2 \theta_{12} = 1/2$$
 TBM pattern

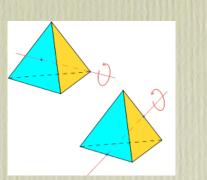
- A4 Ma, '04; Altarelli, Feruglio, '06;
- Z3 × Z7 Luhn, Nasri, Ramond, 2007

[Other discrete groups: Hagedorn, Lindner, Plentinger; Chen, Frigerio, Ma; and many others...]

recent claim: S4 unique group for TBM [C.S. Lam, 2008]

Non-abelian Finite Family Symmetry

- TBM mixing matrix: can be realized in finite group family symmetry based on A4 Ma & Rajasekaran, '01
- even permutations of 4 objects
 - (1234) →(4321)
 - $(1234) \rightarrow (2314)$
- invariance group of Tetrahedron
- orbifold compactification: Altarelli, Feruglio, '06 $6D \rightarrow 4D$ on T2/Z2
- four in-equivalent representations: 1, 1', 1", 3
- Tri-bimaximal mixing arise: Ma, '04; Altarelli, Feruglio, '06;
 - three families of lepton doublets ~ 3
 - RH charged leptons ~ 1, 1', 1"



Non-abelian Finite Family Symmetry

fermion charge assignments:

$$\begin{pmatrix} \ell_1 \\ \ell_2 \\ \ell_3 \end{pmatrix}_L \sim 3, \quad e_R \sim 1, \quad \mu_R \sim 1'', \quad \tau_R \sim 1' \qquad \qquad \xi \sim 3, \quad \eta \sim 1 \qquad \qquad \langle \xi \rangle = \xi_0 \Lambda \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}_L$$

- SM Higgs ~ singlet under $^{(d)}T$
- operator for neutrino masses:

$$\frac{HHLL}{M} \left(\frac{\langle \xi \rangle}{\Lambda} + \frac{\langle \eta \rangle}{\Lambda} \right)$$

(1)

• TBM neutrino mixing from A4 CG coefficients

$$M_{\nu} = \frac{\lambda v^{2}}{M_{x}} \begin{pmatrix} 2\xi_{0} + u & -\xi_{0} & -\xi_{0} \\ -\xi_{0} & 2\xi_{0} & u - \xi_{0} \\ -\xi_{0} & u - \xi_{0} & 2\xi_{0} \end{pmatrix}$$

$$V_{\nu}^{T} M_{\nu} V_{\nu} = \text{diag}(u + 3\xi_{0}, u, -u + 3\xi_{0}) \frac{v_{u}^{2}}{M_{x}}$$

$$V_{\nu} = U_{\text{TBM}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$
-- no adjustable parameters
-- neutrino mixing from CG coefficients!

- charged lepton mass matrix: diagonal $\langle \phi \rangle = \phi_0 \Lambda$ 0
- no quark CKM mixing!!

The Double Tetrahedral ^(d)T Symmetry

- consider double covering of A₄
- Classified as a candidate family symmetry that can arise from Type-II B String theories
 Frampton, Kaphart, 1995, 2001
- can account for quark sector:

exist in A₄: 1, 1', 1", 3 not in A₄: 2, 2', 2" Carr, Frampton, 2007; Feruglio, Hedgedorn, Lin, Merlo, 2007

TBM for neutrinos

2 + I assignments for quarks

- Combined with GUT: ^(d) T x SU(5) GUT M.-C.C & K.T. Mahanthappa Phys. Lett. B652, 34 (2007)
 - only 9 operators allowed: highly predictive model

SU(5) x ^(d)T Model

M.-C.C & K.T. Mahanthappa

Phys. Lett. B652, 34 (2007)

• CKM mixing matrix

 $M_{u} = \begin{pmatrix} i\phi_{0}^{3} & \frac{1-i}{2}\phi_{0}^{3} & 0\\ \frac{1-i}{2}\phi_{0}^{3} & \phi_{0}^{\prime3} + (1-\frac{i}{2})\phi_{0}^{2} & y^{\prime}\psi_{0}\zeta_{0} \\ 0 & y^{\prime}\psi_{0}\zeta_{0} & 1 \end{pmatrix} V_{cb} \qquad M_{d} = \begin{pmatrix} 0 & (1+i)\phi_{0}\psi_{0}^{\prime} & 0\\ -(1-i)\phi_{0}\psi_{0}^{\prime} & \psi_{0}N_{0} & 0\\ \phi_{0}\psi_{0}^{\prime} & \phi_{0}\psi_{0}^{\prime} & \zeta_{0} \end{pmatrix} y_{b}v_{d}\phi_{0},$ Vub $\theta_c \simeq \left|\sqrt{m_d/m_s} - e^{i\alpha}\sqrt{m_u/m_c}\right| \sim \sqrt{m_d/m_s},$ Georgi-Jarlskog relations $\Rightarrow V_d \neq I$ $SU(5) \Rightarrow M_d = (M_e)^T$ • MNS matrix: \Rightarrow corrections to TBM related to θ_c $U_{\rm MNS} = V_{e,L}^{\dagger} U_{\rm TBM} = \begin{pmatrix} 1 & -\theta_c/3 & * \\ \theta_c/3 & 1 & * \\ * & * & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -\sqrt{1/6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -\sqrt{1/6} & 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$ $\theta_{13} \simeq \theta_c/3\sqrt{2}$ $\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot, \text{TBM}} - \frac{1}{2} \theta_c \cos \beta$ leptonic CPV G relations in SU(5) \Rightarrow new QLC relation!

Quark-Lepton Complementarity

lepton mixing

quark mixing

parameter	Best-fit value	3σ range		parameter	Best-fit value	3σ range
θ_{12}	33.2^{o}	$28.7^{o} - 38.1^{o}$		θ_c	12.88^{o}	$12.75^{o} - 13.01^{o}$
θ_{23}	45^{o}	$35.7^{o} - 55.6^{o}$		$ heta_{23}^q$	2.36^{o}	$2.25^{o} - 2.48^{o}$
$ heta_{13}$	2.6^{o}	$0 - 12.5^{\circ}$		$ heta_{13}^q$	0.21^{o}	$0.17^{o} - 0.25^{o}$
$\theta_{12} + \theta_c = 45^{\circ}$ Raidal, '04; Smirnov & Minakata, '04 Raidal, '04; Smirnov & Minakata, '04 quark-lepton unification? more generally:						
$\theta_{12} + \theta_C \left(\underbrace{\frac{1}{\sqrt{2}} + \frac{\theta_C}{4}}_{4} \right) \simeq \frac{\pi}{4}$ See: Talk by Walter Winter						
RG effects: $\Delta \theta_c \sim \theta_c^4$ Plentinger, Seidl, Winter, 08; Frampton, Matsuzaki, 08; King 05; King Antusch, 05						
MSSM: normal hierarchy $\Delta \theta_{12} < 0.1^{\circ}$ Schmidt & Smirnov, '06						
Motivate measurements of neutrino mixing angles to at least the accuracy of the measured quark mixing angles						

Neutrino Mass Sum Rule

- sum rule among three neutrino masses: $m_1 m_3 = 2m_2$
- including CP violation:

$$m_{1} = u_{0} + 3\xi_{0}e^{i\theta} \qquad \Delta m_{atm}^{2} \equiv |m_{3}|^{2} - |m_{1}|^{2} = -12u_{0}\xi_{0}\cos\theta m_{3} = -u_{0} + 3\xi_{0}e^{i\theta} \qquad \Delta m_{\odot}^{2} \equiv |m_{2}|^{2} - |m_{1}|^{2} = -9\xi_{0}^{2} - 6u_{0}\xi_{0}\cos\theta$$

leads to sum rule

 $\Delta m_{\odot}^{2} = -9\xi_{0}^{2} + \frac{1}{2}\Delta m_{atm}^{2} \longrightarrow \Delta m_{atm}^{2} > 0 \qquad \begin{array}{c} \text{normal hierarchy} \\ \text{predicted!!} \end{array}$

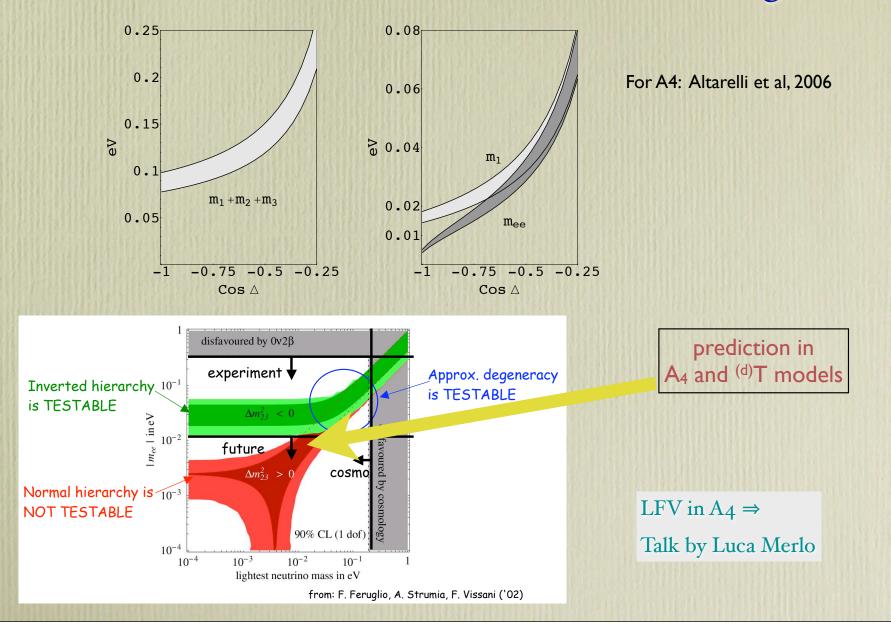
• constraint on Majorana phases:

$$0 > \cos\theta > -\frac{3}{2}\frac{\xi_0}{u_0}$$

neutrino-less double beta decay:

$$\begin{aligned} \xi_0 &= \frac{1}{3} \sqrt{(\frac{1}{2} - r) \Delta m_{atm}^2} \\ u_0 &= -\frac{1}{4\cos\theta} \sqrt{\frac{\Delta m_{atm}^2}{(\frac{1}{2} - r)}} \end{aligned} \qquad r \equiv \Delta m_{\odot}^2 / \Delta m_{atm}^2 \qquad |\langle m_{ee} \rangle|^2 = \left[-\frac{1 + 4r}{9} + \frac{1}{8(1 - 2r)\cos^2\theta} \right] \Delta m_{atm}^2 \end{aligned}$$

Models with Tri-bimaximal Neutrino Mixing



TBM \leftrightarrow Leptogenesis

See: Talk by M. Plumacher

- TBM mixing arises from underlying broken discrete symmetries $(A_4, Z_7 \times Z_3)$ through type-I seesaw E. Jenkins, A. Manohar, 2008
 - ➡ exact TBM mixing

 $\sin\theta_{13} = 0 \Rightarrow J_{CP}^{lep} \propto \sin\theta_{13} = 0$

CP violation through Majorana phases: α_{21} , α_{31}

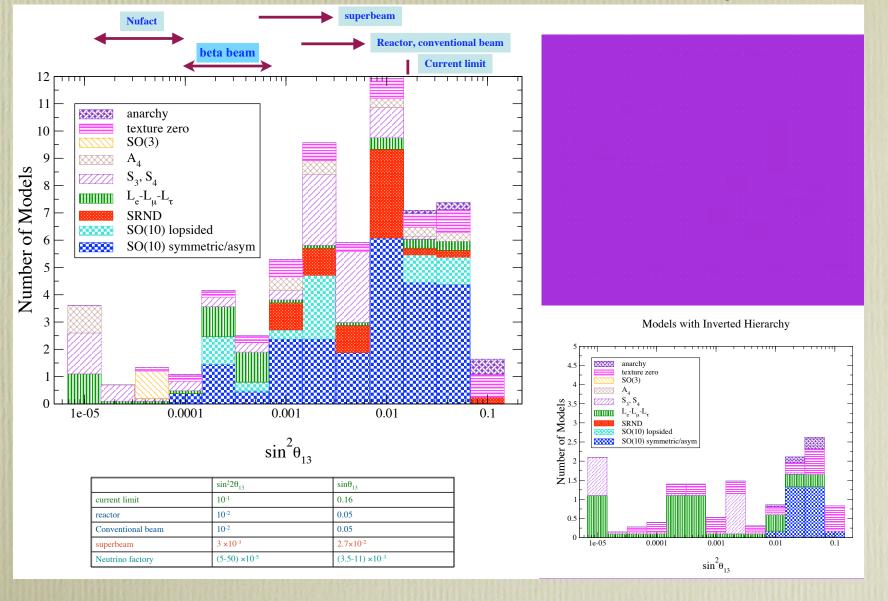
- \rightarrow no leptogenesis as $Im(y_D y_D^{\dagger}) = 0$
- \rightarrow true even when flavor effects included
- corrections to TBM pattern due to high dim operators small symmetry breaking parameter $\eta \ll 1$:

 $\sin \theta_{13} \sim \eta \sim 10^{-2}, \ \epsilon \sim 10^{-6}$ can be generated

- type-II seesaw contribution in S3 R.N. Mohapatra, H.B. Yu, 2006
 - exact TBM limit: $\varepsilon_2^{II} \simeq -\frac{3}{8\pi} \frac{m_1 M_2 \sin \varphi_1}{v^2 \sin^2 \beta}$ φ_1 : one of the Majorana phases

Distinguishing Models

C. Albright & M.-C.C, 2006

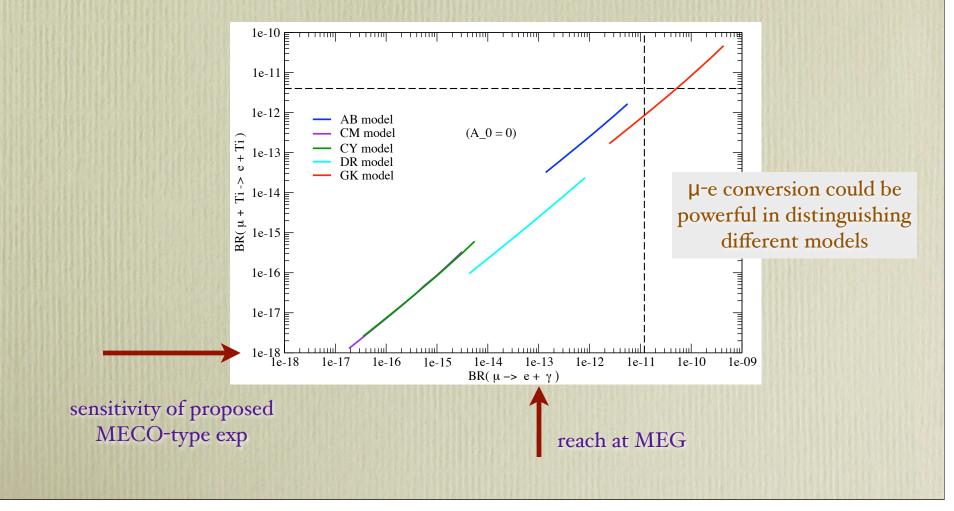


LFV Rare Processes

C. Albright & M.-C.C, 2008

predictions for LFV processes in five viable SUSY SO(10) models:

- -- assuming MSUGRA boundary conditions
- -- including Dark Matter constraints from WMAP



TeV Scale Seesaw

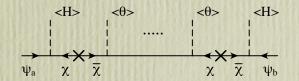
M.-C.C, A. de Gouvea, B. Dobrescu, 2007

- SM x U(1)_{NA} + 3 v_R : charged under U(1)_{NA} symmetry, broken by $\langle \phi \rangle$
- U(1)_{NA} forbids usual dim-4 Dirac operator and dim-5 Majorana operator HHLL

$$m_{LL} \sim \frac{HHLL}{M} \to M \sim 10^{14} \; GeV$$

• neutrino masses generated by very high dimensional operators

 $m_{LL} \sim \left(\frac{\langle \phi \rangle}{M}\right)^p \frac{HHLL}{M} \to M \sim TeV, \text{ for large } p \qquad \qquad \frac{\langle \phi \rangle}{M} \sim \text{not too small}$



- anomaly cancellations: charge of different families of fermions related
 => predict flavor mixing
- Through couplings to Z': can probe neutrino sector at colliders

Type III seesaw at LHC \Rightarrow Talk by Roberto Franceschini

Non-anomalous v.s. Anomalous U(1)

- anomaly cancellations: relating charges of different fermions
 - [U(1)]³ condition generally difficult to solve
 - Green-Schwarz mechanism [anomalous U(1)]
 - exotic fields in addition to RH neutrinos
- most models utilized anomalous U(I):
 - earlier claim that U(I) has to be anomalous to be compatible with SU(5) while giving rise to realistic fermion mass and mixing patterns
 L.E. Ibanez, G.G. Ross 1994
- non-anomalous U(1) can be compatible with SUSY SU(5) while giving rise to realistic fermion mass and mixing patterns
 - no exotics other than 3 RH neutrinos
 - U(1) also forbids Higgs-mediated proton decay

M.-C.C, D.R.T. Jones, A. Rajaraman, H.B.Yu, 2008

Conclusion

- finite group family symmetry: group theoretical origin for mixing
- Predictions of existing models for θ_{13} : 0 current bound
- Precision measurements for the θ_{13} and mass hierarchy can tell different scenarios apart:
 - leptonic family symmetry vs GUT
 - inverted hierarchy, small 1-3 mixing => lepton symmetry
 - large 1-3 mixing => inconclusive
- deviation from maximal θ_{23} may tell how symmetry is broken
- May probe other interesting relations: e.g.
 - quark-lepton complementarity: $\theta_{12} + \theta_c = 45^{\circ}$
 - new quark-lepton complementarity: $\tan^2 \theta_{\odot} \simeq \tan^2 \theta_{\odot,\text{TBM}} \frac{1}{2} \theta_c \cos \beta$

 $=\frac{1}{2}-\frac{1}{2}\theta_c\cos\beta$

• LFV rare processes can be a robust test

Precision Measurements Indispensable!!