NOW 2008 - and Then

The Task

G. Fogli: The Ribbon

At this point it remains to interpret the role of the ribbon, which goes around the solids without interruption. (without a break) (uninterruptedly).

- relate the "Platonic solids"
- interprete connections
- the corners and cracks
- the larger picture

Neutrino Topics

M. Lindner

NOW2008

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

B-decay: energy spectrum

G. Drexlin

investigation of the kinematics of B-decay:

→ only model independent measurement of absolute v mass scale
 ← → cosmology ...

MARE: staged approach based on microcalorimeters ¹⁸⁷Re β-decay MARE-I ~300 detectors with m(v) ~ 2 eV MARE-II ~50.000 detectors with m(v) ~ 0.2 eV if successful R&D & if funded
MATRIN: designed as 'ultimate' tritium β-decay experiment initial runs Q4/2010 T₁₄

<u>model-independent</u> <u>status (Mainz, Troizk)</u>: m_v < 2.3 eV

potential: KATRIN, MARE-II

sensitivity (90% CL) m(v) < 200 meV

discovery potential $m(v) = 350 \text{ meV} (5\sigma)$

Four Methods of Mass Determination

- kinematical
- lepton number violation
 Majorana nature
- astrophysics & cosmology
- oscillations

0νββ Decay Kinematics

Majorana ν **→** 0νββ decay

warning:

other lepton number violating processes...

2νββ decay of ⁷⁶Ge observed: $\tau = 1.5 \times 10^{21}$ y

- signal at known Q-value
- 2vββ background (resulution)
- nuclear backgrounds
 - ➔ use different nuclei

NME's: Relating Lifetimes & Neutrino Masses

A. Fässler

Summary: Neutrino Mass from $0\nu\beta\beta$

Theory with R-QRPA and $g_A = 1.25$ Exp. Klapdor et al. Mod. Phys. Lett. A21,1547(2006) ; ⁷⁶Ge T(1/2; 0νββ) = (2.23 + 0.44 - 0.31) x 10²⁵ years; 6σ

- <m(ν)> = 0.24 [eV] (exp+-0.02; theor+-0.01) [eV] Bonn CD, no short range correlations
- <m(v)> = 0.22 [eV] (exp+-0.02;theor+-0.01) [eV] Bonn CD, Consistent Brückner Correlations
- <m(v)> = 0.24 [eV] (exp+-0.02; theor+-0.01) Argonne, Consistent Brückner Correlations
- <m(v)> = 0.30 [eV] (exp+-0.03;theor+-0.01) [eV]
 Bonn CD, Fermi Hypernetted Chain (Argonne in nuclei)

• <m(v)> = 0.26 [eV] (exp+-0.02;thero+-0.01) Bonn CD, UCOM (AV18 in D)

• <m(v)> = 0.31 [eV] (exp +-0.03;theor+-0.02) [eV] Bonn CD, Jastrow

Future	projects#	(a broad bru	ish, perso	nal view)	
Isotope	Experiment	Main principle	Fid mass	Lab	
	Majorana ⁺	Eres,2site tag, Cu shield	30+30kg	SUSEL	
⁷⁶ Ge	Gerda [†]	Eres,2site tag, LAr shield	18→40 kg	G Sasso	
	MaGe/GeMa	See above	~1ton	DUSEL? G Sasso?	
150 Nd	SNO+	Size/shielding	56 kg	SNOlab	
¹⁵⁰ Nd or ⁸² Se	SuperNEMO*	Tracking	100-200 kg	Canfranc Frejus	
¹³⁰ Te*	CUORE	E Res.	204 kg	G Sasso	
¹³⁶ Xe	EXO	Tracking	150 kg	WIPP	
		Ba tag, Tracking	1-10ton	DUSEL?	

 \geq 2 elements

see also talks by J. Janisko (GERDA) F. Bellini (CUORE) L. Vala (SuperNEMO) F. Sanchez (NEXT) C. Jillings (SNO+)

Exciting time for neutrino-less double beta decay!

Several 100kg-class experiments will start data taking in the next 2-3 years.

R&D for ton-class experiments is on-going.

 $0\nu\beta\beta$ Experiments

M. Lindner

Neutrino-less Double β-Decay

Comments:

- cosmology: limitation by systematical errors → another factor ~5?
- $0\nu\beta\beta$ nuclear matrix elements \rightarrow unavoidable theory error in m_{ee}
- $\Delta m^2 > 0$ allows complete cancellation
- $0\nu\beta\beta$ from *other* new BSM lepton number violating operators

Schechter+Valle: Any L violating operator → radiative mass generation → Majorana nature of v's However: Might be a tiny correction to a much larger Dirac mass

very promising interplay of neutrino mass determinations, cosmology, LHC, LVF experiments and theory

→ see talks by A. de Gouvea, F. Cei, F. Joaquim, L. Merlo,

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- cosmology & astrophysics
- oscillations

Neutrinos & Cosmology

- Dark Matter ~ 25% & Dark Energy 70%
- mass of all neutrinos: $0.001 \le \Omega_v \le 0.02$
- baryonic matter $\Omega_{\rm B} \sim 0.04$

Neutrino mass contribution possibly as big as all baryonic matter >> visible matter much more COLD dark matter & dark energy neutrinos are an important hot dark matter component

Present Day Acceleration

Comological impact of neutrinos:

- hot component in structure formation: 330v/cm³ x mass → structure formation & v-mass and properties → M. Cirelli
- Big Bang Nuklueosynthesis → G. Miele
- Baryon asymmetry → Leptogenesis → M. Pluemacher,
G.Branco, S. Petcov, Romanino

Source: Devid Aignier, Hervard-Smithsonien Center for Astronbraics

Cosmological Neutrino Mass Limit(s)

Talk of A. Palazzo:

Fogli et al., Phys. ReV. D 78, 033010 (2008) [arXiv:0805.2517v3]

- reliability of Ly α ?
- systematic limitations for increased precision?

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

I. Shimizu: KamLAND results & update on solar / cleaningG. Prioir: SNO phase IIIJ. Evans: Latest results from MINOS

- Y. Kurimoto: SciBooNE
- L. Scotto-Lavina: OPERA

Status of Neutrino Oscillations

Talk of A. Palazzo: Fogli et al., Phys. ReV. D 78, 033010 (2008) [arXiv:0805.2517v3]

Combining solar and KamLAND

A. Palazzo:

~1.2 σ preference for θ_{13} > 0 ?how robust?

Future Precision Oscillation Physics

Precise measurements **→** 3f oscillation formulae

<u>Aims</u>: → improved precision of the leading 2x2 oscillations
 → detection of generic 3-neutrino effects: θ₁₃, CP violation

<u>Complication:</u> Matter effects **>** effective parameters in matter

→ expansion in small quantities θ_{13} and $\alpha = \Delta m_{sol}^2 / \Delta m_{atm}^2$ Burguet-Castell et al., Akhmedov et al. ...

Future Precision with Reactor Experiments $\xrightarrow{\overline{\nu}_e}$ near detector (170m) $\xrightarrow{\overline{\nu}_e}$ far detector (1700m) identical detectors **→** many errors cancel 129.88 $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} - \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$ Survival Probablity → Double Chooz ➔ Daya Bay 0.8 atmospheric → Reno **3 flavour effect** 0.6 → Angra no degeneracies 0.4 no correlations 0.2

M. Lindner

New Reactor Experiments

S. Peeters (overview & Double Chooz) Y. Oh (RENO) D. Lhuillier (monitoring)

- promising experiments
- precision is very demanding:
 - → stable scintillator (c.f. Chooz!)
 - \rightarrow technological challenges
 - → backgrounds
 - \rightarrow systematics
 - \rightarrow different optimism on schedules

comparison possible, but they depend on non-trivial assumptions...

Future Precison with New Neutrino Beams

- conventional beams, superbeams
 → MINOS, CNGS, T2K, NOvA, T2H,...
- <u>β-beams</u>
 - → pure v_e and \bar{v}_e beams from radioactive decays; $\gamma \simeq 100$
- <u>neutrino factories</u>

 \rightarrow clean neutrino beams from decay of stored μ 's

$$\begin{split} P(\nu_e \to \nu_\mu) &\approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \ \frac{\sin^2((1-\hat{A})\Delta)}{(1-\hat{A})^2} \\ &\pm \sin \delta_{\rm CP} \ \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \sin(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \sin \delta_{\rm CP} \ \alpha \sin 2\theta_{12} \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{23} \cos(\Delta) \frac{\sin(\hat{A}\Delta) \sin((1-\hat{A})\Delta)}{\hat{A}(1-\hat{A})} \\ &+ \ \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2(\hat{A}\Delta)}{\hat{A}^2} \end{split}$$

correlations & degeneracies, matter effects

overview by W. Winter

Channels of interest

- Disappearance for Δm_{31}^2 , θ_{23} : $\mathbf{v}_{\mu} \Rightarrow \mathbf{v}_{\mu}$ $1 - P_{\mu\mu} = \sin^2 2\theta_{23} \sin^2 \Delta_{31} + \text{h.o.t.}$ $\Delta_{31} = \Delta m_{31}^2 L/(4E)$ NB: We expand in $\sin 2\theta_{13}$ and $\alpha \equiv \Delta m_{21}^2 / \Delta m_{31}^2$ ($|\alpha| \sim 0.03$)
- Appearance for θ_{13} , CPV, MH:
 - Golden: $v_e \Leftrightarrow v_\mu$ (NF/BB) or $v_\mu \Leftrightarrow v_e$ (SB) (e.g., De Rujula, Gavela, Hernandez, 1999; Cervera et al, 2000)
 - Silver: ν_e ⇔ ν_τ (NF low statistics!?) (Donini, Meloni, Migliozzi, 2002; Autiero et al, 2004)
 - Platinum: $v_{\mu} \Rightarrow v_{e}$ (NF: difficult!) (see e.g. ISS physics working group report)
- Other appearance: $v_{\mu} \Rightarrow v_{\tau}$ (OPERA, NF?)
- Neutral currents for new physics

(e.g., Barger, Geer, Whisnant, 2004; MINOS, 2008)

<u>Resolving degeneracies:</u> information beyond rates @ fixed L/E
→ different L/E, different channels & beams, spectral info., ...

Optimization:

- more than one quantity (θ_{13} , δ , θ_{ij} , hierarchy, BSM,...),

H. Kakuno (T2K → impressive progress)

M. Goodman (MINOS, NOvA & US perspective)

F. Ronga (LBL@ LNGS & EU perspective)

P. Sala (LNGS v beam)

M. Mezzetto (beta beams)

S. Goswami (INO)

F. Dufour (T2KK)

A. Guglielmi (MODULAr)

T. Schwetz (future atmospheric v's)

M. Bonesini (R&D towards a neutrino factory)

K. Long (International design study)

1) build and exploit approved projects (T2K, ..., reactor)
2) be aware of technological, physics (v, LHC, LFV) and political uncertainties / problems

now: get R&D for new beams, detectors done ...!
aim at decisions depending on results in a few years from now (2012?)

see e.g. LAGUNA – talk by L. Oberauer

θ_{13} – Now and in the Future

New Physics, NSIs & v-Oscillations

See talks by T. Rashba and T. Ota

Future precision oscillation experiments:

	Source	\otimes	Oscillation	\otimes	Detector	
neutr flux a flavor conta symn	Fino energy E and spectrum ur composition amination	tion	 oscillation channel realistic baselines MSW matter pro degeneracies correlations 	els file	 effective mass threshold, responsible particle ID (event reconstruction backgrounds 	ss, material solution flavour, cha truction,
- ,	·····		A		- x-sections (a	t low E)

precision experiments migh see new effects beyond oscillations!
modifications of 3f oscillation formulae, different L/E
small event rates: offset in oscillation parameters

Non Standard Interactions = NSI's

NSIs interfere with Oscillations

<u>note</u>: interference in oscillations $\sim \epsilon \quad \bigstar \quad FCNC \text{ effects } \sim \epsilon^2$

NSI: Offset and Mismatch in θ_{13}

Kopp, ML, Ota, Sato

New Physics: Neutrino Sources

Supernova Neutrinos

Solar Neutrinos: Learning About the Sun

Observables:

- optical (total energy, surface dynamics, sun-spots, historical records, B, ...)
- **neutrinos** (rates, spectrum, ...)

Topics:

- nuclear cross sections
 - (at finite T ~ few MeV)
- solar dynamics
- helio-seismology
- variability
- composition
- → recent debate about metallicitiy

Solar Neutrino Spectroscopy

Borexino Results

talks by L. Ludhova and D. Franco

Survival probability after Borexino

First simultaneous measurement in both vacuum-dominated and matter-enhanced regions

Systematic uncertainties

Source	Syst.error (1σ)	
Tot. scint. mass	0.2%	
Live Time	0.1%	
Efficiency of Cuts	0.3%	
Detector Resp.Function	6%	
Fiducial Mass	6%	
тот	8.5%	

_s cpd/100 tons
Expected rate (cpd/100 t)
75 ± 4
48 ± 4
44 ± 4

No-oscillation hypothesis rejected at 4**0** level

Theory: Different Routes Beyond the SM

Adding Neutrino Mass Terms

1) Simplest possibility: add 3 right handed neutrino fields

NEW ingredients, 9 parameters -> SM+

Other effective Operators Beyond the SM

→ effects beyond 3 flavours
 → Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$
 f

Suggestive Seesaw Features

QFT: natural value of mass operators ←→ scale of symmetry

m_D ~ electro-weak scale

 $M_R \sim L$ violation scale \leftarrow ? \rightarrow embedding (GUTs, ...)

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ $\Rightarrow \text{smallness of } m_v \Leftarrow \Rightarrow \text{ high scale of } I/2, \text{ symmetries of } m_D, M_R$

2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

- less hierarchy in m_D or correlated hierarchy in M_R ? \rightarrow theoretically connected!
- mixing patterns: not generically large, why almost maximal, θ_{13} small?

Parameters for 3 Light Neutrinos

mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Learning about Flavour

Next: Smallness of θ_{13} , θ_{23} **maximal**

- models for masses & mixings
- input: known masses & mixings
 - \rightarrow distribution of θ_{13} predictions
 - $\rightarrow \theta_{13}$ expected close to ex. bound
 - → well motivated experiments

what if θ_{13} is very tiny? or if θ_{23} is very close to maximal?

- numerical coincidence unlikely
 special reasons (symmetry, ...)
- ➔ answered by coming precision

The larger Picture: GUTs

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- → flavour symmetries (finite number for limited rank)
- → symmetry not texture zeros

GUT x Flavour Unification

→ GUT group X flavour group

example: SO(10) X SU(3)_F

- SSB of SU(3)_F between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ←→SSB
 - e.g. Z2, S3, D5, A4
 - ➔ structures in flavour space
 - ➔ compare with data

GUT x flavour is rather restricted

←→ small quark mixings *AND* large leptonic mixings ; quantum numbers

- → so far only a few viable models (without supersymmetry) rather limited number of possibilities; phenomenological success non-trivial
- → aim: distinguish models further by future precision

Further Implications of Precision

Precision allows to identify / exclude:

- special angles: $\theta_{13} = 0^{\circ}$, $\theta_{23} = 45^{\circ}$, ... $\leftarrow \rightarrow$ discrete f. symmetries?
- special relations: $\theta_{12} + \theta_C = 45^\circ$? $\leftarrow \rightarrow$ quark-lepton relation?
- quantum corrections **←>** renormalization group evolution

Provides also measurements / tests of:

- MSW effect & coherent scattering
- cross sections (G. Co)
- 3 neutrino unitarity & sterile neutrinos (D. Meloni)
- neutrino decay (admixture...)
- Geophysics via oscillograms (E. Akhmedov)
- electromagnetic properties (A. Studenikin)
- NSI (T. Ota, T. Rashba, M. Cirelli)
- MaVaN scenarios (M. Lattanzi), unparticles (R. Zukanovich)
- **synergies with LHC and LFV (A. de Gouvea, F. Joaquium)**

Guessing the Future

Status quo: neutrino revolution **>** consolidation

- check and improve knowledge $\leftarrow \rightarrow$ potential for surprises
- slowdown due to larger / more complex experiments
 - → dinosaurs & mutations
 - → scale known technologies (with required R&D)
 - → look for new ideas
 - **GSI** anomaly \rightarrow not due to v-mixing (C. Giunti) (if real...)
 - Moessbauer neutrinos (S. Parke) (very difficult but...)
 - relic neutrino detection (A. Cocco)
 - v-masses from cosmological 21cm observation (J. Pritchard)
- additional promising areas: LHC, LFV, astroparticle/cosmology
 interesting by themselves & important theoretical interplay

Other Topics (apoligies)

- Neutrino telescopes (T. Montaruli, U. Katz, J.L. Bazo, E. Presani)
- Geoneutrinos (S. Dye)
- CMB in the light of Planck (P. de Bernardis)
- Dark Matter (N. Fornengo, F. Cafagna)
- HECR and UHECR (V. Berezinsky, L.Nellen, F. Villante, N. Busca, J. Matthews, E. Carmona, P. Serpico, R. Tomas, K.H. Kampert, D. Allard, N. Giglietto)
- Axions (A. Mirizzi)

The N.O.W. Effect

(invented by G. Fogli; assumes only an average physicist "X")

- effect was seen in all runs (2000, 2004, 2006, evidence in 2008)
- high statistics \rightarrow 6.3 sigma effect
- safe (no black holes or other damages) \rightarrow can (should be) be repeated

Thanks to

- Gianluigi Fogli
- Eligio Lisi and all other co-organizers
- session convenors
- E. Forini for his nice special talk
- hotel & staff

We look forward to NOW 2010!