

SEEKING Θ_{13} with reactor neutrinos

Simon JM Peeters

U University of Sussex

CONTENTS

- What do we know about $\, {m heta}_{13} ? \,$
- Experimental scene
- $\overline{\nu}$ measurement at a reactor
 - Detailed experimental set-up:
- Status of Double Chooz
- Reno, Daya Bay
- Overview
- What else can you do with these?

MOTIVATION

 ${oldsymbol{
u}}_{\mu}$

- Fundamental physics parameter
- Determine the tactics to best address the search for CP violation in the electroweak sector
- E. Fiorini: doing "useless" things

atm

 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$

 θ_{sol}

Simon JM Peeters, NOW 2008

University of Sussex

What do we know (exp.) about $\, \Theta_{13} \,$

Global fit

Direct measurement Chooz

ArXiv 0301017 [hep-ex]

UIS

University of Sussex

see talk by Justin Evans

Simon JM Peeters, NOW 2008

Experimental bias: $\sin^2 2 \theta_{13} = 0.063 \pm 0.038$

What do we know (th.) about $\, \Theta_{13} \,$

Most models: $\theta_{13} > 0$

Unnatural

Many, many predictions...

Most models predict value close to the CHOOZ value. Even if $\boldsymbol{\theta}_{13}$ is zero, quantum corrections would make it non-zero at low energy

Theoretical bias: $\sin^2 2 \theta_{13} > 0.01$

reactor neutrino white paper: arXiv:hep-ex/0402041v1

Simon JM Peeters, NOW 2008

GLOBAL VIEW OF REACTOR EXPERIMENTS

BACKGROUNDS

fast neutrons

OVERVIEW OF DESIGN CONSIDERATIONS

- Keep geometry simple *(as simple as possible)*
- Light collection (energy resolution)
- Size matters: counting vs shape measurement
- Active muon shielding
- Depth: reduce muon rate
- Detect passing muons
- Gamma catcher
 - Catch escaping gammas from neutron captures on Gd: reduce tail
- Backgrounds
 - materials (Gd complex)
 - (PMT, rock) shielding
- Calibrate, calibrate...

Simon JM Peeters, NOW 2008

12

DOUBLE CHOOZ COLLABORATION **France:** APC Paris, CEA/Dapnia Saclay, Subatech Nantes, Strasbourg **Germany:** Aachen, MPIK Heidelberg, TU München, EKU Tübingen **Spain:** CIEMAT Madrid **UK:** Sussex Japan: HIT, Kobe, MUE, Niigata, TGU, TIT, TMU, Tohoku **Russia: RAS, RRC Kurchatov** Institute USA: Alabama, ANL, Chicago, Columbia, Drexel, Illinois, Kansas, LLNL, LSU, MIT, Notre Dame, Sandia, Tennessee, UCD **Brazil: CBPF, UNICAMP**

Simon JM Peeters, NOW 2008

13

Collaboration meeting June 2008

University of Sussex

IMPROVING THE CHOOZ MEASUREMENT

Chooz result: $R_{\text{near/far}} = 1.01 \pm 2.8\%(stat.) \pm 2.7\%~(syst.)$

Statistical error

Error Description	CHOOZ Absolute	Double Chooz	
		Absolute	Relative
Reactor			
Production cross section	1.90 %	1.90 %	
Core powers	0.70 %	2.00 %	
Energy per fission	0.60 %	0.50 %	
Solid angle/Bary. displct.			0.07~%
Detector			
Detection cross section	0.30 %	0.10 %	
Target mass	0.30 %	0.20 %	0.20 %
Fiducial volume	0.20 %		
Target free H fraction	0.80 %	0.50 %	
Dead time (electronics)	0.25 %		
Analysis (paticle id.)			
e^+ escape (D) e^+ conture (C)	0.10 %		
e^+ identification cut (E)	0.80 %	0.10 %	0.10 %
n escape (D)	0.10 %		
n capture (% Gd) (C)	0.85 %	0.30 %	0.30 %
n identification cut (E)	0.40 %	0.20 %	0.20 %
$\overline{\nu}_e$ time cut (T)	0.40 %	0.10 %	0.10 %
ν_e distance cut (D)	0.30 %		
unicity $(n \text{ multiplicity})$	0.50 %		

Systematical error

- Two detector concept: near/far
- Fiducial volume defined by mechanics
- Stability of Gd-doped LS
- Calibration
- ... and more in careful design...

Existing (Chooz) pit at far detector

CHOOZ: A VERY ATTRACTIVE PLACE TO VISIT

55.

US

University of Sussex

STATUS FAR SITE

Tunnel

200 meters @10% $Demagnetization and integration of \gamma shielding:$ New ventilation, doors, safety, ...

Liquid storage building

Being upgraded First liquids *next week* **Neutrino laboratory** 1.05 km baseline (50 day⁻¹) 300 m.w.e., μ-Rate: ~20 Hz Fire security, pit refubrished

STATUS NEAR SITE

Laboratory site

~400 m from nuclear cores (500 day⁻¹) 115 m.w.e (almost flat topology) μ-Rate: ~250 Hz @IV

A tunnel to access the lab (no shaft), Site Engineering Study Completed

Tender process for construction soon

Laboratory is expected to be finished at the end of 2009

U91

Near site location Res 1 Access tunnel

Simon JM Peeters, NOW 2008

University of Sussex

B

TARGET SCINTILLATOR

DC development

Long-term stability crucial CHOOZ saw fast degradation of scintillator

- Solvent 20% PXE + 80% dodecane
- *Fluors* PPO + bisMSB
- Gd loading (1 g/l) (via beta-diketonate)
 - Light yield: ~7000 photons/MeV
 - Attenuation length: 10 m at 420 nm
 - No degradation observed after three years

same scintillator batch for both detectors

CALIBRATION PROGRAM

Deployable sources

- Access to LS via glovebox
- Fish-line & articulated arm
- γ-catcher and buffer guide tubes

Continuous monitoring: embedded LED system

- LED pulser box (MINOS-based) with fibres leading into detector
- 46 light-injection points
- 3 wavelengths: 385 nm, 425 nm, 485 nm
- Monitor: PMT gains, linearity, timing
- Monitor: optical properties of fluids

(Inner veto will have similar system)

21

LIQUID CONTAINMENT & HANDLING

New scintillator hall built at MPIK

installation tools

1/5 mock-up @ Saclay

- •Target : 8 mm, y catcher : 12 mm
- •*R&D & Design completed*
- •Customised acrylic batch
- •Tender ongoing

22

University of Sussex

(SOME OF THE) MEASURES TO REDUCE SYSTEMATIC ERRORS

shied

for

illustration

removed magnetic PMT with partially

DAQ 0

- Zero deadtime
- R/O with flash-ADC: control time-walk
- Low-background PMTs 0
- Magnetic shield to ensure 0 PMT uniformity in response
- Optimised PMT coverage: 0
 - Spatial uniformity in light response
 - 15% coverage for 7% resolution at 1 MeV

board

ready

23

VETO-SYSTEM

Inner veto

- Tag μ and secondaries
- Very high efficiency (> 99.5%)

500 cm, LAB scintillator
70 8" PMTs (refurbished IMB tubes R1408)

To be installed in December

Outer veto

- Tag "near-miss" μ, calibrate IV
- Redundancy for high rejection power

- Panels of strips
- Coextruded scintillator + TiO₂ reflector
- 1.2 mm Ø wavelength-shifting fibre

Prototype made, material procurement has
started.University of Sussex

RENO DESIGN

- Layout very similar to DoubleChooz
- LAB scintillator

RENO STATUS

See talk of Youngdo Oh @ 15h40

 $\frac{Sensitivity}{\sin^2(2\theta_{13}) > 0.02 @ 90\% \ {\rm CL} \ (3 \ {\rm yrs})}$

Start-up Data taking expected to start early 2010

DAYA BAY EXPERIMENT

- 55 km from Hong Kong
- Reactor power: currently 11.6 GW_{th}, to be upgraded to 17.4 GW_{th} (2011)
- Close to mountain: underground labs with sufficient overburden.

Ling Ao: $2 \times 2.9 \text{ GW}_{\text{th}}$

Ling Ao II: 2 × 2.9 GW_th

Collaboration:

18 institutes in Asia

15 institutes in the US

SITE OVERVIEW

US University of Sussex

29

DETECTOR

Design

Again, simular to Double Chooz, However:

• no PMTs but reflectors top and bottom.

• Multiple detectors in large water based outer veto system with RPC top shield

Prototype

45 PMTs 0.5 tonne reflectors top & bottom Phase I: LAB LS mineroil Phase II: LAB LS

Gd-loaded

Simon JM Peeters, NOW 2008

STATUS AND OVERVIEW

Sensitivity goal $\sin^2(2\theta_{13}) < 0.01$

In construction phase

- Civil construction has started
- Subsystem prototypes exist
- Long-lead orders initiated
- Daya Bay is moving forward!

NEUTRINO EXPERIMENT AT ANGRA DOS REIS

- Collaboration in stand-by Joined Double Chooz effort in 2006
- 2 x 4 GWth (Angra II & III)
- 1.5 km tunnel to be excavated for far detector, cavity for near detector
- Large detector:

(several 100 tons!)

(Detailed) shape measurement

32

University of Sussex

COMPARISON

Simon JM Peeters, NOW 2008

arXiv:0509019v1 [hep-ex]

JUST Θ_{13} ?

- Non-proliferation: similar technology (see talk of David Lhuillier @ 16h00)
- General: Scintillator development, movable detectors
- Robustness
 - Experimental: Neutrino measurements are challenging: cross-checks are needed
 - Theoretical:
 - Is the oscillation model correct?
 - (Multiple theoretical models for Non-Standard Interactions: see talk of Toshihiko Ota on Friday) arXiv:0708.0152v2 [hep-ph]

THANK YOU

DOCTOR FUN

The discovery of the "biggie" neutrino

8 Nov 2002

Simon JM Peeters, NOW 2008

35