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Dark matter from late decays and the small-scale structure problems
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The generation of dark matter in late decays of quasi-stable massive particles has been proposed
as a viable framework to address the excess of power found in numerical N-body simulations for cold
dark matter cosmologies. We identify a convenient set of variable to illustrate which requirements
need to be satisfied in any generic particle physics model to address the small scale problems and
fulfill other astrophysical constraints. We re-examine the role of gravitinos and Kaluza-Klein gravi-
tons in this context and find them disfavoured as a solution to the small-scale problems in case they
are DM candidates generated in the decay of thermally produced WIMPs. We propose right-handed
sneutrinos and right-handed Kaluza-Klein neutrinos as alternatives. We find that they are viable
dark matter candidates, but that they can contribute to a solution of the small scale problems
only in case the associated Dirac neutrino mass term appears as a subdominant contribution in the
neutrino mass matrix.

PACS numbers: 98.80.Cq, 98.80.Es, 95.35+d, 12.60.Jv, 14.80.Ly

I. INTRODUCTION

Cosmological observations have given overwhelming
evidence that nonbaryonic dark matter (DM) is the
building block of structures in the Universe [1]. At the
same time, from a particle physics perspective, little is
known about the detailed properties of DM particles. In
the standard cosmological scenario, a cold dark matter
(CDM) term is introduced as a generic component that
is i) “dark” or dissipationless, as it couples to photons
and baryons only through gravity, ii) “cold”, i.e. with
negligible free-streaming effects, and iii) collisionless.

This scenario can be accommodated in extensions to
the standard model (SM) of particle physics. The most
attractive scheme is probably the one in which CDM is
introduced as a thermal relic component: stable massive
particles that acquire a relic density of the order of the
DM density in the Universe, provided their coupling to
SM particles is of weak type. The list of weakly interact-
ing massive particles (WIMPs) that have been proposed
as DM candidates includes, among others, the lightest
neutralino in supersymmetric models in which this is
the lightest supersymmetric particle (LSP), and the first
Kaluza-Klein (KK) hypercharge gauge boson in models
with universal extra dimensions (for reviews, see [2]).

In CDM cosmologies, structures form hierarchically,
with small structures collapsing first and then merging
into larger and larger bodies. This picture has proven
to be remarkably successful to describe the distribution
and correlation of structures on large scales. There is,
however, some tension with observations on small scales
in the non-linear structure formation regime which needs
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to be studied with numerical N-body simulations. The
focus has been, in particular, on two issues. The first
is the overabundance of substructures in simulated halos
of Milky Way size, with respect to the observed number
of galactic satellites [3, 4]. The second regards the rise
in the rotation curves of small, DM-dominated galaxies
which seems, on average, to point to profiles of DM den-
sity with a flat inner core (see, e.g., [5, 6, 7]), as opposed
to the large concentrations and cuspy profiles found in
simulations [8, 9, 10]. The debate on whether these dis-
crepancies are calling for a deeper understanding of the
astrophysical and cosmological processes in connection to
structure formation, or whether they are actually point-
ing to a drastic change of the CDM framework, is still
open.

In both cases, the discrepancies between observations
and simulations are alleviated in schemes with a suppres-
sion of the power spectrum at small scales. Variants to
the standard cosmological model embedding this feature,
while leaving the picture at large scales unchanged, most
often involve a (mild) violation of at least one of the three
properties listed above for CDM. Proposals include: self-
interacting DM [11, 12], warm dark matter (WDM) [13],
DM with a very large pair annihilation rate [14], and
fuzzy DM [15]. In general, it is much more contrived to
construct SM extensions with particles of this kind. For
example, a sterile neutrino with a mass in the keV range,
one of the most promising candidate for WDM has re-
cently been excluded as a thermal DM candidate [16, 17].

An alternative approach involves introducing two dis-
tinct phases in structure formation. This is achieved by
assuming that at least part of the DM observed in the
Universe today has been produced, at late times, in the
decay of a long-lived species. In such a setup two dif-
ferent mechanisms can provide the needed suppression
of the power spectrum, depending on the nature of the
decaying species.

If all DM is generated in the decay of a charged species,
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the matter power spectrum is essentially cut off on scales
that entered the horizon before the decay [18]. This is
because the charged species is tightly coupled to the
photon-baryon fluid. In Ref. [19], an explicit model
was constructed in the minimal supersymmetric stan-
dard model (MSSM) context. In this model, a fraction
of today’s DM neutralinos is produced in the late de-
cay of staus, implying a scale-dependent matter power
spectrum, and in turn, a reduced power on small scales.
As recently noticed, however, long-lived charged parti-
cles may play the role of catalyzers during big bang nu-
cleosynthesis (BBN) [20, 21] and a sharp increase in the
primordial Lithium abundance may be induced, possibly
in contradiction with observations.

The second mechanism is connected to the decay it-
self and takes place if the produced particles have ki-
netic energies much larger than those of the correspond-
ing thermal relic components, making such DM candi-
dates warm or even hot. This mechanism, discussed first
in [22, 23, 24], was re-examined recently [25, 26, 27, 28]
for DM generated in the decay of quasi-stable thermal
relic WIMPs [29, 30, 31, 32, 33, 34], such as gravitinos
or axinos from next-to-lightest supersymmetric particle
(NLSP), or such as KK gravitons from thermally pro-
duced KK states.

Here, we reconsider the metastable WIMP scenario.
We start Sect. II by reviewing the general idea and give
a summary of the relevant astrophysical constraints. We
then identify a convenient set of observables and the
range of values in which they must be confined in or-
der to solve the small-scale structure problems of stan-
dard CDM. The discussion is general and applies to any
particle physics framework, providing therefore a useful
tool to discriminate among different DM candidates. In
Sect. III, we analyze in particular the gravitino and the
KK graviton, that have been claimed to solve such prob-
lems and we find them disfavoured. As an alternative, we
propose right-handed sneutrinos and Kaluza-Klein right-
handed neutrinos, and discuss in detail their potential in
this context. In Section IV we present our conclusions.

II. DARK MATTER FROM LONG-LIVED

PARTICLES

We consider a setup in which today’s dark matter
component in the Universe, in the form of some parti-
cle X , is generated in the decay of a relic population of
quasi-stable particles Y . Both X and Y are treated as
dissipation-less and collision-less for what regards struc-
ture formation, and we assume that the abundance of the
particles X prior to the decay is negligible. Today, the
DM abundance is thus given by

ΩX =
MX

MY
ΩY , (II.1)

where MX and MY are the respective particle masses; ΩY

is the relic density that the species Y would have acquired

if it were stable. Such a two-phase DM scenario has been
advocated to address both of the above-mentioned small-
scale problems of standard CDM [25, 26, 27, 28]; we re-
view here its main features.

To begin with, the very steep central cusps found
in CDM simulations of DM halo profiles tend to be
smoothed out in this setup: the particle X picks up an
increased velocity dispersion in the decay, and the DM
phase-space density, Q ∝ ρ/〈v2〉3/2, is significantly re-
duced as compared to the standard CDM case. Following
[26, 28], we consider an average measure of the primor-
dial DM phase-space density that is obtained by a full
integration over the underlying phase-space distribution
function:

Qp ≡ ρ̄

σ̄3
= 10−24α

(

MX

pcmad

)3

, (II.2)

where α = 1.0 (0.8) for decays in the radiation (matter)
dominated era, pcm denotes the center of mass momen-
tum of the daughter particle X after the decay and ad is
the cosmic scalefactor at decay. The above fine-grained
value of Qp has the property of remaining constant for
dissipation-less matter, while its coarse-grained version
can only decrease. The assumption that the evolution of
a galaxy is mostly dominated by its dark (i.e. dissipation-
less) component, would thus imply the lower bound Qp &
Q0, with Q0 the largest coarse-grained value observed in
galaxies, about Q0 ≡ 10−4

(

M⊙/pc3
)

(km/s)
3

[13]. On
the other hand, the effect of baryons, most probably, can-
not be neglected in real galaxies, and primordial phase-
space densities as small as Qp ∼ 10−2Q0 have been con-
sidered [28], corresponding to the average central phase-
space density that is observed in low-mass spirals. In-
dependently of whether one actually can argue for the
existence of a strict lower bound, Qp has to satisfy

Qp . Q0 (II.3)

in order to reduce the cusps in simulated halos and match
the shallower profiles observed for low-mass objects [13,
28].

The second main feature of the two-phase DM scenario
considered here is the introduction of a net free-streaming
effect which may in general be much larger then in the
case of thermally generated WIMPs. In Ref. [26] the
Boltzmann equation for the decaying system is solved
and, correspondingly, a damped matter power spectrum
is derived. For our purposes, however, it will be sufficient
to refer to the free-streaming length

λFS ≡
∫ t0

τ

vX(a)

a
dt , (II.4)

where τ = t(ad) is the lifetime of the decaying particle
Y , and vX = (pcm/MX)(ad/a) the velocity of the daugh-
ter particle X . λFS gives, approximately, the scale below
which primordial perturbations are erased. In current
cosmological data there is no direct evidence for a de-
parture of the matter power spectrum from the standard
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FIG. 1: From bottom to top, the solid (dashed) lines cor-
respond to λFS/Mpc = 0.3, 0.4, 0.5 (Qp/Q0 = 1, 0.1, 0.01).
In the dark shaded region both small scale structure prob-
lems could be resolved, while in the lighter shaded areas this
is true for only one of them, respectively. The upper-right
part is excluded from Lyman-α forest measurements of the
power spectrum, while in the lower-left part of the plot, the
mechanism of dark matter generation through the decay of a
meta-stable species does not leave an observable imprint in
the sky.

ΛCDM form; recent limits on WDM setups, derived us-
ing the latest Lyman-α Forest data from the Sloan Digital
Sky Survey [35], are given in terms of a lower bound on
the mass of a sterile neutrino of about 10 keV [16, 17].
With the above definition of the free-streaming scale,
(II.4), this corresponds to an upper bound of roughly
λFS . 0.5 Mpc [28]. On the other hand, WDM models
with a free-streaming scale very close to this, about

λFS & 0.3 Mpc , (II.5)

are needed in order to produce Milky Way-size galax-
ies with satellite populations in fair agreement with the
number of satellites observed in our own Galaxy and in
Andromeda, and thus resolve the present disagreements
[25, 37, 38].

Having identified Qp and λFS as the relevant ob-
servables to address the small scale structure problems
of standard CDM cosmology, we can now conveniently
rephrase our discussion in terms of quantities which are
related to the particle physics setup only: the lifetime τ
of the decaying particle Y and the mother-daughter mass
splitting δ ≡ (MY − MX)/MX . This is done in Fig. 1,
where we map a few values of Qp and λFS into the τ -
δ plane. The regime at large lifetimes and sizable mass
splittings (upper right region in the plot) is excluded be-
cause it corresponds to too large free-streaming lengths,
while within the shaded areas at least one of the two
conditions (II.3) and (II.5) is satisfied.1 In the lower left

1 Note that both conditions, (II.3) and (II.5), are rather conser-
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FIG. 2: This plot shows the tightest available constraints on a
scenario with DM from late decays. The yellow dashed-dotted
(red dotted) lines give the limits from CMB (BBN), from bot-
tom to top, when a fraction fγ = 0.05, 0.01, 0.005 of the total
energy in light decay products is released into electromagnet-
ically active species. The contribution to the ISW excludes
the area above the green solid line. Finally, the blue dashed
lines show, from bottom to top, the Super-Kamionkande limit
for masses MY = 1, 0.5, 0.1 TeV. The shaded regions are the
same as in Fig. 1.

part of the plot, on the other hand, there is no impact on
the small scale structure problems at all. Note that for
τ ≪ teq ≈ 2.0 × 1012 s the contour lines are essentially
parallel, i.e. λFS = λFS(Qp), while for larger lifetimes
there is an additional dependence λFS = λFS(Qp, τ); this
effect has been stressed already in Ref. [28] to point out
that even very late decays, with τ & teq, could provide a
solution to the small-scale problems.

So far, we have focussed on the effects of the daugh-
ter DM particle X ; in the decay of the mother particle
Y , however, potentially observable effects may also be
induced by the fraction of energy that is released into
light species. In particular, a late injection of relativis-
tic energy could – regardless of the emitted species – be
spotted in the CMB or in large scale structure (LSS)
surveys. For decays before recombination, the main con-
straint of this type arises from CMB distortions due to
the early integrated Sachs-Wolfe (ISW) effect [39]; the
combined analysis of CMB and LSS data leads to an
upper bound on the excess relativistic energy density at
recombination that can be expressed in terms of the effec-
tive number of light neutrino species as ∆N eff

ν . 1.6 [40].
For decays after the time of recombination, it is again
the (late) ISW effect that is most important; it puts a
bound of Mν . 10 eV on a decaying massive neutrino for
1013 . τ . 1016 [41], which translates into δ . 1.3 in

vative in their claim to solve the respective small scale structure
problem; tightening them decreases the shaded areas of Fig. 1
even further.
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our scenario.2 These bounds, shown as a green solid line
in Fig. 2, cover a portion of the parameter space that is
already excluded by the Lyman-α forest limit. A release
of relativistic energy at very late times, finally, is in prin-
ciple also constrained by recent supernovae data, but the
corresponding bounds are even weaker than those from
the ISW [39].

Turning to explicit models for the emitted light species,
and excluding for the moment the introduction of new
light exotic particles (such as hypothetical light scalars
having escaped detection at accelerators), there are ba-
sically three possibilities: the decay produces – on top of
the DM particle X – electromagnetic radiation, hadronic
species or neutrinos. For late decays, in particular, the
greatest concern usually is whether a sizable fraction fγ

of the total energy in light decay products is carried away
by electromagnetically active species; this would poten-
tially lead to spectral distortions of the CMB [43] or to
a spallation of the light elements produced during BBN
(here, the tightest constraint derives from the 6Li abun-
dance [44]). For the CMB, the corresponding bounds
in the τ - δ plane are shown in Fig. 2 as yellow dash-
dotted lines; they are derived as an update of the analysis
of Ref. [43] by taking into account the most recent lim-
its on deviations of the CMB from a thermal spectrum,
|µ0| < 9 × 10−5 and |y| < 1.2 × 10−5 [45]. Here, we do
not take into account the more refined (and slightly less
constraining) CMB limits for τ . 109 s from the recent
analysis of Ref. [46], since in this regime the BBN bounds
(shown as red dotted lines) are much tighter. As it can
be seen from the figure, the entire region in the param-
eter space in which both small scale structure problems
are solved simultaneously is ruled out for fγ & 5%; in
fact, very late decays (τ & 1014 s) may be ruled out even
for fγ . 1%. The emission of a hadronic component, sec-
ondly, would also have observable effects, mainly in con-
nection with the light element abundances (see, e.g., [44]
for a recent analysis). For τ & 108 s, the corresponding
constraints turn out to be essentially the same as for the
electromagnetic case (though slightly weaker), with fγ

exchanged by the corresponding hadronic fraction fh . At
earlier times, 10−1 s . τ . 108 s, the bounds on hadronic
decays are usually considerably stronger; however, since
they are also slightly more model dependent and in any
case lie outside the dark shaded region, they are of lim-
ited interest to our analysis and therefore not shown here.
Finally, loose bounds are obtained in the case of neutri-
nos as light species in the decay; the most stringent con-
straint here is usually given by the upper bound on the
(electron) neutrino background flux as measured by the
Super-Kamionkande experiment, Φνe

< 1.2 cm−2s−1 for
Eνe

> 19.3 MeV [47]. This bound (blue dashed curves

2 Note that in this analysis the recent WMAP data are not taken
into account; the projection of Ref. [42] was that they would
allow to tighten the bound to Mν . 0.3 eV (Mν . 1.0 eV) at
τ ∼ 1014 s (τ ∼ 1016 s), corresponding to δ . 0.03 (δ . 0.1).

in the figure), however, is almost always less restrictive
than the Lyman-α forest limit. Other constraints, such
as the one from a conversion of the emitted neutrinos
into electromagnetic radiation through scattering on the
relic neutrino background, are considerably weaker and
do not approach the region of the parameter space that
is of interest in our context.

Having in mind a particle physics modelling of the
transition between the two dark matter phases, we can
now take our discussion one step further. We have shown
above that a solution to the small scale problems requires
rather small mass splittings, δ . 0.02, and that fγ (as
well as fh) needs to be at the per cent level or lower. The
second condition points to a model with the two-body fi-
nal state X-neutrino as dominant decay mode. In fact, if
this mode is allowed, by conservation of charge and lep-
ton number, the emission of electromagnetic radiation is
forbidden at the same level in perturbation theory; while
in general possible through a three-body decay, the cor-
responding branching ratio will naturally be below 1%.
For a two-body decay with a spin-1/2 particle in the fi-
nal state (the neutrino), we can distinguish between two
phenomenologically interesting cases. In the first case,
both X and Y have spin less or equal to 1 and the decay
rate for small δ scales as:

Γ =
|geff |2
8π

MY δ2 . (II.6)

Here, geff is an effective coupling that depends on the par-
ticular particle physics model and usually contains higher
order corrections in δ. The phase space integration gives
a term proportional to the mass splitting; an additional
factor of δ arises due to the light spin-1/2 particle in the
final state. If, on the other hand, either X or Y have
spin 3/2 or 2 – prototype examples being the gravitino
and the Kaluza-Klein graviton, respectively – the decay
rate for small mass splittings takes the form

Γ =
|g̃eff |2
3πM2

Pl

M3
Y δ4 , (II.7)

where MPl ≡ (8πG)−1/2 is the reduced Planck mass and
one generically expects g̃eff ∼ O(1). As we will show, in
both cases MY is essentially fixed by the requirement to
obtain the right DM relic density (II.1) as measured by
WMAP [1], so the relevant free parameters are just δ and
geff (g̃eff).

In Fig. 3 and 4 we show the favored regimes and the
constraints on the two-phase DM scenario, rephrased in
terms of the relevant particle-physics parameters; these
plots allow for a quick and easy check on whether a par-
ticular particle-physics model, with given couplings and
mass spectrum, meets the requirements for a solution to
the small-scale problems. At the same time, they illus-
trate that a certain amount of fine-tuning in |geff |2 or

|g̃eff |2 is necessary in order for the scenario to work; we
will elaborate further on this point in the next Section,
where we introduce and discuss in more detail some ex-
plicit models.
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FIG. 3: The required coupling strength as a function of the
mass splitting, for the case that both X and Y have spin
0, 1/2 or 1. From top to bottom, the solid (dashed) lines
correspond to λFS/Mpc = 0.3, 0.4, 0.5 (Q/Q0 = 1, 0.1, 0.01).
The lower part of this plot is thus excluded and the dark
shaded area shows the region where both small scale struc-
ture problems can be resolved. Also included is the combined
bound from BBN and CMB, shown as a red dotted line for
fγ = 0.05, 0.01, 0.005.
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FIG. 4: Same as Fig. 3, now for the case that either X or Y
is a spin 3/2 or 2 particle. See text for further details.

III. VIABLE PARTICLE PHYSICS SCENARIOS

As a starting point to classify viable frameworks, we
consider the various mechanisms that may guarantee a
long lifetime for the state Y . In Ref. [23], e.g., to start
with, cosmic strings are assumed to play the role of the
metastable state Y : in general, this scenario requires tun-
ings both on the abundance of the decaying species and
on the decay products. Another possibility is explored in
Ref. [19], where the decay rate is suppressed because the
allowed phase space gets sharply reduced, such as in the
case of a multi-body final state in the limit of small mass
splittings δ; this mechanism becomes viable only in case
of an electrically charged particle in the initial state, and
hence does not fit into the scenario we have described in
the previous Section.

Here, we will instead consider a framework where
quasi-stable states arise due to strongly suppressed cou-
plings, i.e. when one of the particles involved in the de-
cay is super-weakly interacting (a ”superWIMP”, as it
is sometimes dubbed in the literature). At first sight, it
is thus not important whether the superWIMP appears
in the initial or in the final state. On the other hand,
supposing that the particle Y in the initial state is a
WIMP (and hence that X in the final-state is a super-
WIMP) allows to invoke thermal production as a nat-
ural mechanism for the generation of the dark matter
component of the Universe. The reverse is less appeal-
ing for two reasons: First, it requires some non-thermal
mechanisms to generate initial-state superWIMPs. At
the same time, in explicit models, WIMP DM appears
as the lightest species in a tower of extra particles shar-
ing a common quantum number, usually with moderate
mass splittings among these states; in general, it seems
unnatural to add a superWIMP as next-to-lightest parti-
cle in this construction and to suppose that the thermal
relic density of the WIMP is completely neglible. In the
following, we will therefore focus on thermally generated
WIMPs as decaying species, and refer to the standard
cosmological setup to estimate the relic densities at the
time of decay. In principle, there could be non-standard
(effective) contributions to the total energy density of the
universe at the decoupling epoch (anticipating the freeze-
out process) that enhance the relic abundance (see, e.g.
[48, 49, 50]), or entropy releases after decoupling which
would dilute the relic population [48]. In both cases, how-
ever, we would loose predictability and, to some extent,
simply reduce to a scenario in which the abundance of
the decaying species is fine-tuned such as to match the
effect we wish to account for; we prefer to avoid such a
setup.

To enforce a two body decay of a WIMP into a super-
WIMP and a neutrino, we exploit lepton number con-
servation and impose that either the WIMP or the su-
perWIMP carries lepton number. We start within a su-
persymmetric setup, where we encounter two possibil-
ities: gravitino dark matter produced in sneutrino de-
cays [33, 51, 52], or right-handed sneutrino dark matter
produced in neutralino decays [53, 54]. Later, in Sub-
section III C, we will discuss the corresponding cases in
scenarios with universal extra dimensions.

A. Gravitino dark matter from left-handed

sneutrino decays

In the minimal supersymmetric extension to the Stan-
dard Model (MSSM), left-handed sneutrinos acquire
their masses through a soft SUSY-breaking term and a
D-term, i.e. M2

ν̃ = M2
L + Dν . Analogously, a mass term

for left-handed charged sleptons is generated: M2
l̃L

=

M2
L+m2

l +Dl, where ml is the mass of the corresponding
lepton. The D-term contributions are, respectively, Dν =
1/2 m2

Z cos 2β and Dl = (−1/2 + sin2 θW )m2
Z cos 2β,
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where the angle β is defined by the ratio of the vac-
uum expectation values of the two MSSM Higgs dou-
blets as tan β ≡ 〈H0

2 〉/〈H0
1 〉. Since tanβ > 1, Dν

is a negative correction, while Dl is positive; one thus
finds that sneutrinos are lighter than the correspond-
ing left-handed charged sleptons. If, furthermore, the
right-handed charged slepton soft terms are larger than
their left-handed counterparts (for simplicity, we will
always assume in the following that they are, in fact,
much larger; right-handed charged sleptons then effec-
tively decouple from the theory) the lightest sneutrino
is the lightest slepton, and possibly the lightest particle
among SUSY counterparts of SM fields. We focus on
this case, and estimate the thermal relic abundance of
the quasi-stable sneutrinos after freeze-out. Then, as a
second step, disjoint from thermal decoupling since we
work under the hypothesis of quasi-stability, we consider
sneutrino decays into the lightest (and stable) supersym-
metric particle (LSP), which we assume to be the grav-
itino:

ν̃ → G̃ + ν . (III.1)

The decay width for this process is [33]:

Γ =
1

96πM2
Pl

M5
ν̃

M2
G̃

[

1 −
(

MG̃

Mν̃

)2
]4

, (III.2)

i.e. it takes the same form as in Eq. (II.7), with

|g̃eff |2 =
(1 + δ/2)4

(1 + δ)6
. (III.3)

As anticipated, the decay rate depends only on Mν̃ and δ;
however, since we are focussing on the case of thermally
produced sneutrinos, these are, in fact, not free param-
eters but both correlated to the amount of dark matter
observed in the Universe today.

In the following, rather than discussing this situation
for the fully general MSSM, we will focus on a few specific
cases that serve to illustrate the main trends to be ex-
pected in the general case. The minimal setup from that
perspective is the one in which we assume that only the
parameter ML for one single lepton family is light, while
all other SUSY parameters are at a heavier scale (in ac-
tual calculations we choose this scale to be 10 TeV). The
sneutrino relic density is then set by the sneutrino pair
annihilation rate plus the coannihilation with the left-
handed charged slepton; it scales approximately with the
inverse of the effective thermally-averaged annihilation
cross section:

Ωthermal ∝
1

〈σeffv〉 , (III.4)

where 〈σeffv〉 includes all annihilation and coannihilation
processes, properly waited. For an accurate estimate
of the relic abundances one needs to solve a system of
coupled Boltzmann equations; we follow the approach

10
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300 3000
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FIG. 5: Correlation between sneutrino mass Mν̃ and
sneutrino-gravitino mass splitting δ for models matching the
dark matter abundance measured by WMAP. Predictions
within the MSSM span from the case of 3 families of mass-
degenerate left-handed sneutrinos (dashed curve) to the case
of coannihilations of 1 light sneutrino with gluinos (dotted
curve). Also shown are the cases of 1 light sneutrino coan-
nihilating with Winos and that of 1 light sneutrino family
without coannihilations (other than with the light charged
sleptons).

of Ref. [55] and perform the necessary numerical calcu-
lations with the DarkSUSY package [56]. The result is
shown in Fig. 5, where we plot as a solid line the val-
ues for Mν̃ and δ that correspond to the best fit value of
ΩDM as obtained from the WMAP data [1]; the scaling
between gravitino and sneutrino density is simply given
by Eq. (II.1). Another possibility is that all three families
of left-handed sleptons are light. In Fig. 5, we have in-
cluded this situation as a dashed line, assuming the same
ML for the three generations; as expected, the resulting
lightest sneutrino relic abundance becomes a factor of
about 3 larger than in the previous case (it is not exactly
3 times larger, since now there are more coannihilation
processes involved), and this has to be compensated for
by a larger effective annihilation rate, i.e. by a lighter
sneutrino mass.

Coannihilations with species that have much larger an-
nihilation rates than sneutrinos, on the other hand, will
tend to shift the mass-range of interest for a thermal DM
production to more massive sneutrinos. As an example,
we consider a framework in which the Wino mass pa-
rameter M2 is the lightest gaugino soft SUSY-breaking
term, so that the Wino-like neutralino and chargino be-
come the lightest fermionic SUSY particles: such a sce-
nario is predicted in anomaly-mediated SUSY breaking
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FIG. 6: Correlation between sneutrino mass and sneutrino-
Winos mass splitting for models matching the dark matter
abundance measured by WMAP, in case of small sneutrino-
gravitino mass splitting and of 1 generation of light left-
handed sleptons

schemes [57, 58], or could emerge, e.g., in supergravity
frameworks with non-universal GUT gaugino masses [59].
Winos have very large pair annihilation rates into gauge
bosons; in case they are the LSP, and excluding degen-
eracies in mass with other SUSY particles, their ther-
mal relic density matches the measured DM density for a
mass of about 2.2 TeV (see, e.g., [60]). The dash-dotted
line in Fig. 5 corresponds to the case of a 0.1 % mass split-
ting between Winos and the sneutrino LSP (assuming
one light left-handed slepton generation). Wino coanni-
hilation effects keep the sneutrinos in thermal equilibrium
for a longer time as compared to the previous cases; the
relic abundance is accordingly reduced, which needs to be
compensated for by shifting the sneutrino mass scale up
to values larger than about 1.4 TeV. The dependence of
this result on the Wino-sneutrino mass splitting is shown
in Fig. 6: we can see that the sneutrino relic density (and
hence the inferred sneutrino mass) changes significantly
in the coannihilation regime – which can be understood
from the fact that the mass splitting enters exponentially
in the coannihilation contributions to the thermally av-
eraged effective annihilation rate 〈σeffv〉. When the mass
splitting is larger than about 10%, coannihilation effects
become negligible; there is still some dependence of the
result on the Wino mass since neutralinos and charginos
mediate t- and u-channel annihilations of sleptons into
leptonic final states and therefore enhance the slepton
annihilation rate when they are light.

We have just demonstrated that coannihilation effects

may play a major role in determining the mass scale for
thermal relic sneutrinos. We will now, by taking a closer
look at this point, infer an upper bound on the sneu-
trino mass for any given sneutrino–gravitino mass split-
ting (within the MSSM). Let c̃ be a coannihilating par-
ticle with a pair annihilation cross-section much larger
than that of slepton pairs: (σv)c̃c̃ ≫ ∑

(σv)l̃l̃′ (for sim-
plicity, we assume S-wave annihilations and take the limit
of zero relative velocity for initial state pairs). In the ex-
treme case of an exact mass degeneracy among all coan-
nihilating particles, the sneutrino relic abundance scales
down to (see, e.g., [61]):

(

Ων̃h2
)

with c̃
∼
∑

(σv)l̃l̃′

(σv)c̃c̃

(∑

gl̃ + gc̃

gc̃

)2
(

Ων̃h2
)

without c̃
,

(III.5)
where gi denotes the number of degrees of freedom for
the particle i (The gi in this expression account for the
mismatch between the states maintaining thermal equi-
librium and the total number of states contributing to
the relic abundance after decoupling). The largest ef-
fect is thus obtained for the coannihilating particle with
the largest pair annihilation rate per degree of freedom,
which in the MSSM is given by the gluino. For illus-
tration, we plot in Fig. 5 as a dotted line the case of a
0.1% gluino–sneutrino mass splitting (again for only one
”light” generation of left-handed sleptons). For small δ,
we then find that Mν̃ is about 3 TeV. In fact, this can
be interpreted as a strict upper bound on the mass of a
thermally produced sneutrino: advocating a further in-
crease in the effective thermal annihilation cross-section,
such as for an extreme S-channel resonance, is hardly
plausible since even in less minimal frameworks it seems
hard to introduce stronger interacting states. Note also
that this upper bound is even more sensitive to the mass
splitting between the sneutrino and the coannihilating
state than what we have shown in Fig. 6 for the case
of Winos; the analogous plot for a gluino would have a
much sharper transition out of the coannihilation regime,
since the coannihilation effect is stronger and gluinos do
not enter in any way into slepton annihilation processes.

Now that we have obtained an understanding of the
viable Mν̃–δ configurations in our setup, we are in a po-
sition to refer to our general discussion in Section II in
order to assess the potential impact of a gravitino Su-
perWIMP DM candidate on the small scale problems of
standard CDM cosmology. To this end, we present in
Fig. 7 the gravitino configurations discussed above in the
context of a rescaled version of Fig. 4, which we have
argued before to be most convenient for this type of as-
sessments. The four solid lines, nearly horizontal in the
small δ limit, correspond to the four cases considered in
Fig. 5 (smallest Mν̃ at the bottom, largest at the top)
and span the full range of possibilities within the MSSM.
As we can see, there is actually no model that falls into
the dark shaded region, where both small-scale problems
could be resolved – to do so, higher sneutrinos masses
would be required, which, however, is inconsistent with
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FIG. 7: Projection of the viable Mν̃–δ configurations into the
plane that we introduced in Fig. 4 and here extend to larger
values of δ. The four solid lines, almost horizontal in the
small δ limit, correspond to the cases considered in Fig. 5; the
top curve corresponds to the configuration with the highest
possible sneutrino mass (where the sneutrino relic density is
mainly determined by coannihilations with gluinos). Favored
and excluded regions are shown with the same coding as in
Figs. 3 and 4. Finally, the BBN limit for a hadronic fraction
fh = 0.005 has been added as a dashed line.

a thermal production scheme. Note, furthermore, that a
large portion of configurations is located below the light
shaded region; these configurations are excluded as DM
scenarios since they are associated to a free-streaming
scale incompatible with Lyman-α measurements of the
matter power spectrum. Also included in Fig. 7 are
the constraints corresponding to a 1% or 0.5% electro-
magnetic branching ratio (dotted curves), as well as a
0.5% hadronic branching ratio (dashed curve), respec-
tively. These values are at the level of what is generi-
cally expected from subdominant channels in sneutrino
to gravitino decays [33]. Most models within the light
shaded region, that would potentially solve the problem
of the overabundance of substructures in Galactic-size
halos, are thus excluded by the constraints from BBN.
This is the general trend; in a model by model compari-
son against BBN constraints, see [33, 51, 52], it may be
possible to find some configurations in the light shaded
region that are not excluded since they are fine-tuned to
prevent the emission of hadrons even in sub-leading pro-
cesses; such a detailed analysis, however, is beyond the
scope of the present work.

B. Right-handed sneutrino dark matter from

neutralino decays

Having learned that gravitino DM cannot contribute
to a solution of both small scale problems (in fact, it
can hardly account for even one of them), we now try
to reverse the picture and turn to an example where the
final state superWIMP is the particle carrying the lepton
number, while the initial state is a lepton-flavor neutral

WIMP. In SUSY frameworks, this is possible if we intro-
duce a right-handed sneutrino as the LSP, and impose
that the lightest neutralino is the next-to-lightest SUSY
particle (NLSP).

The definition of an extension to the MSSM including
right-handed neutrino superfields N̂R is straightforward.
The minimal setup involves just one extra term in the
superpotential (see [53, 54]):

W = WMSSM + ǫijN̂RYN l̂iLĤj
2 . (III.6)

Here, i and j are SU(2) indices, and l̂L are the left-handed
lepton superfields. We include only terms conserving lep-
ton flavor in each family; this is not crucial at any step
for our results, but simplifies the discussion. Under this
assumption, the 3 × 3 Yukawa matrix YN in Eq. (III.6)
is diagonal; at the same time, we can add only two extra-
terms in the soft-SUSY breaking potential:

Vsoft = Vsoft MSSM − ǫijÑ
∗
RANYN l̃

i
LHj

2 + Ñ
∗
RM

2
NÑR ,
(III.7)

with AN and MN being diagonal matrices. For each
generation, a Dirac neutrino mass term

mν ≡ YN 〈H0
2 〉 = YN

√
2MW

g
sinβ (III.8)

is induced, while sneutrinos, in the basis (ν̃L, ÑR), ac-
quire the mass matrix

M2 =

(

M2
L + m2

ν + Dν mν(A∗
N − µ∗ cotβ)

mν(AN − µ cotβ) M2
N + m2

ν

)

.

(III.9)
Since the off-diagonal terms are proportional to mν , the
sneutrino mass eigenstates, which we will denote by ν̃ and
Ñ , essentially coincide with the interaction eigenstates;
the mixing angle θ is given by:

tan(2θ) =
2 (AN − µ cotβ)

(M2
L + Dν − M2

N)
mν , (III.10)

i.e.

cos θ ≃ 1 (III.11)

sin θ ≃
√

2MW (AN − µ cotβ)

(M2
L + Dν − M2

N)

YN

g
≡ R

YN

g
.

The dimensionless ratio R is introduced here as the rele-
vant combination of the unknown terms in the mass ma-
trix in Eq. (III.9); for SUSY parameters at the TeV scale,
R is expected to be of order 10−1. A much larger value
has been considered in Ref. [53], in the limit of degener-
acy of the parameters ML and MN in the denominator
of R: a large R enhances the production of right-handed
sneutrinos from the decay of SUSY particles when, in
the very early Universe, the latter are relativistic and in
thermal equilibrium. We are interested here in the op-
posite regime, i.e. the limit in which the abundance of
right-handed sneutrinos is negligible prior the decay of
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thermal relic neutralinos; hence, in the discussion below,
the parameter R is assumed of order 10−1 or smaller.

We suppose now that one of the 3 Ñ is the LSP and
that the lightest neutralino is the NLSP. As in the case
that we have studied in the previous Section, dark matter
will then be generated in the decay of long-lived thermal-
relic NLSPs into LSPs:

χ̃0
1 → Ñ + ν̄ , (III.12)

where χ̃0
1 denotes the lightest neutralino. The corre-

sponding decay rate,

Γ =

∣

∣

∣gχ̃Ñν

∣

∣

∣

2

32π

[

1 −
(

MÑ

Mχ̃

)2
]2

Mχ̃, (III.13)

takes the form of Eq. (II.6), with

|g̃eff |2 =
(1 + δ/2)2

(1 + δ)4

∣

∣

∣gχ̃Ñν

∣

∣

∣

2

. (III.14)

For the neutralino-sneutrino-neutrino coupling that ap-
pears in the above expressions, we find

gχ̃Ñν = (g′N11 − gN12) sin θ − YNN14 cos θ , (III.15)

where we have implemented the standard projection of
the lightest neutralino on the interaction basis:

χ̃0
1 = N11B̃ + N12W̃

3 + N13H̃
0
1 + N14H̃

0
2 . (III.16)

As opposed to the gravitino dark matter case, there is
thus an explicit dependence of the decay rate not only
on δ and Mχ̃ but also on the SUSY parameters setting
neutralino mass and mixing, as well as those entering
in the dimension-less ratio R (In particular, one should
notice that all contributions to gχ̃Ñν are linear in the

Yukawa coupling YN ).
Morover, in the computation of the neutralino relic

densities, results are in general sensitive to a larger num-
ber of MSSM parameters than in the case we discussed
before for a left-handed sneutrino. We are mainly in-
terested in understanding, for a given neutralino mass,
what kind of neutralino composition is compatible with
the relic abundance constraint. In this respect, it is suf-
ficient to consider a simplified scheme, covering the full
range of neutralino compositions: the split SUSY frame-
work [62, 63] in which all scalar superpartners are as-
sumed to be much heavier than Gauginos and Higgsinos.
As discussed in Ref. [60] the DM phenomenology of the
model can be described in terms of the Bino, Wino and
Higgsino mass parameters, respectively, M1, M2 and µ.
Since sfermions are heavy, neutralino pair-annihilation
rates are dominated by gauge boson final states; these
are at full strength for Higgsinos and Winos, while are
strongly suppressed for pure Binos. To reproduce the
measured dark matter density one has to modulate the
mixing between these states in the lightest neutralino
and/or adjust coannihilation effects with other fermionic

superpartners. If M2 is the lightest SUSY parameter, we
recover the case of the pure Wino, which as mentioned
above has a thermal relic density matching the observed
value for a mass of about 2.2 TeV. On the other hand, if
µ is the lightest parameter, and consequently the light-
est neutralino is a pure Higgsino, the annihilation rate is
slightly smaller and the cosmological bound is saturated
at about 1.1 TeV. Models with a Higgsino-Wino mixing
cover the mass range between the pure states. Introduc-
ing a Bino component in the lightest neutralino allows
to find configurations with lighter masses (essentially as
light as the W-boson); again there are two possibilities:
if the µ parameter is of the order of M1, there is a large
Bino-Higgsino mixing modulating the annihilation rate
and hence the relic density. On the other hand if µ is
heavy and M2 light, since the transition between Bino
and Wino LSP is very sharp [60], one needs to consider a
configuration with M2 just slightly heavier than M1: the
LSP is a very pure Bino and coannihilations with Winos
play the key role in thermal decoupling (see [60] for fur-
ther details). Had we introduced light sfermions in our
framework , Binos could have efficiently annihilated into
heavy quarks or leptons, and we would have inferred a
different Bino component in the LSP; nevertheless, the
LSP composition would still have been within the range
of extreme Gaugino-Higgsino fractions we find in split
SUSY.

In Fig. 8 we consider the limit of small mass-splittings
between the lightest neutralino and the right-handed
sneutrino, and select models with neutralino thermal
relic abundance matching the measured DM density; for
such models, we plot the effective coupling squared in-
troduced in Eq. (III.14) times the neutralino mass (i.e.
the quantity we introduced in Fig. 3), versus the neu-
tralino mass itself. We show results for three sample
values of the dimensionless ratio R (the solid, dashed
and dotted curves in Fig. 8 correspond, respectively, to
R = 10−1, 10−2, 10−4), and for each of these we consider
the three regimes mentioned above: the upper branches
of each curve (which nearly overlap for the three val-
ues of R) start at small neutralino mass in the regime of
Bino-Higgsino mixing, reach the pure Higgsino configura-
tion and continue down to the pure Wino case; the lower
branches starts at the heavy mass end with pure Winos,
make the transition into pure Binos (the step along each
curve) and a progressive tuning in Bino-Wino coannihila-
tion effects allow them to extend down to light neutralino
masses.

Two sample values for the Yukawa coupling YN , cor-
responding, respectively, to a Dirac neutrino mass term
mν of 0.05 eV and 0.001 eV, are displayed in Fig. 8 for
illustrative purposes. Since, as we already mentioned,
all contributions to the coupling gχ̃Ñν are linear in the
Yukawa coupling YN , the results in the plot just scale
with the square of mν . The overall neutrino mass scale
is not known. The upper bound from Cosmology is at the
level of 0.3 eV [64]. On the other hand, the mass-squared
differences among neutrinos have been determined with
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good accuracy in neutrino-oscillation experiments, the
largest being for neutrinos taking part in atmospheric
oscillations [65]:

∆m2
ν ≃ [0.05 eV]

2
. (III.17)

This sets a lower bound on the mass of the heaviest neu-
trino. In the scenario in which lepton-number is strictly
conserved and there is no neutrino Majorana mass terms,
the largest YN (which is the relevant one for our dis-
cussion, since it induced the fastest decay mode) has
then to induce a Dirac mass term mν at least at the
level of 0.05 eV. In such case, the values we obtain
in Fig. 8 for the effective coupling squared times neu-
tralino mass are well above those we found in Fig. 3 are
needed for a solution to the small-scale problems, namely
|g̃eff |2 Mχ/100 GeV not exceeding 10−31. This scenario
gives viable DM candidates, however these are not rele-
vant (or at most marginally relevant) for addressing the
problems in CDM structure formation on small scales.

On the other hand, if we consider a slightly smaller
Dirac neutrino mass term, i.e. if we assume there are Ma-
jorana mass terms contributing to the pattern of neutrino
masses as measured in neutrino oscillation experiments,
our predictions can cover the entire region of the pa-
rameter space which is relevant to solve both small-scale
structure problems at the same time, provided the mass
splitting between the long-lived neutralino and the DM
right-handed sneutrino is at the percent level or smaller.
Models with two heavy right-handed sneutrino and one
light Ñ with a Yukawa coupling YN as small as the one
needed in our contest, can indeed arise naturally in SUSY
frameworks [66]. On the other hand, it is harder to ex-
plain the degeneracy in mass between quasi-stable and
stable species, and we have unfortunately to rely on a cer-
tain amount of tuning of the parameters in the model. In
the limit of larger mass splittings we could argue again, as
we did for gravitino DM that the model can address and
solve the problem of the overabundance of satellites in
Milky Way size galaxies; at the same time, however, the
problem of limiting the amount of radiation or hadronic
components below about 0.5% of the energy released in
the decay reappears as well.

C. The analogous cases in universal extra

dimensions

Models with universal extra dimensions (UED) [67],
where all standard model (SM) fields are allowed to prop-
agate in a higher-dimensional bulk, have received a great
deal of attention since it was realized that they naturally
give rise to a new class of dark matter candidates [68, 69]:
the higher-dimensional extra degrees of freedom appear
in the low-energy effective 4D theory as towers of new,
heavy states, the lightest of which – similar to the case
of R-parity in supersymmetry – is stable due to an in-
ternal Z2 symmetry (this “KK-parity” appears as a rem-
nant of the higher-dimensional translational invariance
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FIG. 8: Coupling strength versus neutralino mass for models
with DM density matching the DM observed value. The limit
of small mass-splittings between the lightest neutralino and
the right-handed sneutrino is assumed. Three sample values
of the parameter R (R = 10−1, 10−2, 10−4 for, respectively,
the solid, dashed and dotted curves) and two for the Dirac
neutrino mass term mν (0.05 eV and 0.001 eV, respectively,
for upper and lower curves) are considered. Compare with
Fig. 3 and note that the values on the vertical axis which are
relevant to address the small scale problems are of the order
of 10−31 or smaller.

after the orbifold compactification); thermally produced
in the early universe, the lightest Kaluza-Klein particle
(LKP) acquires the right WMAP relic density for a com-
pactification scale of about R−1 ∼ 1 TeV [70, 71, 72].
In fact, the analogy to supersymmetric models goes even
further for energies close to this scale, when only the
lightest state of each KK-tower is kinematically accessi-
ble. In that situation, every SM particle effectively comes
equipped with only one massive partner, just as in the
supersymmetric case (having, however, the same spin).
A clear discrimination between these two models at col-
liders may therefore actually be a rather challenging task;
for this reason, the UED model has sometimes also been
dubbed “bosonic supersymmetry” [73, 74, 75].

With these introductory remarks in mind, it should not
come as a surprise that SuperWIMPs also appear in the
UED setup. What is more, we can expect them to be the
exact analogues of the supersymmetric cases that we dis-
cussed above – i.e. the Kaluza-Klein graviton, G(1), and
the first Kaluza-Klein state of the right-handed neutrino,

ν
(1)
R , respectively. Before we continue to discuss these Su-

perWIMP DM candidates in turn, let us stress a particu-
lar feature about extra-dimensional models, namely that
one is generically driven to small mass splittings δ. This
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FIG. 9: This figure shows the relative difference between
the B(1) mass and the inverse compactification scale, δ ≡
R MB(1) − 1, as computed in the mUED setup [68]. The grey
band shows the region that is consistent with the 2σ WMAP
relic density constraint for a Higgs mass mh . 150 GeV;
for higher Higgs masses, the grey region broadens and shifts
to the right, allowing inverse compactification radii up to
R−1 . 1.3 TeV [72]. The different curves correspond to cutoff
scales ΛR = 20, 30, 40.

is because the masses of all KK states are degenerate at
tree level; taking into account radiative corrections, they
take the form

M2
n =

( n

R

)2

+ m2
SM + δM2

n , (III.18)

where n is the KK number of the state, mSM the corre-
sponding electroweak (SM) mass and δM the mass shift
due to radiative corrections (here, and in the following,
we make the simplifying assumption of only one extra
dimension, compactified on S1/Z2). For KK partners to
SM particles, a naive estimate for the radiative correc-
tions would be

δM2
n ∼ αiM

2
n , (III.19)

where αi is the relevant gauge coupling constant; one
therefore expects δM ≫ mSM for TeV compactification
scales, at least for fermions (with the possible exception

of the top quark). For the G(1) or the ν
(1)
R , on the other

hand, one can neglect radiative corrections to a very good
approximation; in this case, the tree-level degeneracy is
not lifted and we have MG(1) ≃ M

ν
(1)
R

≃ 1/R. Taking

these considerations at face value, one would thus, in
most cases, naturally find δ ∼ αi/2 . 0.01 for the small-

est WIMP - SuperWIMP mass splittings – which, from
our discussion in Section II, is a crucial ingredience for a
possible solution to the small-scale problems of standard
CDM cosmology.

The actual situation, however, is complicated by two
further effects. First, radiative corrections can be both
positive and negative and, second, they receive cutoff-
dependent contributions from counterterms localized at
the orbifold fixpoints. For simplicity, one usually adopts

the self-consistent assumption that these boundary terms
are small at the cutoff scale Λ [68]. In this approach,
which is often referred to as the minimal UED model
(mUED), the lightest SM partner is the γ(1). Since the
“Weinberg angle” (i.e. the rotation angle) for KK modes
is essentially driven to zero, the LKP is well approxi-
mated by the B(1), the first KK excitation of the weak
hypercharge gauge boson. As shown in Fig. 9, it receives
slightly positive mass corrections, 10−4 . δ . 10−3, for
compactification scales of cosmological relevance.

The B(1) in the mUED model is therefore actually not
the lightest, but only the next to lightest KK particle
(NLKP), the lightest being the KK graviton G(1). The
latter thus appears as a typical SuperWIMP DM can-
didate that may arise from the late decay of the B(1)

[76, 77] (Note that also the thermal production of the

G(1) is much more efficient than that of the G̃, which puts
severe constraints on the reheating temperature). The
only allowed (two-body) decay mode is B(1) → G(1)γ,
which results in a B(1) lifetime of [76]

τ ≈ 2.9 × 1013 δ−3(MB(1)/GeV)−3 s , (III.20)

where δ and MB(1) are subject to the relic density con-
straint shown in Fig. 9. However, as can easily be seen
from Fig. 2, the photons from the decay would lead to
a distortion of the CMB that is clearly inconsistent with
observations.

A possible way out is to leave the somewhat arbitrary
framework of the mUED model and take the KK masses
as free parameters that may be varied around their re-
spective mUED values (see, e.g., [69, 70, 71]). One can
then consider a setup in which the lightest SM partner is

the ν
(1)
L , the KK excitation of the neutrino [69]. Such a

particle is ruled out as a DM candidate by direct detec-
tion experiments [78], but these bounds of course do not
apply if it has already decayed into the G(1). This time,

the only allowed two-body decay mode is ν
(1)
L → G(1)ν,

in accordance with the general requirements derived in
Section II. The decay rate is then given by [76]:

Γ
ν
(1)
L

=
1

48M2
Pl

M7

ν
(1)
L

M4
G(1)



1 −
M2

G(1)

M2

ν
(1)
L





4

2 + 3
M2

G(1)

M2

ν
(1)
L



 ,

(III.21)
so it takes the form anticipated in (II.7), with

|g̃eff |2 = 5
(1 + δ/2)4

(1 + δ)4

(

1 +
4

5
δ +

2

5
δ2

)

. (III.22)

Correcting for a factor of |g̃eff |2/3 ≈ 1.7 for small mass
splittings, we can now use Fig. 4 to directly read off the
KK neutrino mass that is required in order to reach the
dark shaded region, where both small scale problems can
be resolved. In particular, we find that a mass of at least
M

ν
(1)
L

≈ 2.5 TeV is needed in order to reach the param-

eter region of interest (this corresponds to the largest
possible mass splitting, δ ∼ 0.02, for solving the small
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scale problems); going to smaller mass splittings, we see
that for, e.g., δ = 0.005 (where the necessary fine-tuning
in the mass starts to become less severe) one even needs

4.6 TeV . M
ν
(1)
L

. 6.5 TeV. Since a ν
(1)
L (N)LKP is ex-

pected to have roughly the same relic density as a B(1)

(N)LKP [69], it seems extremely unlikely that one can
drive masses to such high values, even when including
very efficient coannihilation channels by a suitable tun-
ing of KK masses [70]. The KK graviton is thus excluded
as a solution to both small scale problems of standard
CDM. Note that, due to the strict bounds on the allowed
size of free-streaming effects, the KK graviton from the
late decay of KK neutrinos is actually ruled out as a
DM candidate for most of the parameter space – unless
one allows for rather large masses and mass splittings.
For δ ∼ 0.1, e.g., the Lyman-α bound can be evaded for
masses M

ν
(1)
L

& 1.0 TeV.

A second possibility to evade the KK graviton problem
of the mUED model is to introduce a SM Dirac neutrino
[79] (alternatively, one may also consider a situation in
which gravity propagates in more dimensions than the
SM fields; in this case, one can adjust the KK graviton
to becomes more massive than the SM KK modes [80],
so that the B(1) would be the LKP and thus stable). The
right-handed neutrino then receives a tower of heavy KK
modes in the same way as its left-handed counterpart.
Though tiny, the non-zero mass mν of the Dirac neutrino
leads to a mixing of the right- and left-handed neutrino
KK states. This induces the following effective coupling
between the B(1) and the first KK mode of the right-

handed neutrino, ν
(1)
R :

i
gY

2
sin α γµPL , (III.23)

where PL = (1−γ5)/2 is the usual left-handed projection
operator and the mixing angle α is given by

tan 2α =
2mν

M
ν
(1)
L

+ M
ν
(1)
R

≈ 2α . (III.24)

Due to this coupling, a new decay channel

B(1) → ν
(1)
R ν̄ + ν̄

(1)
R ν (III.25)

opens up, with a decay rate

ΓB(1) =
g2

Y

96π
sin2 α MB(1)



1 −
M2

ν
(1)
L

M2
B(1)





2

2 +
M2

ν
(1)
L

M2
B(1)



 .

(III.26)
This is of the form (II.6), with

|geff |2 =
g2

Y

8π

(

mν

M
ν
(1)
L

+ M
ν
(1)
R

)2
[

1 − 8

3
δ + O(δ2)

]

.

(III.27)

Since the ν
(1)
R does not receive any appreciable radiative

corrections, its mass is to a very good approximation

δδ

m
ν
(M

B
(
1
)
/
7
0
0
G

eV
)−

1
/
2

[e
V

]
m

ν
(M

B
(
1
)
/
7
0
0
G

eV
)−

1
/
2

[e
V

]

0.00010.0001
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FIG. 10: The shaded regions show the range of parameters

where a setup with DM from the late decay B(1) → ν
(1)
R ν̄

can solve (at least one of) the CDM small scale problems; the
area below the shaded regions is excluded by the data from
the Lyman-α forest. The dotted line represents the experi-
mental lower bound on the neutrino mass, mν & 0.05 eV, for
a compactification scale of R−1 = 700 GeV.

given by M
ν
(1)
R

= R−1 and the quantity δ is the same as

that shown in Fig. 9. Comparing now Eq. (III.20) with
Eq. (III.26), we observe that

Γ
B(1)→ν

(1)
R

ν̄

ΓB(1)→G(1)γ

= 5.1 δ−1

(

MB(1)

TeV

)−4
( mν

0.01 eV

)2

.

(III.28)
Since atmospheric neutrino experiments place a lower
limit of mν & 0.05 eV on the heaviest neutrino [65], the
KK graviton problem is thus easily solved in this setup.

Let us now investigate whether a right-handed KK
neutrino may also solve the CDM small scale problems.
To this end, we use Eq. (III.27) and show in Fig. 10 the
parameter plane δ - mν as a rescaled version of Fig. 3.

As becomes obvious from this figure, the ν
(1)
R as a Su-

perWIMP DM candidate has virtually no impact on the
small scale problems – simply because the decay rate is
too large. Even if one leaves the mUED model, where the
B(1) would become the LKP for compactification scales
R−1 & 800 GeV, unrealistically high (N)LKP masses are
needed to sufficiently suppress the couplings so as to ap-
proach the parameter region of interest (Note that we
have an effective scaling with masses as Γ ∝ m2

ν/MB(1)).
Unless one finds a way to construct a scheme where the
main contribution of the observed neutrino mass pattern
does not derive from the Dirac mass terms that we have
introduced here, a solution of the CDM small-scale prob-

lems with a ν
(1)
R DM candidate is thus not possible within

our general framework – although, contrary to the super-
symmetric case, we naturally expect the required small
mass splittings for such a setup.
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IV. SUMMARY AND CONCLUSIONS

We have re-considered the possibility that the main
part of the present dark matter component in the Uni-
verse derives from the late decay of a relic population of
(cold) quasi-stable particles. While not changing stan-
dard CDM cosmology on large scales, such a scenario
introduces interesting new effects on small scales; it has
therefore been advocated as a possible solution to the
problems that current N-body simulations in ΛCDM cos-
mologies are facing, viz. the overabundance of halo sub-
structures and inner halo profiles that are too concen-
trated and steeper than what is suggested by observa-
tions. Since its first proposal, this idea has attracted
considerable attention, not the least as well-motivated
DM scenarios of this type seemed to arise naturally in
supersymmetric or extra-dimensional extensions to the
standard model.

In the first part of this paper, the general requirements
for solving the two small scale problems in such a way
have been presented in a form that makes it straightfor-
ward to check whether any given particle physics model
fits into this scheme, taking into account the various rel-
evant astrophysical constraints. In the second part, we
have then applied our general discussion to those DM
candidates that have often been quoted in this context
as “naturally” satisfying the necessary requirements; the
supersymmetric gravitino and the Kaluza-Klein graviton
in theories with universal extra dimensions. We find that
these DM candidates are actually not suited to solve both
small scale problems simultaneously. This contradiction
with previous claims is mainly related to the fact that, in
all our explicit models, we take as requirement for natu-
ralness the hypothesis that DM is generated in the decay
of thermal relics from the early Universe, as opposed to
other arbitrary and ad-hoc initial conditions.

As an alternative, we have introduced here the scenario
with DM in the form of a right-handed sneutrino or of
the first Kaluza-Klein state of a right-handed neutrino.
These play again the role of the superWIMP, since their
interactions are mediated by a very small Yukawa cou-
pling; moreover, the mechanism we propose is still DM

production in the Universe through the decay of quasi-
stable thermal relics. We have found that, in region of the
parameter space relevant to solve the small-scale struc-
ture problems, the induced Dirac neutrino mass terms
are slightly smaller than the minimum neutrino mass
scale required by neutrino oscillation experiments. A vi-
able scenario, including Majorana neutrino mass terms
and one subdominant Dirac mass term, can be naturally
embedded in a supersymmetric framework; on the other
hand, some fine-tuning in the parameter space seems un-
avoidable to reproduce the required small (i.e. at the
percent level or smaller) mass splitting between the long-
lived species, namely the lightest neutralino, and the DM
right-handed sneutrino. For a right-handed Kaluza-Klein
neutrino in theories with universal extra dimensions, a
small mass splitting between WIMP and SuperWIMP is
expected, still we miss a detailed picture for the genera-
tion of neutrino masses.

In conclusion, we have shown that a solution to the
small scale structure problems can be achieved in the
framework in which DM is generated in the decay at late
times of a quasi stable CDM particles. At the same time,
this solution is pointing to very specific features in the
underlying particle physics model, in particular concern-
ing mass splittings and coupling strengths, and a certain
amount of fine-tuning seems intrinsic in scenarios of this
kind.
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