SPL-based Proton Driver for v Facilities at CERN: Updated Description

> C.R. Prior for R. Garoby, F. Gerigk and the SPL study group

> > ISS meeting, 23-25.1.06

Outline

- 1. Re-design of the SPL
- 2. Applications
- 3. Staged construction
- 4. SPL beam characteristics
- 5. Scenarios for accumulation and compression
- 6. Conclusions & outlook

 \Rightarrow Major upgrade of the proton injector complex at CERN [performance: \geq 2x higher brightness + reliability] for the benefit of all users (LHC, fixed target etc.)

- \Rightarrow Cost-effective time sharing between nuclear [ISOL] and v applications
- ⇒ Potential for future increases in energy and/or power

3. Staged construction (5/5)

Beam dynamics (CEA Saclay)

ISS meeting, 23-25.1.06

(9)

4. SPL beam characteristics

	CDR1	CDR2	
	[2000]	[2006]	
energy	2.2	3.5 👔	GeV
average beam power	4	4	MW
length	690	450 🌡	m
average RF power	24	17.4 🌡	MW
average cryogenics power	9.6	6.7 🌡	MW
repetition rate	50	50	Hz
beam pulse length	2.8	0.57 🌡	ms
average pulse current*	13	40 👔	mA
peak current*	20.8	64 🚺	mA
beam duty cycle	14	2.9 🌷	%
peak RF power	32	163 🌡	MW
no. of 352.2 MHz klystrons (1 MW)	44	14 👔	
no. of 704.4 MHz klystrons (5 MW)	-	44	
no. of tetrodes	79	3	
cryo temperature	4.5	2 🖡	К

* after chopping

5. Scenarios for accumulation & compression (1/7)

For v physics, the time structure of the linac beam has to be changed:

C. Prior (for the SPL study group) SPL-based Proton Driver for v Facilities ISS meeting, 23-25.1.06 (11)

5. Scenarios for accumulation & compression (2/7)

Parameters required by a ν factory*

Beam power (P)	~ 4 MW
Kinetic energy (T)	4 – 10 GeV
Bunch length	1-2 ns rms
Distance between bunches	≥100 ns
Burst length	1-3 μs
Repetition rate	≤ 50 Hz

* As estimated today

5. Scenarios for accumulation & compression (3/7)

Consequences for a linac-based driver

Kinetic energy (T)	Cost increases with T ⇒ Minimize T (< 4 – 8 ? GeV)
Repetition rate (f _{rep})	Constraints to a minimum number of protons/pulse N_p
Bunch length (I _b)	Energy acceptance + longitudinal space charge restrict to low longitudinal emittance ⇒ minimum number of bunches (N _b)
Distance between bunches (d _b)	Accumulator circumference C is proportional to $N_b \times d_b$ & Laslett tune shift ΔQ is proportional to C \Rightarrow minimize d_b to minimize ΔQ & cost
Burst length	Constraints the highest value of C

5. Scenarios for accumulation & compression (4/7)

With SPL CDR1 (2000): severe constraint due to the low beam energy

5. Scenarios for accumulation & compression (5/7)

Aggressive approach...

\vee					
Kinetic energy (T)	3.5 GeV				
Repetition rate (f _{rep})	50 Hz \Rightarrow N _p = 1.43 10 ¹⁴ p/p				
Bunch length (I _b)	For the same $\Delta p/p$ acceptance + because of lower N _p				
	+ relaxing on I _b (2 ns instead of 1 ns)				
	⇒ N _b (goal) = 17				
	[8.41 10 ¹² p/b]				
Distance between	d _b (goal) = 90.86 ns				
bunches (d _b)	C (goal) = 1.635 μs				

Study is going on to check feasibility...

5. Scenarios for accumulation & compression (6/7)

With a linac-based driver there is the possibility to do multiple accumulations with a single linac beam pulse, and therefore generate multiple bursts of beam onto the target.

This is of interest if:

- all parameters are constant in the μ channel during the whole duration of the proton beam on the target (transverse focusing, gradient in the RF cavities...). It is not unreasonable to hope for ~ 1 ms.

- the μ storage ring is long enough to contain all the successive bursts.

The main disadvantage is that the kickers must provide multiple kicks within ~ 1 ms.

This makes it possible to tailor the intensity per burst / the distance between bunches / the main cycling rate of whole facility...

5. Scenarios for accumulation & compression (7/7)

	With SPL CDR2 (2006): other approach using multi-pulsing				
	If the first set of parameters is unfeasible: pulse twice the accumulator/compressor		If the first set of parameters is feasible: pulse twice the accumulator/compresso and divide f _{rep} by 2		s sor
			\backslash	/	
	Kinetic energy (T)	3.5 GeV		3.5 GeV	
	Repetition rate (f _{rep})	50 Hz \Rightarrow N _p =2 \times 0.72 10 ¹⁴ p/p	25 Hz \Rightarrow N _p =2 \times 1.43 10 ¹⁴ p/		/p
T b	ime interval etween pulses	0.285 ms	0.570 ms		
B	unch length (I _b)	N _b = 17 [4.21 10 ¹² p/b]	N _b = 17 [8.41 10 ¹² p/b]		
D b b	istance etween unches (d _b)	d _b = 90.86 ns C = 1.635 μs		d _b = 90.86 ns C = 1.635 μs	

C. Prior (for the SPL study group) SPL-based Proton Driver for v Facilities ISS meeting, 23-25.1.06 (17)

6. Conclusions & outlook

The new SPL design (CDR2 – 2006) is largely improved:

- energy (3.5 GeV) is a compromise that can potentially satisfy EURISOL, neutrino applications, and LHC upgrade scenarios,
- design is more optimum (length reduced by 35% while the energy is increased by 60%, higher instantaneous current reducing the number of turns for accumulation in the ring...)
- upgrades are possible in terms of energy and/or power.

This typically illustrates the potential of a linac-based proton driver for a v factory, which has an unmatchable flexibility to adapt to the requirements of the following part of the facility.