

J.E Campagne

SPL-Fréjus

Collection part

Thanks to S. Gilardoni, A. Cazes

ISS-CERN 22-24/9/05

New optimization questioned @ MMW04*

Particle production

Horn design optimisation

Decay tunnel parameter optimisation

Flux computation at Fréjus

 θ_{13} and δ_{CP} sensitivity.

*: Multi MegaWatt Workshop at CERN 26-28 May 04 ISS CERN 05 J.E Campagne (LAL)

Particle production

Proton beam :

1. Pencil like

2. E_k=2.2GeV, 3.5GeV,..., 8GeV

Target :

1. 30cm long cylinder, Ø15mm in Liq. Hg

2. FLUKA 2002.4

Normalized to 4MW beam power: Pion+ production

1.10 10²³ pot/yr @ 2.2GeV 0.69 10²³ pot/yr @ 3.5GeV 0.30 10²³ pot/yr @ 8.0GeV

> Max. π yield ≠

ISS CERN US J.E Campagne (LAL)

Pion production p(2.2GeV) Hg

at the exit of the target

Rule of thumb: $E_{\pi}/3 \sim E_{v}$ (MeV) > 2.L(km)

Preliminary (15/9/05)

Kaon/pion production?

6

Horn style of collection

Comparison Solenoid vs Horn

Horn design parameter for Super Beam

 $E_v \sim 300 MeV$

 $E_{\pi} \sim 800 MeV$

Conductor thickness : 3mm horn : 300kAmps reflector : 600kAmps Challenging!!!

Drawing from the horn built at CERN Optimized for Super Beam

Using Geant 3.2.1 NuFact-Note 138

nt 2 2 1	+ or - focusing
int 3.2.1	

HORN		
inner radius	3.4cm	
neck length	40cm	
outer radius	20.5cm	
total length	140cm	
REFLECTOR		
outer radius	40cm	
total length	220cm	

ISS CERN 05 J.E Campagne (LAL)

Decay Tunnel Parameters

- Lengths:
 - 1. Modify beam purity
 - 2. Tested: $10m \dots \rightarrow 40m \dots \rightarrow 60m$
 - 3. Optimum @ 40m
 - Radius:
 - 1. modify acceptance
 - 2. $1m \dots \rightarrow 2m$
 - 3. No optimum found: larger is better (we just keep "reasonable" radius)

This results have been checked on sensitivity to θ_{13} and δ_{CP}

The X-sections

V.V. Lyubushkin et al., internal NOMAD memo

βB is an ideal tool to measure these crosssections and a 2% systematic error on both signal and background are used.

Some physics performances

440kT water Č, 4MW SPL, GLoBES

5yrs (+)

True values: $(\Delta m_{3}^2 \sin^2 2\theta_{13})$ sin²2 θ_{12} =0.82, θ_{23} = $\pi/4$, Δm_{21}^2 =8.1 10⁻⁵eV² 5% external precision on θ_{12} and Δm_{21}^2 and use SPL disappearance channel and spectrum analysis*

2% syst. on signal & bkg

 $Sin^{2}2\theta_{13}(90\% CL) = 610^{-3}(0.7^{\circ})$

sizeable improvement

*: 5 bins [0.08,1.08] GeV ISS CERN 05 J.E Campagne (LAL)

 $(\chi^2(2dof)=4.6 \text{ or } 11.83)$

CNGS vs SB/vFact HORN

CERN prototype (2001-2002)

Horn cooling (CERN schema)

The gain in surface exchange is somewhat lost by the thickness increase and then the heat load increase...

20kW/surface exchange 275kW/m²

R&D: water cooling is still ok?

Contact me if you plan to do it

Power Supply

CERN had successfully tested the Horn at 100kA/(0.5)Hzmid-June 03: a schedule of conditions have been written by LAL (13p) for a ($300kA/100\mu s/50Hz$) power supply. 1st industrial price feed back:

- 1. Main power supply (7kV/130A): HAZEMEYER co.: ~ 160k€
- 2. Switches (300kA/100µs/50Hz): ABB co: ~ 3x2x50k€* = 300k€

A solution exists for ~ 460k€ (700kCH)

But we think that a 300kA/1Hz may be a good next step to push the present CERN power supply prototype..

Al alloy property modifications

Rp ou Rm

Other problems...

- Integration of the Target
- Compatibility with Hg
- Radioactive water cooling treatment
- Water Cooled Striplines
- Fabrication cost issues if the life time of a horn is < 1y
- Fast Coupling (cooling & electric) remotely controlled (see US/Japan example)
- Nuclear waste management

Summary

An optimized version of the Horn-like collection/focusing and SuperBeam energy is available with the present knowledge of the π/K production x-sections and the detector performances.

The Horn R&D has been interrupted more or less in 2002 at CERN and not revived yet elsewhere.

The Horn-like collection has been demonstrated in the past to be equivalent to a Solenoid-like collection for a NuFact. The SB-Horn and the NF-Horn are different simply because they have different purposes, but they share a lot of design parameters, so a SB-Horn is a prototype for a NF-Horn.