

J.E Campagne

SPL-Fréjus

Some performances Fréjus site French Photodetector R&D

Thanks: A. Cazes, M. Mezzetto, L. Mosca, Th. Schwetz and IPNO & LAL engeeners.

See also talk at Acc. WG

ISS-CERN 22-24/9/05

Some ingredients for physics analysis

- 440kT Water Č located 130km from CERN (see site later)
- Essentially SK analysis with tighter cuts for e/µ id (cf. hep-ph/0105297)
- Use energy resolution dominated by Fermi motion* (200MeV bins)
- 2% systematics on signal & bkgd
- Optimized machine versions: βB (M. Mezzetto) and SB (A.C + J.E.C)
- Use Atmospheric Neutrinos
- GLOBES & NUANCE

*: migration matrix for βB

β B and SB fluxes

Analysis: GLoBES + M. Mezzetto's parameterization file 440kT x 5yrs: 2,2 Mt.yrs (+)

ν _μ →ν _e (Sig)	θ ₁₃ = 1°	θ ₁₃ = 3°	sin²2θ ₁₃ = 0.05	
	33	330	2200	3670
	(δ = π /2)	(δ = π /2)	(δ = π /2)	$(\delta = 0^{\circ})$
ν _μ →ν _e (Bkg)	1500			
	$v_e \rightarrow v_e CC$	π^{0} from NC	$ u_{\mu} \rightarrow \nu_{\mu} CC $ (μ missId)	$ \begin{array}{c} \bar{v}_{e} \rightarrow \bar{v}_{e} \\ CC \end{array} \end{array} $
Frac. of Bkg	90%	6%	3%	1%
Reduction Factor	0.707(1060)	6.5 10 ⁻⁴ (90)	5.4 10 ⁻⁴ (45)	0.677(15)
$\nu_{\mu} \rightarrow \nu_{\mu}$ (Sig)	64950 (δ = π/2)		64414 (δ = 0°)	
$\nu_{\mu} \rightarrow \nu_{\mu}$ (Bkg)	3 (4.310 ⁻⁵ $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$ <i>CC</i>)			

 $\sin^2 2\theta_{12} = 0.82, \theta_{23} = \pi/4, \Delta m_{21}^2 = 8.1 \ 10^{-5} eV^2, \Delta m_{31}^2 = 2.2 \ 10^{-3} eV^2$

Reduction factor and efficiencies taken from SK simulation (D. Casper) and a tight cut for e/μ misId. (cf. hep-ph/0105297)

ISS CERN 05 J.E Campagne LAL

The X-sections

V.V. Lyubushkin et al., internal NOMAD memo

βB is an ideal tool to measure these crosssections and a 2% systematic error on both signal and background are used.

Require close position

Some physics performances

440kT water Č, 4MW SPL, GLoBES

5yrs (+)

True values: $(\Delta m_{3}^2 \sin^2 2\theta_{13})$ sin²2 θ_{12} =0.82, θ_{23} = $\pi/4$, Δm_{21}^2 =8.1 10⁻⁵eV² 5% external precision on θ_{12} and Δm_{21}^2 and use SPL disappearance channel and spectrum analysis*

2% syst. on signal & bkg

 $Sin^{2}2\theta_{13}(90\% CL) = 610^{-3}(0.7^{\circ})$

sizeable improvement

*: 5 bins [0.08,1.08] GeV ISS CERN 05 J.E Campagne LAL (χ²(2dof)=4.6 or 11.83)

Other expected performances

Comparison with other facilities

Everything computed with the identical program. Thanks to the GLoBES experiment library. taken from Huber, Lindner and HK Winter. hep-ph/0204352, with a fiducial of 440 kton (it was 1 Mton), 2% systematics on QE signal and backgrounds (it was 5%) and 2+8 years running (it was 2+6). NUFACT taken from Huber, Lindner and Winter, v hep-ph/0204352, changing the systematics from 0.1% to 2% and the running time to 5+5 years (it was 4+4). Other parameters: two iron magnetized detectors, 50 kton, at 3000 and 7500 km, 50 GeV muons, 1E21 useful decays/year, 5% systematics on matter profile, threshold at 4 GeV, 20 bins from 4 to 50 GeV. SPL 3.5 GeV (see J.E. Campagne talk) with 2 ν + 8 $\overline{\nu}$

years, 2% systematic error, 200 MeV binning, 440 kton fiducial.

M.M@NuFact05

Remove ambiguities with ATM \boldsymbol{v}

Favorable case $sin^2\theta_{23}=0.6$

Contour after ATM combination
*: true value

ISS CERN 05 J.E Campagne LAL

Effect of the systematic (sig. & bkg)

3σ CP discovery ($\Delta \chi^2$ =9,1dof)

Much more dramatic than ambiguities

True values: $(\delta/\pi, \sin^2 2\theta_{13})$ $\sin^2 2\theta_{12}$ =0.82, $\sin^2 \theta_{23}$ =0,4 Δm^2_{21} =7.9 10⁻⁵eV², Δm^2_{31} =2.4 10⁻³eV² 5% external precision on $\theta_{12} \& \Delta m^2_{21}$ use SPL disappearance channel and spectrum analysis

Fréjus site possibility

New Fréjus Cavern (MEMPHYS)

ISS CERN 05 J.E Campagne LAL

65m 80m 4x250,000m³ H₂0

Based on well experienced engineer studies. First cost estimate soon 14

Photodetector R&D in France

- R&D launched after NNN05 but based on ongoing R&D with Photonis
 - IPN-Orsay, LAL & Photonis together in an official GIS to develop Smart-Photodetectors (ie electronic up to ADC/TDC included): 6
 - engineers + 2 post-docs + Photonis engineers
- 200k€/3yrs has been asked at the new National Research Agency (ANR)

Photonis @ NNN05: 500,000 PMT -12"- 800€/u Target electronics + HV: 200€/channel

Electronics

- Taken in charge by LAL: from amplifier up to ADC/TDC based on past experience with similar state of the art front-end electronics developed for OPERA, W-Si ILC prototype, LHCb...
- Trigger @ $\frac{1}{4}$ p.e (3kHz from SK)
- TDC: 12bits 0,4ns/c
- ADC: 12bits 0,15pC/c with 1 p.e @ 20-30 adc channels.
- High speed digital readout
- Cost reduction thanks to high level of integration
- Use AMS 0,35µm BiCMOS ASIC

Mechanics

Taken in charge by IPNO: well experienced in photodetectors (last operation: Auger). With PHOTONIS tests of PMT 8", 9" \rightarrow 12" and Hybrid-PMT and HPD

Electronic box water tight

Basic unit that we want to build and test under water

IPNO

Some PMT characteristics measurements

No diff. 5",8",10" so 12" should be identical