

J.E Campagne

SPL-Fréjus

Some performances Fréjus site French Photodetector R&D

Thanks: A. Cazes, M. Mezzetto, L. Mosca, Th. Schwetz and IPNO & LAL engeeners.

See also talk at Acc. WG

ISS-CERN 22-24/9/05

Some ingredients for physics analysis

- 440kT Water Č located 130km from CERN (see site later)
- Essentially SK analysis with tighter cuts for e/µ id (cf. hep-ph/0105297)
- Use energy resolution dominated by Fermi motion* (200MeV bins)
- 2% systematics on signal & bkgd (see effect later)
- Optimized machine versions: βB (M. Mezzetto) and SB (A.C + J.E.C)
- Use Atmospheric Neutrinos (Th. Schwetz)
- GLOBES & NUANCE
- *: migration matrix for βB

Particle Id (from M. Mezzetto)

Electron/muon misidentification must be suppressed much more than in standard SK analysis to guarantee a negligible background level.

Pid in SK is performed through a Likelihood, Pid > identifies muons. Use Pid > 1

To further suppress electron background ask for the $_{15}$ signal of the Michel electron from μ decay. $_{1.25}$ Final efficiency for positive muons. Negative muons $_1$ have an efficiency smaller by $\sim~22\%$ because can $_{0.75}$ be absorbed before decaying. Electron background $_{0.25}$ suppressed to $\sim 10^{-5}.$ $_{0.25}$

M. Mezzetto, Nufact 05, LNF, 21-26 June 2005,

β B and SB fluxes

Analysis: GLoBES + M. Mezzetto's parameterization file 440kT x 5yrs: 2,2 Mt.yrs (+)

	θ ₁₃ = 1°	θ ₁₃ = 3°	sin²2θ ₁₃ = 0.05		
v _µ →v _e (Sig)	33	330	2200	3670	
	(δ = π /2)	(δ = π /2)	(δ = π /2)	(δ = 0°)	
ν _μ →ν _e (Bkg)	1500				
	$v_e \rightarrow v_e CC$	π^{0} from NC	$ u_{\mu} \rightarrow \nu_{\mu} CC $ (μ missId)	$ \begin{array}{c} \bar{v}_{e} \rightarrow \bar{v}_{e} \\ CC \end{array} \end{array} $	
Frac. of Bkg	90%	6%	3%	1%	
Reduction Factor	0.707(1060)	6.5 10 ⁻⁴ (90)	5.4 10 ⁻⁴ (45)	0.677(15)	
$\nu_{\mu} \rightarrow \nu_{\mu}$ (Sig)	649 (δ =	950 π/2)	64414 (δ = 0°)		
$\nu_{\mu} \rightarrow \nu_{\mu}$ (Bkg)	3 (4.310 ⁻⁵ $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$ <i>CC</i>)				

 $\sin^2 2\theta_{12} = 0.82, \theta_{23} = \pi/4, \Delta m_{21}^2 = 8.1 \ 10^{-5} eV^2, \Delta m_{31}^2 = 2.2 \ 10^{-3} eV^2$

Reduction factor and efficiencies taken from SK simulation (D. Casper) and a tight cut for e/μ misId. (cf. hep-ph/0105297)

ISS CERN 05 J.E Campagne LAL

Preliminary (15/9/05)

Kaon/pion production?

ISS CERN 05 J.E Campagne LAL

+12.5% π⁻@3.5GeV

Big difference [3.5 ÷ 4.5] GeV

HARP?

The X-sections

V.V. Lyubushkin et al., internal NOMAD memo

βB is an ideal tool to measure these crosssections and a 2% systematic error on both signal and background are used.

Require close position

Comparison with other facilities

Everything computed with the identical program. Thanks to the GLoBES experiment library. taken from Huber, Lindner and Winter, HK hep-ph/0204352, with a fiducial of 440 kton (it was 1 Mton), 2% systematics on QE signal and backgrounds (it was 5%) and 2+8 years running (it was 2+6). NUFACT taken from Huber, Lindner and Winter, hep-ph/0204352, changing the systematics from 0.1% to 2% and the running time to 5+5 years (it was 4+4). Other parameters: two iron magnetized detectors, 50 kton, at 3000 and 7500 km, 50 GeV muons, 1E21 useful decays/year, 5% systematics on matter profile, threshold at 4 GeV, 20 bins from 4 to 50 GeV. SPL 3.5 GeV (see J.E. Campagne talk) with 2 ν + 8 $\overline{\nu}$

years, 2% systematic error, 200 MeV binning, 440 kton fiducial.

M.M@NuFact05 **Systematics...** ISS CERN 05 J.E Campagne LAL

Effect of the systematic (sig. & bkg)

 3σ CP discovery ($\Delta \chi^2$ =9,1dof)

Much more dramatic than ambiguities at small θ_{13}

True values: $(\delta/\pi, \sin^2 2\theta_{13})$ $\sin^2 2\theta_{12}$ =0.82, $\sin^2 \theta_{23}$ =0,4 Δm^2_{21} =7.9 10⁻⁵eV², Δm^2_{31} =2.4 10⁻³eV² 5% external precision on $\theta_{12} \& \Delta m^2_{21}$ use SPL disappearance channel and spectrum analysis

Remove ambiguities with ATM \boldsymbol{v}

Favorable case $sin^2\theta_{23}=0.6$

Contour after ATM combination
*: true value

ISS CERN 05 J.E Campagne LAL

Fréjus site possibility

L.Mosca

New Fréjus Cavern (MEMPHYS)

Based on well experienced civil engineer studies.

First cost and time estimate will come soon for a dedicated operation. Beyond that a Design Study is needed

PMT size <=> cost

Photonis @ NNN05

Diameter	20" <=>	(20")17" <=>	12"	
projected area	1660	1450	615	cm ²
QE(typ)	20	20	24	%
CE	60	60	70	%
Cost	2500	2500	800	€
Cost/cm² p	per useful H	∠E _U = cost/(cm	$1^2 x Q E$	xCE
	12.6	14.4	7.7	
€/ PE_u/ cm²				

Quantities and total cost

Photonis @ NNN05

20" *200,000* × € 2500 = 500M 12" 540,000 × €800 = *432M*

Comment: one should integrate the electronic + HV price

Photodetector R&D in France

- R&D launched after NNN05 but based on ongoing R&D with Photonis
 - IPN-Orsay, LAL & Photonis together in an official GIS to develop Smart-Photodetectors (ie electronic up to ADC/TDC included): 6
 - engineers + 2 post-docs + Photonis engineers
- 200k€/3yrs has been asked at the new National Research Agency (ANR)

Photonis @ NNN05: 500,000 PMT -12"- 800€/u

New pump capacity needed? Delivery over 6 years Photonis @ NNN05 300 working days/year *1. <u>20" tube</u>* 50,000/6/300 => 28 good tubes x yield 0.7 = 40 starts/day $(1 \text{ start/pump/day}) \Rightarrow 40 \text{ pumps} (\notin 7M \text{ or so})$ *1.* <u>12" tube</u> 135,000/6/300 => 75 good tubes x yield 0.7 = 110 starts/day. A multi-array computerised pump at Photonis handles

20 starts/day

=> 6 pumps (€ 2M or so)

ISS CERN 05 J.E Campagne LAL Comment: x4 the PMT numbers

+ Sub-conclusions

12" seems much better than 20"/17"

- cost per useful photoelectron & total PMT cost
- Timing
- single-electron resolution (17" equal)
- granularity
- weight and handling
- implosion risk
- investments and start-up

Photonis @ NNN05

Photonis has all the technical capability needed!

R&D cooperation: detailed & intensive talks are going on with the MEMPHYS collaboration to *d*efine a balanced programme

Workshop planned in the spring

Photonis @ NNN05

ISS CERN 05 J.E Campagne LAL

Electronics

- Taken in charge by LAL: from amplifier up to ADC/TDC based on past experience with similar state of the art front-end electronics developed for OPERA, W-Si ILC prototype, LHCb...
- Trigger @ $\frac{1}{4}$ p.e (3kHz from SK)
- TDC: 12bits 0,4ns/c
- ADC: 12bits 0,15pC/c with 1 p.e @ 20-30 adc channels.
- High speed digital readout
- **Cost reduction** thanks to high level of integration
- Use AMS 0,35µm BiCMOS ASIC

Mechanics & PMT tests

Taken in charge by IPNO: well experienced in photodetectors (last operation: Auger). With PHOTONIS tests of PMT 8", 9" \rightarrow 12" and Hybrid-PMT and HPD

Electronic box water tight

Basic unit that we want to build and test under water

IPNO

Some PMT characteristics measurements

No diff. 5",8",10" so 12" should be identical

Summary

The MEMPHYS Mt-scale Water Cerencov detector has a quite good accelerator neutrino program (not exposed here the Pdk and SN v)

The R&D on photodetector is started in France and will come in 2006 with first version of "SmartDetector"

The Civil engineer pre-study for new Fréjus Lab. has been performed and seems encouraging (first costing will come soon)

Thank you