\relax \citation{SKNU04,K2KNU04} \citation{K2KNU04} \citation{MINOS} \citation{OPERA,ICARUS} \citation{CNGS} \citation{LSND} \citation{MINIBOONE} \citation{PMNS} \citation{CHOOZ} \citation{Wpaper} \citation{BETABEAM} \citation{NOVA,T2K} \citation{T2K,BNLHS,CERN} \citation{CERN} \citation{DONINI} \citation{DONINI,DOUBLE-CHOOZ} \citation{SPL} \citation{UNO} \citation{mosca} \citation{CERN} \citation{Meer} \citation{nuFact134,MMWPSCazes} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Sketch of the SPL neutrino Superbeam from CERN to the Fr\'ejus tunnel.}}{2}} \newlabel{fig:Sbeam}{{1}{2}} \citation{DONINI,JJG,Mezzetto} \citation{nuFact138} \citation{fluka} \citation{CERN} \citation{SPL} \citation{MMWPSGaroby} \citation{nuFact134} \citation{harp} \citation{minerva} \citation{MARS} \citation{nuFact134} \citation{MMWPSGaroby} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Liquid mercury jet parameters.}}{3}} \newlabel{tab:targ}{{1}{3}} \@writefile{toc}{\contentsline {section}{\numberline {2}Target simulation}{3}} \newlabel{sec:target}{{2}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Pion momentum distribution at the exit the target (a) and at the exit of the horns (b), simulated by FLUKA (\mbox {- - - -}) and by MARS (\mbox {------}).}}{3}} \newlabel{fig:compFlukaMars}{{2}{3}} \@writefile{toc}{\contentsline {section}{\numberline {3}Kaon production}{3}} \newlabel{sec:kaon}{{3}{3}} \citation{FLUKAprivate} \citation{geant} \citation{SIMONE1} \citation{nuFact138} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Average number of the most relevant secondary particles exiting the $30$\nobreakspace {}cm long, $1.5$\nobreakspace {}cm diameter mercury target per incident proton (FLUKA). The $\mu ^+/\mu ^-$ numbers and the $K^+/K^0$ numbers have been multiplied by $10^4$. Note that the $K^-$ production rate is at the level of $10^{-5}$ per incident proton.}}{4}} \newlabel{tab:nbPart}{{2}{4}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Kaon production (a) as a function of the incident proton beam energy ($E_p$) for $500\nobreakspace {}000$ incident protons with (\mbox {------}) curve for $K^+$, (\mbox {- - - -}) curve for $K^-$ and (\mbox {${\mathinner {\cdotp \cdotp \cdotp \cdotp \cdotp \cdotp }}$}) curve for $K^o$. Pion production (b) in the same conditions with (\mbox {------}) curve for $\pi ^+$ and (\mbox {- - - -}) curve for $\pi ^-$.}}{4}} \newlabel{fig:KaonsPions}{{3}{4}} \@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Relevant parameters of horns. The shapes of the conductors are not changed by proton beam energy changes, as the focusing has been optimized for a defined pion momentum.}}{4}} \newlabel{tab:specif}{{3}{4}} \@writefile{toc}{\contentsline {section}{\numberline {4}Horn simulation}{4}} \newlabel{sec:horn}{{4}{4}} \citation{donega} \citation{donega} \citation{donega} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Design of the Horn and the Reflector conductor shapes implemented in the GEANT simulation. The Hg target is located inside the cylindrical part of the Horn.}}{5}} \newlabel{fig:plan}{{4}{5}} \@writefile{toc}{\contentsline {section}{\numberline {5}Particle decay treatment and flux calculation}{5}} \@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces Number of protons on target for different beam energy at 4\nobreakspace {}MW constant power.}}{5}} \newlabel{tab:proton}{{4}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Algorithm description}{5}} \newlabel{sec:algo}{{5.1}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Validation of the algorithm}{5}} \citation{donega} \citation{MEZZETTONUFACT060} \citation{DONINI-2} \citation{NUANCE} \citation{MEZZETTONUFACT060} \citation{UNO} \citation{mosca} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Comparison between the probability method, (\mbox {------}) curve, and the full GEANT simulation method, (\mbox {- - - -}) curve, for the $\nu _\mu $ from $\pi ^+$ flux (left) and the $\mathaccent "7016\relax {\nu }_\mu $ from $\pi ^-$ flux (right). The horns are set to focus positive particles.}}{6}} \newlabel{fig:compGeantDonega}{{5}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Simulated fluxes}{6}} \@writefile{toc}{\contentsline {section}{\numberline {6}Sensitivity computation ingredients}{6}} \citation{MEZZETTONUFACT060} \citation{KAMLAND} \citation{JJG} \citation{MEZZETTONUFACT060} \citation{KAMLAND} \citation{JJG} \@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Integral of the different species fluxes with different settings. The $\nu _\mu $ and $\mathaccent "7016\relax {\nu }_\mu $ fluxes are expressed in $10^{13}/100\@mathrm {m}^2/y$ unit while the $\nu _e$ and $\mathaccent "7016\relax {\nu }_e$ fluxes are expressed in $10^{11}/100\@mathrm {m}^2/y$ unit. The positive focusing and negative focusing are distinguished by a ($+$) sign and a ($-$) sign, respectively. The settings used corresponds to different values of $L_T$ and $R_T$, the length and radius of the decay tunnel. Setting (1) is the baseline option and means $L_T = 20$\nobreakspace {}m and $R_T = 1$\nobreakspace {}m, while setting (2) means $L_T = 10$\nobreakspace {}m and $R_T = 1$\nobreakspace {}m and setting (3) means $L_T = 40$\nobreakspace {}m and $R_T = 1$\nobreakspace {}m, and finally the setting (4) means $L_T = 20$\nobreakspace {}m and $R_T = 1.5$\nobreakspace {}m.}}{7}} \newlabel{tab:speciesfluxes}{{5}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Neutrino fluxes $100$\nobreakspace {}km from the decay region and with the horns focusing the positive particles. The fluxes are computed for a SPL proton beam of $2.2$\nobreakspace {}GeV (4\nobreakspace {}MW), a decay tunnel with a length of $20$\nobreakspace {}m and a radius of $1$\nobreakspace {}m. The (\mbox {------}) curve is the contribution from primary pions and the daughter muons, the (\mbox {- - - -}) curve is the contribution from the charged kaon decay chain, and the (\mbox {${\mathinner {\cdotp \cdotp \cdotp \cdotp \cdotp \cdotp }}$}) curve is the contribution from the $K^0$ decay chain.}}{7}} \newlabel{fig:flux22p}{{6}{7}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Same legend as for figure\nobreakspace {}6\hbox {} but the horns are focusing negative particles.}}{7}} \newlabel{fig:flux22m}{{7}{7}} \citation{MEZZETTONUFACT060} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Same legend as for figure\nobreakspace {}6\hbox {} but for proton beam kinetic energy of $4.5$\nobreakspace {}GeV (4\nobreakspace {}MW).}}{8}} \newlabel{fig:flux45p}{{8}{8}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Same legend as for figure\nobreakspace {}7\hbox {} but for proton beam kinetic energy of $4.5$\nobreakspace {}GeV (4\nobreakspace {}MW).}}{8}} \newlabel{fig:flux45m}{{9}{8}} \@writefile{lot}{\contentsline {table}{\numberline {6}{\ignorespaces Default user parameters used to compute the sensitivity curves \cite {MEZZETTONUFACT060}. The quoted errors in parenthesis for the $(12)$ and the $(23)$ parameters (absolute value for the masses and relative value for the angles) are coming respectively from the up to date combined Solar and KamLAND results \cite {KAMLAND} and from a 200 ktons-years SPL desappearance exposure \cite {JJG}.}}{8}} \newlabel{tab:param}{{6}{8}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Same legend as for figure\nobreakspace {}6\hbox {} but for proton beam kinetic energy of $8$\nobreakspace {}GeV (4\nobreakspace {}MW).}}{8}} \newlabel{fig:flux8p}{{10}{8}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Same legend as for figure\nobreakspace {}7\hbox {} but for proton beam kinetic energy of $8$\nobreakspace {}GeV (4\nobreakspace {}MW).}}{8}} \newlabel{fig:flux8m}{{11}{8}} \@writefile{toc}{\contentsline {section}{\numberline {7}Results}{8}} \newlabel{sec:results}{{7}{8}} \citation{DONINI} \citation{DONINI,JJG,Mezzetto} \@writefile{lot}{\contentsline {table}{\numberline {7}{\ignorespaces Number of events for 5 years positive focusing scenario with default parameters of table\nobreakspace {}6\hbox {}. : $\pi ^0$, $\nu _\mu $-elast., $\mu /e$-missId. The significance parameter is defined by equation\nobreakspace {}1\hbox {}.}}{9}} \newlabel{tab:nbvsE}{{7}{9}} \@writefile{lot}{\contentsline {table}{\numberline {8}{\ignorespaces Minimum $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}\times 10^3$ observable at $90\%$ CL computed for diferent decay tunnel length ($L_T$) and kinetic beam energy ($E_k(proton)$). Other parameters are fixed to default values (table\nobreakspace {}6\hbox {}).}}{9}} \newlabel{tab:thvsE}{{8}{9}} \newlabel{eq:significance}{{1}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces Sensitivity contours obtained with a SPL energy of $4.5$\nobreakspace {}GeV and default parameters of table\nobreakspace {}6\hbox {}.}}{9}} \newlabel{fig:sensi45}{{12}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces Comparison of 90\% sensitivity contours obtained with SPL energies of ($2.2$, $3.5$, $4.5$, $8$)\nobreakspace {}GeV and default parameters of table\nobreakspace {}6\hbox {}.}}{9}} \newlabel{fig:compSensi}{{13}{9}} \@writefile{lot}{\contentsline {table}{\numberline {9}{\ignorespaces Minimum $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}\times 10^3$ observable at $90\%$ CL computed for different level of systematics ($\epsilon _{syst}$) and kinetic beam energy ($E_k(proton)$). Other parameters are fixed to default values (table\nobreakspace {}6\hbox {}).}}{9}} \newlabel{tab:thvseps}{{9}{9}} \citation{GEANT4} \citation{DONINI} \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces $90\%$ CL sensitivity contours obtained with a SPL energy of $4.5$\nobreakspace {}GeV and default parameters of table\nobreakspace {}6\hbox {} but for different $\epsilon _{syst}$ values.}}{10}} \newlabel{fig:compEpsSyst}{{14}{10}} \@writefile{lot}{\contentsline {table}{\numberline {10}{\ignorespaces Minimum $\mathop {\mathgroup \symoperators sin}\nolimits ^22\theta _{13}\times 10^3$ observable at $90\%$ CL computed for different values of sign$(\Delta m^2_{23})$ and $\delta _{CP}$. Other parameters are fixed to default values (table\nobreakspace {}6\hbox {}).}}{10}} \newlabel{tab:sign}{{10}{10}} \@writefile{toc}{\contentsline {section}{\numberline {8}Summary and outlook}{10}} \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Sensitivity contours obtained with SPL beam energy of $2.2$\nobreakspace {}GeV (\mbox {- - - -}), $3.5$\nobreakspace {}GeV (\mbox {--- $\cdot $ ---}), $4.5$\nobreakspace {}GeV (\mbox {------}) and $8$\nobreakspace {}GeV (\mbox {${\mathinner {\cdotp \cdotp \cdotp \cdotp \cdotp \cdotp }}$}) at $90\%$ CL. Default parameters of table\nobreakspace {}6\hbox {} are used either with a 5 years positive focusing scenario (a) or a mixed scenario of 2 years positive focusing and 8 years of negative focusing (b).}}{10}} \newlabel{fig:compDeltaTheta}{{15}{10}} \citation{donega} \citation{Gaisser} \citation{picasso} \citation{pdg} \@writefile{lof}{\contentsline {figure}{\numberline {16}{\ignorespaces Pion decay in the tunnel frame. To reach the detector, $\delta = -\alpha $ is needed.}}{11}} \newlabel{fig:pionDecay}{{16}{11}} \@writefile{toc}{\contentsline {section}{\numberline {B}Decay probability computations}{11}} \newlabel{sec:decayprobcomp}{{B}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.1}Pion neutrino probability computation}{11}} \newlabel{sec:Ppi}{{B.1}{11}} \newlabel{probaPi}{{2}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.2}Muon neutrino probability computation}{11}} \newlabel{sec:Pmu}{{B.2}{11}} \@writefile{lot}{\contentsline {table}{\numberline {11}{\ignorespaces Flux function in the muon rest frame \cite {Gaisser}.}}{11}} \newlabel{tab:Function}{{11}{11}} \@writefile{lot}{\contentsline {table}{\numberline {12}{\ignorespaces Charged and neutral kaon decay channels \cite {pdg}.}}{11}} \newlabel{tab:BRKP0SL}{{12}{11}} \newlabel{probaMu}{{3}{11}} \newlabel{pola}{{4}{11}} \@writefile{toc}{\contentsline {subsection}{\numberline {B.3}The treatment of the kaons}{11}} \newlabel{sec:kaons}{{B.3}{11}} \bibcite{SKNU04}{1} \bibcite{K2KNU04}{2} \bibcite{MINOS}{3} \bibcite{OPERA}{4} \bibcite{ICARUS}{5} \bibcite{CNGS}{6} \bibcite{LSND}{7} \bibcite{MINIBOONE}{8} \bibcite{PMNS}{9} \bibcite{CHOOZ}{10} \bibcite{Wpaper}{11} \bibcite{BETABEAM}{12} \bibcite{NOVA}{13} \bibcite{T2K}{14} \bibcite{BNLHS}{15} \bibcite{CERN}{16} \bibcite{DONINI}{17} \bibcite{DOUBLE-CHOOZ}{18} \bibcite{SPL}{19} \bibcite{UNO}{20} \bibcite{mosca}{21} \bibcite{Meer}{22} \bibcite{nuFact134}{23} \bibcite{MMWPSCazes}{24} \bibcite{JJG}{25} \bibcite{Mezzetto}{26} \bibcite{nuFact138}{27} \bibcite{fluka}{28} \bibcite{MMWPSGaroby}{29} \bibcite{harp}{30} \bibcite{minerva}{31} \newlabel{probaL}{{5}{12}} \bibcite{MARS}{32} \bibcite{FLUKAprivate}{33} \bibcite{geant}{34} \bibcite{SIMONE1}{35} \bibcite{donega}{36} \bibcite{DONINI-2}{37} \bibcite{NUANCE}{38} \bibcite{MEZZETTONUFACT060}{39} \bibcite{KAMLAND}{40} \bibcite{Gaisser}{41} \bibcite{picasso}{42} \bibcite{pdg}{43} \bibcite{GEANT4}{44}