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Abstract

We discuss the precision determination of the leptonic Dirac CP phase δCP in
neutrino oscillation experiments, where we apply the concept of “CP coverage”. We
demonstrate that this approach carries more information than a conventional CP viola-
tion measurement, since it also describes the exclusion of parameter regions. This will
be very useful for next-generation long baseline experiments where for sizable sin2 2θ13

first constraints on δCP can be obtained. As the most sophisticated experimental
setup, we analyze neutrino factories, where we illustrate the major difficulties in their
analysis. In addition, we compare their potential to the one of superbeam upgrades
and next-generation experiments, which also includes a discussion of synergy effects.
We find a strong dependence on the yet unknown true values of sin2 2θ13 and δCP,
as well as a strong, non-Gaussian dependence on the confidence level. A systematic
understanding of the complicated parameter dependence will be given. In addition,
it is shown that comparisons of experiments and synergy discussions do in general
not allow for an unbiased judgment if they are only performed at selected points in
parameter space. Therefore, we present our results in dependence of the yet unknown
true values of sin2 2θ13 and δCP. Finally we show that for δCP precision measurements
there exist simple strategies including superbeams, reactor experiments, superbeam
upgrades, and neutrino factories, where the crucial discriminator is sin2 2θ13 ∼ 10−2.
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1 Introduction

After the measurements of the leading atmospheric and solar oscillation parameters (see,
e.g. Ref. [1] and references therein), the most important task for the next generation neu-
trino oscillation experiments will be the search for a finite value of θ13. Future reactor
experiments [2], conventional beam experiments [3–5], or superbeams [6, 7] could establish
sin2 2θ13 > 0 for sin2 2θ13 & 10−2. For smaller values of θ13, superbeam upgrades (such
as T2HK [6]) and β-beams [8, 9], or neutrino factories [10–12] continue the hunt. Once
sin2 2θ13 > 0 is established, it is possible to address the mass hierarchy and the value of
δCP. In this study we discuss precision measurements of the leptonic Dirac CP phase as the
most challenging task for neutrino oscillation physics within the framework of three-flavor
neutrino oscillations.

The determination of the leptonic CP phase δCP has so far been discussed in different
ways [8,9,13–65]. Some of them are CP violation measurements, which address the question
if a CP violating value of δCP can be distinguished from the CP conserving values 0 and π.
The sensitivity to maximal CP violation δCP = π/2 or δCP = 3/2 π has also been extensively
studied. Another class are precision measurements of δCP, which have been investigated e.g.
in the context of superbeam upgrades and neutrino factories. Many results are given only
at some discrete points in parameter space and from this it is not possible to judge the
overall performance of the considered setup. A discussion of the changes in the precision
as function of the relevant parameter values is missing in most cases. The aim of this
study is therefore to investigate the reason for differences in previous studies and to a find
a systematic way for comparing and classifying the CP sensitivities. We will demonstrate
that these differences are indeed consistent, and we will illustrate how one can understand
the underlying parameter dependence. In particular, we will find that the topology of the
neutrino factory factor parameter space for small values of sin2 2θ13 is rather complicated.

From the theoretical point of view any value of δCP could be realized by nature, i.e. δCP ∈
[0, 2π[. This means, for example, that sensitivity to maximal CP violation (δCP = π/2 or
3/2 π) does very likely not correspond to the real world. In particular, the era of superbeams
and reactor experiments within the next ten years will not be able to measure CP violation
even under very optimistic assumptions [63]. Nevertheless, superbeams could exclude some
values of δCP, and thus could restrict the possible parameter space. On the other end,
at the high precision frontier, the investigation of CP violation might be too restrictive,
since these future experiments could not only establish CP violation, but also constrain the
parameter space for δCP even further. Therefore, all available information on δCP should
be used, which then can be used for the optimization of future experiments, as input for
neutrino mass models, or as motivation to continue hunting for leptonic CP violation.

One of the major difficulties in the analysis of future neutrino oscillation experiments is
the huge number of parameters: In general, one has six simulated parameters (within their
currently allowed ranges) and six fitted parameters, i.e., a 12-dimensional parameter space.
A performance indicator which condenses the information is therefore required in order to
show the results as a function of the most relevant impact parameters. Such a performance
indicator can, furthermore, be used for the comparison of experiments, for risk minimization
with respect to the yet unknown parameter values, for the optimization of experiments, or

1



for the discussion of synergy effects. In this study, we use the “CP coverage” [45] as perfor-
mance indicator for CP precision measurements. CP coverage is defined as the combined
range of all fit values which fit the chosen simulated value of δCP.1 Thus, a very small CP
coverage corresponds to a good precision of δCP, whereas a CP coverage of 360◦ corresponds
to no information on δCP. Note that this definition includes the case of disjoint regions
(degeneracies) irrespectively of the precision within each individual region. For example,
a value of 300◦ means that in total 60◦ of the possible parameter range of 360◦ can be
excluded. Therefore, the CP coverage is a useful performance indicator which interpolates
between exclusion measurements and high precision measurements of the leptonic Dirac CP
phase. Note that the CP coverage should not be confused with the often used “CP fraction”
(for example, in Ref. [66]). CP coverage refers to a range of fitted values of δCP, whereas
CP fraction refers to a range of simulated/true values.

This study is organized as follows: In Section 2, we give a short introduction to three-flavor
neutrino oscillations and the appearance channel in future long-baseline experiments. This
section can be skipped by a reader familiar with the subject. Then we describe in Section 3
the analysis methods, where we only quickly repeat the general techniques described in
earlier works, and rather extensively illustrate the problems connected with the analysis of
future high precision instruments. This section is kept on a rather illustrative level, but is
mandatory to understand the more technical details in Section 4. The quite general first
part of Section 4 introduces performance indicators to differentiate experiment classes and
to investigate synergies and shows the consequences for the physics potential of different
experiments. The more technical second part of this section investigates the specific charac-
teristics of superbeam and neutrino factory parameter space. The latter is not a prerequisite
to understand Section 5, which discusses possible synergies among experiment types for fu-
ture δCP precision measurements. In particular, it is a major objective of this section to
investigate the complete parameter space in a systematized manner. Finally, we summarize
our results in Section 6.

2 Neutrino oscillation framework

For long-baseline beam experiments, the electron or muon neutrino appearance probability
Papp in matter carries the main information for CP effects. It can be expanded in the
small hierarchy parameter α ≡ ∆m2

21/∆m2
31 and the small sin 2θ13 up to the second order

1In this study, we use always degrees for the CP coverage (fit values), whereas we use radians for
simulated/true values of δCP.
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as [31, 67, 68]:

Papp ≃ sin2 2θ13 sin2 θ23

sin2[(1 − Â)∆]

(1 − Â)2

± α sin 2θ13 sin 2θ12 sin 2θ23 sin δCP sin(∆)
sin(Â∆)

Â

sin[(1 − Â)∆]

(1 − Â)

+ α sin 2θ13 sin 2θ12 sin 2θ23 cos δCP cos(∆)
sin(Â∆)

Â

sin[(1 − Â)∆]

(1 − Â)

+ α2 cos2 θ23 sin2 2θ12

sin2(Â∆)

Â2
. (1)

Here ∆ ≡ ∆m2
31L/(4E) and Â ≡ ±(2

√
2GFneE)/∆m2

31 with GF the Fermi coupling con-
stant and ne the electron density in matter. The sign of the second term is positive for
νe → νµ or νµ̄ → νē and negative for νµ → νe or νē → νµ̄. The sign of Â is determined by
the sign of ∆m2

31 and choosing neutrinos (factor +1) or antineutrinos (factor −1).

This expansion clearly identifies δCP as a genuine three-flavor effect in the second and third
terms, which is double-suppressed by the mass hierarchy parameter α and sin 2θ13. Since
∆m2

21 has turned out to be rather large within the LMA-allowed region [1,69,70], it became
possible to determine δCP, but the bottleneck of any CP measurement will certainly be
the true value of sin2 2θ13. So far, sin2 2θ13 has been only restricted to sin2 2θ13 . 10−1 by
the CHOOZ and Palo Verde reactor data and recently also by the solar experiments [71].
If sin2 2θ13 > 0 cannot be established by any experiment, then CP effects in neutrino
oscillations can not be detected. As we will discuss later, for sin2 2θ13 > 0, the actual value
of sin2 2θ13 will determine the strategy to measure δCP.

In principle, the second term in Eq. (1) contains the intrinsic information on δCP close to the
oscillation maximum, whereas the third term proportional to cos δCP · cos ∆ is suppressed
close to the oscillation maximum (where sin ∆ ∼ 1). In particular, it is easy to see that the
probability difference |Peµ −Pēµ̄| (or |Pµe −Pµ̄ē|) in vacuum is just twice the second term in
Eq. (1), which is often called “CP-odd probability difference”. Therefore, it is well known
that using both neutrinos and antineutrinos helps to extract the leptonic CP phase from
Eq. (1). However, matter effects enhance the neutrino channel and suppress the antineutrino
channel (for a normal mass hierarchy). In addition, a direct measurement of |Peµ − Pēµ̄| is
not possible, since in an actual experiment only the convolution of the probability, the flux,
the cross sections, and detector efficiencies is measured. Each part of this convolution may
give rise to additional contributions to the ‘probability difference’, especially cross sections
and efficiencies might prove to make the use of a mere ‘probability difference’ pointless.
Furthermore, the appearance event rates are proportional to the full Eq. (1). Therefore,
matter effects, matter density uncertainties, and the complicated parameter dependence
in Eq. (1) spoil the clean extraction of δCP. In particular, the complicated parameter
dependence of the oscillation probability leads to correlations with sin2 2θ13 [31, 37] and
multi-parameter correlations [45], as well as to the (δCP, θ13) [37], sgn(∆m2

31) [72], and
(θ23, π/2−θ23) [73] degeneracies, i.e., an overall “eight-fold” degeneracy [35]. In the analysis,
we will take into account all of these degeneracies. Note however, that the (θ23, π/2 − θ23)
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degeneracy is not present, since we always adopt for the true value of θ23 the current
atmospheric best-fit value θ23 = π/4. Hence, we will effectively deal with a “four-fold”
degeneracy.

From the theoretical point of view, the second term in Eq. (1) is especially interesting
for CP violation measurements, since the CP violating effects are proportional to sin δCP.
However, only using information close to the oscillation maximum, i.e., the sin δCP-term,
leaves an intrinsic ambiguity between δCP and π−δCP. This ambiguity can be resolved with
the cos δCP-term, as well as this term helps to disentangle δCP from sin2 2θ13. This means
that for CP precision measurements a contribution of this term is favorable. For example,
neutrino factories usually operate quite far off the oscillation maximum, which means that
there is some contribution of the cos δCP-term anyway. Note that for an experiment where
the sin δCP-term dominates, one naturally expects a strong dependence of the CP precision
on the true value of δCP itself. In the high statistics dominated regime, the CP precision
should be best close to 0 and π, since the derivative of sin δCP is largest there, and worst to
π/2 and 3/2 π. This, of course, can be changed by systematics and other effects.

Another interesting feature in Eq. (1) is the condition sin(Â∆) = 0 (not to mix up with
Â = 1, which is the matter resonance condition). It makes all but the first term in Eq. (1)
disappear and thus allows a clean measurement of sin2 2θ13 and the sign of ∆m2

31 without
correlations with the CP phase [35, 74]. This “magic baseline” [55, 75] condition is, for the
first non-trivial solution, equivalent with

√
2GF neL = 2π or, depending on the assumptions,

L ∼ 7 500 km. Its strength is the independence of all oscillation parameters, thus its value
is known a priori. In combination with a shorter baseline, it can be also very efficient to
access CP effects by resolving the intrinsic correlations and degeneracies [55]. We will show
the obtainable precision using this option, later on.

For the oscillation parameters, we use, if not stated otherwise, ∆m2
31 = 2.5 · 10−3 eV2,

sin2 2θ23 = 1, ∆m2
21 = 7.0 · 10−5 eV2, and sin2 2θ12 = 0.8. The numbers are similar to the

ones from Refs. [71, 76].2 In addition, we assume a normal mass hierarchy, since it turns
out that, though there are quantitative differences, the assumption of an inverted mass
hierarchy does not produce excitingly new effects in CP measurements [46]. We only use
values for sin2 2θ13 below the current bound sin2 2θ13 . 0.1 [71] and do not make any special
assumptions about δCP. However, we will show in some cases the results for chosen selected
values of δCP.

3 Analysis methods

We now describe briefly the general analysis methods, the used experiments and the com-
putation of the CP coverage, which has to be done in an efficient way. In particular, the
topology of the neutrino factory parameter space including the (δCP, θ13)-degeneracy makes
the computation of the CP coverage for very small values of sin2 2θ13, i.e., a relatively flat

2However, the latest KamLAND results suggest a slightly higher value for ∆m2
21 [1, 69, 70], which were

released after the calculations for this study have been performed (the overall calculation time was about
three months). Since the CP effects are larger for larger values of ∆m2

21, our results can be understood as
the conservative limit.

4



topology, quite complicated.3 Thus we will demonstrate how the CP coverage, which is a
highly condensed performance indicator, is obtained from the (marginalized) ∆χ2, how the
degeneracies are located, and what their effects are. Most of the shown examples in this
section will be computed for a neutrino factory, since this experiment implies the highest
level of sophistication.

3.1 The experiments and their simulation

In general, we use a three-flavor analysis of neutrino oscillations including matter effects.
The matter density profile is taken to be constant with 5% uncertainty, to take into account
matter density uncertainties as well as matter profile effects [59, 77, 78]. The analysis is
performed with the ∆χ2 method using the GLoBES software [79]. We take into account
statistics, systematics, correlations, and degeneracies, where the correlations originate in the
projection of the six-dimensional fit manifold onto the axis of the parameter of interest [45].
We use a local minimizer for this projection, which means that one has to be especially
careful to find all degenerate solutions and not to miss any relevant local minimum. The
correlations account for the fact that an experiment (or combination of experiments) can-
not entirely resolve the intrinsic structure of the oscillation probabilities, but effectively
measures a combination of the oscillation parameters. In principle, we assume that each ex-
periment (or combination of experiments) will provide the best measurement of the leading
atmospheric oscillation parameters at that time, which is coming from the disappearance
channels of the accelerator-based experiments. For the solar parameters, we assume that
the ongoing KamLAND experiment will improve the errors down to a level of about 10%
on each ∆m2

21 and θ12 [80, 81].

The best precision is obtained for neutrino factories, where we will in most cases use the
representative NuFact-II from Ref. [45]. In its standard configuration, it uses 4 MW target
power (5.3 · 1020 useful muon decays per year), a baseline of 3 000 km, and a magnetized
iron detector with a fiducial mass of 50 kt. We choose a symmetric operation with 4 yr in
each polarity. For comparison and reference, we use the T2HK upgrade proposed in Ref. [6]
with a target power of 4 MW, a baseline of 295 km, and a water Cherenkov detector with a
fiducial mass of 1 000 kt [45]. It operates two years in the neutrino running mode, and six
years in the antineutrino running mode to account for the lower antineutrino cross section.4

In addition, we compare in some cases with a scenario where we could be in ten years from
now, which corresponds to the scenario “After ten years” from Ref. [63].5 It includes the
two first-generation superbeams T2K [6] and NOνA [7], where the simulation is described in
Ref. [46] and the parameters used in Ref. [63]. In summary, both correspond very much to
their standard scenarios as in the LOIs with a total running time of five years in the neutrino

3Note that this degeneracy may not only appear for the best-fit solution, but also in the sgn(∆m2
31)-

degeneracy, leading (for maximal mixing) to a four-fold ambiguity.
4For the analysis of δCP, it turns out that in most cases the optimal performance can be reached for

almost equal numbers of total events in the neutrino and antineutrino operation modes. Thus, if we assume
given total running time, the fraction of the optimal antineutrino running time is primarily determined by
the cross section ratio between neutrinos and antineutrinos [46].

5Here, we do not take into account the MINOS, ICARUS, and OPERA experiments, since their contribution
to the final result would be marginal.
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running mode for each experiment. However, for NOνA, we use a baseline of 812 km at an
off-axis angle of 0.72◦, a target power of 0.43 MW (4.0 ·1020 protons on target per year) and
a low-Z-calorimeter as detector with a fiducial mass of 50 kt [66].6 In addition, the scenario
uses the large reactor experiment Reactor-II introduced in Ref. [82] to disentangle θ13 and
δCP,7 which has a baseline of 1.7 km and an integrated luminosity of 8 000 t GWyr. We call
the combined scenario T2K+NOνA+Reactor-II.

The scenario T2K+NOνA+Reactor-II is quite sophisticated, but it could be reached within
ten years from now and it illustrates how fast and how much one could push for δCP within
moderate time scales. Furthermore, we use T2HK as a very advanced superbeam upgrade to
discuss what one could achieve within the superbeams era. Finally, and as the major part of
this work, we investigate a standard scenario NuFact-II for neutrino factories, which might
be the ultimate tool for δCP. A higher gamma β-beam may have a comparable potential
and take this role if technically feasible, but this needs further study [83].

3.2 From ∆χ2 to the CP coverage

The CP coverage presents the information in a highly condensed manner, therefore it is
useful to illustrate how it is obtained. In Figure 1, we demonstrate this process in a simple
example without sgn(∆m2

31)-degeneracy. We compare the often used picture in the δCP-
sin2 2θ13-plane with the projection onto the δCP-axis, where we use exactly the same scale
on the horizontal axis. In particular, we show the result in each panel with (thick curves)
and without (thin curves) correlations from parameters other than sin2 2θ13.

First of all, the projection mechanism can be easily understood from this figure. If one wants
to know how precisely one can measure δCP in the left panel, fixing sin2 2θ13 will inevitably
lead to a too small error: The fact that we do at that time not know sin2 2θ13 more precisely
than in this figure, leads to a larger error on δCP. This two-parameter correlation is well-
known to affect the precision of δCP, and comes from the intrinsic structure of the oscillation
probabilities. One can include it in the analysis by projection onto the δCP-axis, as it is
done in the right panel. We perform this projection by minimizing (marginalizing) ∆χ2

with respect to sin2 2θ13: If one takes the minimum ∆χ2 in the left panel in the direction
of sin2 2θ13 for each fixed value of δCP, one will find the minima along the gray curve. The
projected ∆χ2 in the right panel is then nothing else than the ∆χ2 along the gray curve in
the left panel.

Similarly to the two-parameter correlation, one can marginalize over all of the not shown
parameters (within the range allowed by external data), leading to the full multi-parameter
correlation. The difference between only taking into account the two-parameter correlation
and the full correlation is illustrated by the difference between the thin and thick curves in
both panels of Figure 1. One can easily see that, depending on the confidence level, the
error can be increased by more than 100% by correlations other than with sin2 2θ13 (unlike

6Somewhat better results might be obtained with a TASD (Totally Active Scintillator Detector) with
about half the detector mass.

7Using a considerable amount of antineutrino running would also disentangle these two parameters.
However, longer running times would be needed to account for the lower antineutrino cross section, which
means that this scenario is unlikely to fit into the coming ten years.
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Figure 1: Correlation between δCP and sin2 2θ13 for the simulated valued δCP = π/2 and sin2 2θ13 = 0.001

for NuFact-II. The left panel shows the fit manifold in the δCP-sin2 2θ13-plane (∆χ2 = 9 only), the right

panel the projected ∆χ2 onto the δCP-axis. The thin curves refer to only taking into account the correlation

between δCP and sin2 2θ13, and the thick curves refer to taking into account the full multi-parameter

correlation, i.e., also the correlations with the parameters which are not shown. The shaded regions refer to

the error in δCP for the two-parameter correlation only, whereas the arrows mark the final error including

the full correlation. The left panel shows in addition in gray the curve along which the minimum ∆χ2 in

the sin2 2θ13-direction is found. In the right panel, the finally obtained CP coverage at the 1σ, 2σ, and

3σ (1 d.o.f.) levels is marked (thick horizontal lines) and given by numbers. Standard values are used for

oscillation parameters which are not shown.

being small such as often indicated in the previous literature). One can understand this
mainly in terms of the (δCP, θ13)-degeneracy [37], which, as a disconnected solution, may
appear at a different place in the δCP-θ13-plane (cf., left panel, thin curve). However, if one
just fixes the other (not shown) oscillation parameters, one does not account for the fact
that the actual minimum may lie slightly off the shown fit manifold section (i.e., plane)
with respect to these parameters. The full marginalization shows the full beauty of this
degeneracy.

The CP coverage in this example is obtained as the range of possible fit values which fit
the simulated value δCP = π/2. It is, for three different confidence levels, marked and
given in the right panel. Note that there might be more than one fit region, which has
also to be included for the CP coverage by definition. The right panel clearly shows the
non-Gaussian dependence of the CP coverage on the confidence level. This dependence
mainly originates in the role of the (δCP, θ13)-degeneracy, which may lead to connected or
disconnected degenerate solutions at the chosen confidence level. Later, we will observe that
this dependency can be amplified by the sgn(∆m2

31)-degeneracy.

7



3.3 Localization of degeneracies

Besides the computation of the CP coverage for a specific solution in parameter space,
it is necessary to find all disconnected degenerate solutions. For maximal mixing, there
are up to three disconnected degenerate solutions besides the best-fit solution: one from
the (δCP, θ13)-degeneracy, one from the sgn(∆m2

31)-degeneracy, and one from the mixed
degeneracy. Even if the (δCP, θ13)-degeneracies were connected to the original solutions at
the chosen confidence level, we will see later that it would in many cases be difficult to
locate them only with a local minimization method.

In order to locate all degenerate solutions, we use a method based on the total event rates.
To a first approximation, one can use the total neutrino and antineutrino event rates for an
estimate of the positions of the degeneracies in the δCP-sin2 2θ13-plane. These degeneracies
might later be resolved by spectral information, or actually lie slightly off this plane with
respect to the fixed parameters, but it turns out that this approach is rather efficient not
to miss any degenerate solution. Compared to the oscillation probabilities, the total event
rates already contain some energy-weighted information with respect to beam flux, cross
sections, and efficiencies. This means that the position of the degeneracy can usually be
more accurately determined than just using oscillation probabilities (for which one particular
value of E had to be chosen, which needed to be determined by a similar algorithm).

In particular, we first compute the total rates N0 and N̄0 of the neutrino and antineutrino
appearance channels of a given experiment at the best-fit point (fixed simulated parameter
values, normal mass hierarchy). Then we show the curves N(δCP, sin2 2θ13)|∆m2

31
|>0 = N0

(black curve) and N̄(δCP, sin2 2θ13)|∆m2

31
|>0 = N̄0 (gray curve) for these constant neutrino

and antineutrino rates as function of δCP and sin2 2θ13, as it is illustrated in the upper left
panel of Figure 2. By definition, both of these curves must go through the best-fit point
marked by the star, where they intersect. It is now an interesting feature of the (δCP, θ13)-
degeneracy that it is indistinguishable to the best-fit solution on the total rate level [37].
Thus, the second intersection point in Figure 2 (upper left panel) directly points to the
(δCP, θ13)-degenerate solution. Similarly, one can flip the sign of ∆m2

31 and show the curves
for N(δCP, sin2 2θ13)|∆m2

31
|<0 = N0 and N̄(δCP, sin2 2θ13)|∆m2

31
|<0 = N̄0, where N0 and N̄0 are

still the total rates at the best-fit point. The upper right panel of Figure 2 shows these
curves for the inverted mass hierarchy, leading to two more intersections, which means that
we have altogether located three (potential) degenerate solutions. Note that the shape of
the curves may change, and some curves may not even intersect at all (except from the
best-fit point). In the latter case, the two closest points between the curves give a hint of
the position of the degeneracy.

As a next step, we start a local minimizer at each of the located degeneracies (i.e., with
δCP and sin2 2θ13 of each degeneracy), which minimizes the ∆χ2 of the complete experiment
simulation (including spectral information) with respect to all oscillation parameters. The
resulting (∆χ2)min determines if a degenerate solution remains below a chosen confidence
level, or if it can be immediately resolved by statistics, energy resolution etc.. The resulting
position is the actual position of the degeneracy taking into account the complete statistical
simulation. In the middle row of Figure 2, we show the results from the complete simulation,
where we project the ∆χ2 onto the δCP-sin2 2θ13-plane. In fact, one can see that all located
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Figure 2: Degeneracy localization for the best-fit solution (left column) and sgn(∆m2
31)-degeneracy (right

column) for the simulated values δCP = π/2 and sin2 2θ13 = 0.0001 and NuFact-II. The first row shows the

total neutrino (black) and antineutrino (gray) constant rate curves as described in the text. The second row

shows the projections of the fit manifolds onto the δCP-sin2 2θ13-plane, where the 1σ (long dashed), 2σ (short

dashed), 3σ (solid black), 4σ, 5σ, and 6σ (gray curves) contours (1 d.o.f.) are shown. The gray-shaded

region corresponds to ∆χ2 > 49. The third row shows the projection of the second row onto the δCP-axis,

from which the final CP coverage is read off. In some of the panels, stars refer to the best-fit solution, and

filled rectangles to the located degeneracies. Standard values are used for oscillation parameters which are

not shown.
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degeneracies are in this case present below the 3σ confidence level, and that their positions
are very close to the initial guesses from the total rate method.

Eventually, we show in the lower row of Figure 2 the final ∆χ2 which is projected onto
the δCP-axis. Note that for a given set of simulated parameters, the final CP coverage is
obtained as union of all CP-ranges fitting the simulated value. Therefore, one should think
about an overlay between the left and right panels to find the ranges which fit the simulated
value of δCP. From the comparison between the middle and lower rows of Figure 2, we can
demonstrate some more interesting properties of the topology for small values of sin2 2θ13,
too. First of all, as it can be inferred from the left panels, in order to project onto the
δCP-axis, it is not sufficient to start the local minimizer at the best-fit value of sin2 2θ13. In
this specific case, one can easily image that starting the minimizer at (π, 10−4) could make
it run back towards smaller values of sin2 2θ13 instead of larger ones, where the degeneracy
is actually located. Therefore, the information from the total rate approach is very useful
to obtain an initial “guess” of the value of sin2 2θ13 where the degeneracy is located at.
Another interesting feature appears in the projected ∆χ2 in the lower right panel. In this
figure, the ∆χ2 is actually not a differentiable function, which seems to be very artificial at
the first sight. However, the comparison with the middle right panel clearly illustrates the
jump in sin2 2θ13 when moving from the left to the right in δCP. Again, only using some of
the information from the first row would not reveal the true structure of this topological
feature.

In summary, this total-rate-based approach turns out to be very powerful for the localiza-
tion of degeneracies and dealing with the topology of neutrino factories for small values
of sin2 2θ13. In principle, it can be also applied to the eight-fold degeneracy, where the
operation θ23 → π/2 − θ23 leads to four more possible solutions.

3.4 Effects and interpretation of degeneracies

In order to understand the effects of the degeneracies better, we show an illustrative example
in Figure 3. In this figure, the projected ∆χ2 is shown for the simulated value δCP = 0 and
several increasing simulated values of sin2 2θ13 as given in the plot captions. Both the
original solutions (black curves) and the sgn(∆m2

31)-degeneracies (gray curves) are plotted.
For the smallest value of sin2 2θ13 (first panel), there is no sensitivity to δCP at the 2σ
and 3σ confidence levels. The ∆χ2 is flat in a wide region, where sin2 2θ13 = 0 acts as an
attractor to the minimizer. At the 1σ confidence level, however, the degeneracy appears at
a different position in δCP, which can easily double the CP coverage. Thus, we learn that
the degeneracy becomes especially important if it introduces new values of δCP compared
to the original solution. Note again that the final CP coverage is obtained as the union of
all regions fitting the true value, because any value within a degenerate solution cannot be
excluded at the chosen confidence level.

For somewhat larger values of sin2 2θ13 (second panel), the minimum of the degeneracy is
lifted. In this example, there is also a (δCP, sin2 2θ13)-ambiguity in both the original and
sgn(∆m2

31)-degenerate solution, but only the one of the sgn(∆m2
31)-degeneracy affects the

results below the 3σ confidence level. In particular, it approximately doubles the size of
the 2σ-allowed region. In this case, the original and degenerate solutions hardly overlap,
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Figure 3: The projected ∆χ2 for the simulated value δCP = 0 and several (increasing) simulated values

of sin2 2θ13 as given in the plot captions (NuFact-II). In each figure, the original solution (black curve) and

the sgn(∆m2
31)-degeneracy (gray curve) is shown (degeneracy only shown if appearance below 3σ confidence

level). In addition, the final values of the CP coverage are given. For the other oscillation parameters, we

use the standard values for this study.

and the CP coverage of the original solution is almost tripled at the 2σ confidence level.
Because of the increasing overlap at larger ∆χ2-values, it does not change very much at the
3σ confidence level, which is another indicator for a strongly non-Gaussian behavior of the
CP coverage.

For even larger values of sin2 2θ13 (right two panels), the sgn(∆m2
31)-degeneracy is lifted until

it does not appear below the 3σ confidence level anymore. The (δCP, sin2 2θ13)-ambiguity
in the sgn(∆m2

31)-degeneracy (mixed degeneracy) can be resolved by the better statistics
in the appearance channels. Reading Figure 3 as a movie from left to right (not to scale),
it is obvious that problems with degeneracies especially occur at an intermediate scale
10−4 . sin2 2θ13 . 5 · 10−3, where the fit topology is rather flat. Another important aspect
in the effects of degeneracies is not so obvious from this figure: For simulated values in the
region of δCP ∼ 3/2 · π the degeneracy starts moving with increasing sin2 2θ13. This has
been illustrated in Figure 8 of Ref. [45], where especially the position of the degeneracy
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Figure 4: The CP coverage as function of the true value of sin2 2θ13 (“CP scaling”) and as function of

the true value of δCP (“CP pattern”) for different experiments and parameters as given in the figures. The

thin dashed curves refer to not taking into account the sgn(∆m2
31)-degeneracy, i.e., if the mass hierarchy

was known. The horizontal line (left panel) is an estimate for the range of values (below line), where CP

violation measurements become possible. Standard values are used for the oscillation parameters which are

not shown. Note that the two figures use different confidence levels and different scales in the CP coverage.

close to π (“π transit”) destroys the CP violation sensitivity (sin2 2θ13 ∼ 3 · 10−4). Thus,
the structure of the topology strongly depends on the simulated parameter values, which
lead to a certain, in some cases complex configuration and shape of original and degenerate
solutions. Therefore, we cannot expect to understand every feature of the CP coverage
without analyzing the respective topology.

4 From exclusion to high precision measurements of δCP

In this section, we focus on the comparison of different classes of experiments, and we
demonstrate the conceptual differences arising when going from one to the next generation
of experiments. It is not sufficient to show only the CP coverage for some discrete sets of
parameter values in order to gain further insights. We therefore define highly condensed
performance indicators (HCPI) as function of the most relevant parameter values. For the
case of CP coverage it turns out that the dependence on the true (simulated) value of
sin2 2θ13, and the true value of δCP itself are the most interesting parameter dependencies.
Though the latter seems to be strange at a first glance, it is exactly what was seen in
Section 2, namely that the topology depends on the value of δCP actually realized by nature.
Thus, the correct way to interpret these functional dependencies is to read: “If the true value
of the parameter ... is ..., the CP coverage will be ... degrees.”.

12



In particular, we use the following two HCPI:

CP scaling: This is the CP coverage as function of the true value of sin2 2θ13 (for fixed
simulated value of δCP). It is useful to compare the performance of different exper-
iments as function of sin2 2θ13 and it is mainly constrained by the statistics of the
appearance channels.

CP pattern: Defined as CP coverage as function of the true value of δCP (for fixed simu-
lated value of sin2 2θ13) [61]. It is useful for a minimization of the risk with respect to
the unknown true value of δCP and it is mainly determined by the intrinsic structure
of the oscillation probability in Eq. (1).

Examples for a CP scaling and a CP pattern can be found in Figure 4. With the GLoBES
software [79], each of these figures takes several days of computation time on a modern
computer, because about 109 ∆χ2’s have to be evaluated.

An even more condensed performance indicator for CP scalings can be found in Figure 19 of
Ref. [45], which takes the conservative case over all simulated values of δCP (instead of fixing
δCP). One can easily imagine that, with reasonably good resolution, such a figure has even
an order of magnitude longer computation time including all correlations and degeneracies
than the ones shown in this study.

4.1 Comparison of experiment classes

In Figure 4, left panel, we compare different classes of experiments, where the figure is shown
at the 1σ confidence level for fixed true δCP = 3π/2. One class of these experiments is the
combined potential of the next generation of experiments under optimistic assumptions. For
the combination T2K+NOνA+Reactor-II, where the large reactor experiment could equally
replaced by extensive antineutrino running, already some exclusion of the parameter space
of δCP might be possible. In particular, for the shown parameter values, up to about 210◦

(360◦−150◦) of all possible values could be disfavored at the 1σ confidence level, where next
generation experiments are limited to the range sin2 2θ13 & 10−3. Note that a CP precision
smaller than 180◦ is a necessary condition for maximal CP violation measurements, which
means that CP violation measurement with the shown combination will be hardly possible
at a useful confidence level (cf., horizontal line in left panel). In addition, as one can see
from Figure 4, right panel, a CP coverage smaller than 360◦ is only available close to 3π/2
(for which the left panel is shown).

As a representative for superbeam upgrades, we have shown T2HK in both panels. Since we
assume a fiducial mass of 1 Mt, it represents the upper possible limit for superbeams. As one
can see from Figure 4, left panel, T2HK could give precise information on δCP in the range
sin2 2θ13 & 10−3: In about this range, (maximal) CP violation measurements are possible
(cf., Figure 18 of Ref. [45]). In addition, for sin2 2θ13 & 10−2 the information would be better
than the one from the neutrino factory. The right panel of Figure 4 clearly demonstrates
that for large values of sin2 2θ13 very good CP precision measurements are possible regardless
the true value of δCP. In particular, it has been demonstrated in Refs. [45,59] that for large
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values of sin2 2θ13 neutrino factories can be highly affected by matter density uncertainties,
which means that the superbeam upgrade could actually be more competitive.

On the end of very small values of sin2 2θ13, neutrino factories could give information on δCP

down to sin2 2θ13 ∼ 10−5 (cf., Figure 4, left panel). Especially in combination with T2HK,
the CP coverage becomes very flat in 10−4 . sin2 2θ13 . 10−1. As far as the dependence on
the true value of δCP is concerned (right panel), the dependence is rather flat for large values
of sin2 2θ13 because of the relatively broad energy spectrum. However, we will see later, that
this behavior changes for smaller values of sin2 2θ13. Thus, in some sense, the parameter
values for the two panels in Figure 4 are chosen that both figures look very smooth and show
all investigated experiments. Nevertheless, Figure 4 shows the quite generally applicable
rule that the true value of sin2 2θ13 determines the class of reasonable experiments [84].
This can be understood in terms of the statistics in the appearance channel in Eq. (1): The
“signal” in the second and third terms is simply proportional to sin 2θ13, which means that
the more events one has in this channel, the smaller values of sin2 2θ13 allow the extraction
of δCP. Thus, there is no surprising result in the CP scalings. The CP patterns, however,
will need further illumination in the next subsections.

4.2 Characteristics of superbeams and the role of reactor experiments

Superbeams have some common characteristics, no matter if next-generation experiments,
or high-end superbeam upgrades. In particular for the ones discussed here using the off-
axis technology [85], the beam spectrum becomes very narrow. The (δCP, θ13)-degeneracy
does usually not appear in the topology and causes no major problems. Neglecting the
sgn(∆m2

31)-degeneracy, the dependence of the CP coverage on the confidence level is there-
fore rather Gaussian. In the analysis, there are hence no major complications expect from
the sgn(∆m2

31)-degeneracy.

For these “quasi-monochromatic” beams, there is only little spectral information, which
means that many of their properties can be understood on the oscillation probability or to-
tal rate level. One such interesting approach are bi-probability or bi-rate graphs [61,72,86],
which are explicitly targeted towards understanding CP phase-dependent properties. In
particular, CP patterns for superbeams, such as in Figure 4, right panel, can be understood
in terms of bi-rate graphs [61], where different regimes can be distinguished: For very high
statistics, one obtains the typical dependence as one would expect from the sin δCP-term
discussed in Section 2 (for example, Figure 4, right panel, for T2HK, dashed curve). For
very poor statistics or large systematical errors, the dependence on δCP is reverted (cf.,
Figure 4 of Ref. [61], left panel). For intermediate statistics, this behavior can, in partic-
ular in connection with the sgn(∆m2

31)-degeneracy, lead to very complicated CP patterns
(cf., Figure 4 of Ref. [61], middle panel). In addition, the sgn(∆m2

31)-degeneracy affects
superbeam measurements especially in the first and second quadrants, which means that
superbeam measurements are usually best between π and 2π [61, 72]. To summarize, the
dependence on δCP can be understood, though it might be complicated. For T2HK, the
strongest amplitude can be found for sin2 2θ13 . 10−3, which can vary between 150◦ and
360◦ by more than a factor of two – between CP violation measurements possible and no
information on δCP at all [61].
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Figure 5: CP scalings for NuFact-II and two different selected values of sin2 2θ13 as given in the plot

captions. The different curves in different colors correspond to the 1σ, 2σ, and 3σ confidence levels (from

the lowest to the highest), where the dashed curves correspond to not taking into account the sgn(∆m2
31)-

degeneracy. For the not shown oscillation parameters, we use the standard values for this study.

Future reactor experiments could for sin2 2θ13 & 10−2 help to resolve the correlation between
sin2 2θ13 and δCP by a precision measurement of sin2 2θ13 instead of extensive antineutrino
running at superbeams [2, 82, 87]. As it has been demonstrated in Ref. [61] (cf., Figure 3),
there are no major qualitative differences for the CP patterns using antineutrino running
or a large reactor experiment. Therefore, the contribution of reactor experiments to CP
measurements can be understood in a similar way as the antineutrino running mode at a
superbeam.

4.3 Characteristics of neutrino factories

As we have illustrated in Section 3, the analysis of neutrino factories is much more compli-
cated than the one for superbeams because of the complicated topology. In particular, we
can not only expect a strong dependence on sin2 2θ13 or δCP itself, but also on the confidence
level because of lifted (in CL) or moving (in δCP) degeneracies and the importance of the
relative position to the best-fit solution. In addition, neutrino factories carry very good
spectral information, which means that a simple interpretation in terms of bi-rate graphs is
not possible. However, we will demonstrate how one can understand certain features and
limiting cases.

Let us first of all discuss the CP scaling for two selected, very different cases in Figure 5.
Obviously, the shape of these scalings strongly depends on the confidence level and the true
value of δCP. In particular, we need to distinguish irregularities in the dashed curves (no
sgn(∆m2

31)-degeneracy), which are caused by the (δCP, θ13)-degeneracy, and irregularities
which are only present in the thick curves, which are caused by the sgn(∆m2

31)- or mixed
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Figure 6: CP patterns for NuFact-II and different values of sin2 2θ13 as given in the plot captions. The

different curves in different colors correspond to the 1σ, 2σ, and 3σ confidence levels (from the lowest to the

highest), where the dashed curves correspond to not taking into account the sgn(∆m2
31)-degeneracy. For

the not shown oscillation parameters, we use the standard values for this study.

degeneracies. If we only concentrate on the 3σ curves (dark curves), we find that there
are major irregularities caused by the sgn(∆m2

31)- or mixed degeneracies in both cases.
However, for δCP = π (left panel), also the thick curve is not smooth, which is due to the
(δCP, θ13)-degeneracy being present around sin2 2θ13 . 10−3. For the case δCP = 3π/2 (right
panel), the mixed degeneracy (i.e., the (δCP, θ13)-ambiguity in the sgn(∆m2

31)-degeneracy)
doubles the CP coverage close to 2.5 ·10−3. In general, degeneracies affect mainly the higher
confidence levels, since they usually disappear below a specific value of ∆χ2. In addition,
note that these interpretations cannot be solely made from Figure 5, which means that one
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has to look at less condensed information.

The CP patterns for NuFact-II are shown in Figure 6 for different values of sin2 2θ13. As we
have indicated above, their interpretation is much more complicated than for superbeams
because of spectral information. First of all, note that there can be up to a factor of
five difference between the smallest and largest values of the CP coverage, such as for
sin2 2θ13 = 0.001 (3σ CL). This alone is a major hint that one should always compare the
complete CP patterns of different experiments and not only the results for different selected
values of δCP

8. Compared to superbeams, we find similar principle cases:

High-statistics-dominated region (large sin2 2θ13): The best performance can be achieved
where the sin δCP-term in Eq. (1) has the steepest slope, i.e., close to 0 and π. This
can be clearly seen for sin2 2θ13 = 0.1, 1σ CL. For larger confidence levels, however,
the broad spectrum makes the dependence on δCP flatter.

Degeneracy-dominated region At intermediate values of sin2 2θ13 ≃ 10−3 the four terms
in Eq. (1) have all approximately the same size, hence the problem of disentangling
them is worst for those values of sin2 2θ13. Thus the relative position and appearance
of the degeneracies is the major impact factor describing the CP pattern and can lead
to complicated structures.

Low-statistics-dominated region (small sin2 2θ13): The behavior is inverted (best per-
formance close to π/2 and 3π/2) because of the relatively large statistical errors, which
can be understood in terms of bi-rate graphs (compare 3σ curve for sin2 2θ13 = 0.0001
in Figure 6 to the corresponding Figure 4 for T2HK of Ref. [61], left panel). The
spectral information is in this case a subleading effect.

Especially, the second case of the degeneracy-dominated regime is very interesting. Analyz-
ing the 3σ curve of Figure 6 for sin2 2θ13 = 0.001 (with the help of less condensed informa-
tion), the different peaks can be explained as follows: The first peak close to δCP = π/2 is an
effect of the (δCP, θ13)-degeneracy present for values of δCP in this range. The peak close to
5π/4 comes from the sgn(∆m2

31)-degeneracy. This degeneracy, however, moves as function
of δCP and overlaps the best-fit region for 11π/8 almost exactly, which leads to the sharp
minimum. For larger values of δCP, not only the sgn(∆m2

31)-degeneracy becomes effective
again (because it moves away from the original solution), but also the (δCP, θ13)-degeneracy
in the original solution and the same in the sgn(∆m2

31)-degeneracy (mixed degeneracy).
Close to 7π/4 the overall four-fold degeneracy is present with maximum non-overlap in
δCP-space, leading to the extremely high peak. One important consequence of the moving
degeneracy close to δCP = 3π/2 (cf., Figure 8 of Ref. [45]) is that the neutrino factory is
highly affected by degeneracies in the third and fourth quadrants. This behavior is very
complementary to the one of the superbeams, which are mainly affected in the first and
second quadrants. This explains the synergy between superbeams and neutrino factories in
certain regions of the parameter space [43].

8In other words: One can more or less always choose δCP in such a way that some experiment is better
than the other one.
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5 Synergies in future high-precision measurements

Eq. (1) shows that the actual value of sin2 2θ13 is the missing key parameter for any mea-
surement of δCP. We will therefore organize the discussion of synergies for precision mea-
surements of δCP by the true value of sin2 2θ13, i.e., the value which is actually extracted
from experiments (and corresponds to the simulated value for simulations). Then we will
discuss relevant synergies for high precision measurements of δCP using a more conceptual
line of reasoning.

5.1 The impact of the true sin2 2θ13

Unless a finite value of sin2 2θ13 is measured, each generation of experiments will push
the upper bound towards smaller values. One might argue therefore, that a finite value
of sin2 2θ13 has to be established before it makes sense to discuss a measurement of δCP.
However, in fact these two parameters will in most cases (except from reactor experiments)
be simultaneously accessible, i.e., a positive signal for sin2 2θ13 comes together with some
information on δCP. Taking Figure 4, left panel, as a rough estimate for the sensitivity to
δCP, we find the following approximate regions in sin2 2θ13:

sin2 2θ13 & 10−2: In this case, sin2 2θ13 > 0 will be very likely established by a superbeam
or reactor experiment. The measurement of δCP could then be pushed by existing
superbeam experiments or upgraded versions (new baselines, new or larger detectors,
more protons, longer running times, different L/E’s etc.). The discussion of synergies
then reduces to the level of superbeams and reactor experiments [46, 50, 57, 82, 86–
89]. However, as one can also read off Figure 4 (left panel), for a high precision
measurement of δCP, a very large superbeam upgrade, such as T2HK, is the choice
to go for. Already one such experiment, which encapsulates the synergy between the
neutrino and antineutrino running, could deliver excellent information on δCP. On
the other hand, from the point of δCP, a neutrino factory is not needed to obtain
high precision results (maximal mixing assumed). In particular, as it is illustrated
in Figure 6 of Ref. [59], matter density uncertainties highly affect the CP precision
measurement for large values of sin2 2θ13. Effectively, they act as a normalization
uncertainty of the first term in Eq. (1), which makes it hard to extract the second and
third ones.

10−3 . sin2 2θ13 . 10−2: This is one of the most interesting ranges for this synergy dis-
cussion, because it goes beyond the reach of next generation experiments, but it is
well within the reach of superbeam upgrades and other alternative technologies (such
as silver channel measurements or β-Beams) [9, 42–44,51, 90–93].

10−4 . sin2 2θ13 . 10−3: In this region, neutrino factories are the top candidates, which,
however are highly affected by degeneracies. This essentially means that the discussion
of synergies reduces to the one of two neutrino factory baselines, such as in Refs. [37,
55]. In particular, it has been demonstrated in Ref. [55] that the combination 3000
km + 7500 km (“magic baseline”, cf. Section 2) is the optimal choice for sin2 2θ13

(and other measurements). We will therefore test this configuration for precision
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Figure 7: The CP scaling and CP pattern for NuFact-II and the oscillation parameters given in the

figure captions (3σ confidence level). The dark curves correspond to NuFact-II at L = 3 000 km, but with

double luminosity (2L). The light curves corresponds to NuFact-II with two detectors, which are located at

L = 3 000 km and L = 7 500 km (“magic baseline” = MB) and operated with single luminosities each. This

means that the product of useful muon decays times overall detector mass is equal in both shown cases.

The dashed curves refer to not taking into account the sgn(∆m2
31)-degeneracy. The vertical lines mark the

parameter values for which the plots correspond to each other. Standard values are used for the oscillation

parameters which are not shown.

measurements of δCP. So far, the only other competitive technology for sin2 2θ13 .

10−3 could be high-gamma β-Beams [9], but their physics potential has to be evaluated
further [83]. Note that the combination, for instance, with a superbeam would not
help much below sin2 2θ13 . 10−3, as it can be seen from Figure 4, left panel.

10−5 . sin2 2θ13 . 10−4: Only neutrino factories (and maybe high-gamma β-beams) could
access this range. As we will see later, we are now for CP precision measurements
in the (poor) statistics dominated regime, which means that correlations and degen-
eracies become a secondary impact factor. The discussion of synergies is the obsolete
and reduces to an optimization of the statistics. One neutrino factory baseline would
probably be sufficient in this case.

sin2 2θ13 . 10−5: This case needs further study. However, if one really wants to built an
experiment if sin2 2θ13 has not been found at a neutrino factory, it is likely that a
substantial luminosity increase will be needed.
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5.2 One versus two neutrino factory baselines

Since a neutrino factory muon storage ring has (at least) two straight sections, the option
of a second detector should be natural when planning the storage ring geometry. As it
has been discussed in Section 2, the “magic baseline” of about 7 500 km has turned out
to be optimal for a “clean” measurement of sin2 2θ13 [55] and very good for CP violation
measurements [37]. This means that one could suspect very good synergy effects for high
precision measurements of δCP, since the correlation and degeneracy between δCP and θ13

could be easily disentangled. As discussed in Section 5.1, the relevant parameter space
region for this option is 10−4 . sin2 2θ13 . 10−2.

In Ref. [46], “synergy” between two or more experiments/options has been defined as the
“extra gain [...] beyond the simple addition of statistics”. Thus, in order to compare the
potential of one and two neutrino factory baselines, it is not enough to simply add another
baseline and compare it to the single baseline option, i.e., one has to “subtract” the effect
of the extra statistics. We therefore compare in Figure 7 the potential of a one- and two-
baseline neutrino factory by using the double luminosity for the single baseline option, which
means that both options are using the same product of useful muon decays times overall
detector mass. Thus, given a total amount of detector mass, it refers to the question if one
should put it all to 3 000 km, or a part of it (in our case half) to 7 500 km. As performance
indicators, we choose the CP scaling for δCP = 3π/2 and the CP pattern for sin2 2θ13, since
we know from the discussion in Section 4 that these choices of parameters represent the
most critical regions within the parameter space. In particular, it can be read off the right
panel of Figure 7 that δCP = 3π/2 is well within a region where degeneracies are present,
and it can be read off the left panel of Figure 7 that sin2 2θ13 = 0.001 is in the critical range.
Besides that, sin2 2θ13 = 0.001 is in the middle of the parameter range of interest here.

The CP scaling in Figure 7, left panel, is an important indicator to discuss the synergy be-
tween two neutrino factory baselines in the complete parameter range of interest in sin2 2θ13.
It turns out that in the complete range 10−4 . sin2 2θ13 . 10−2 there is a real synergy be-
tween the 3 000 km baseline and the magic baseline. In particular, the effect can be up to half
of the parameter space for δCP. One can also see from this panel that below sin2 2θ13 . 10−4

the 3 000 km baseline alone is actually doing better, which is the low-statistics-dominated
region discussed in Section 5.1.

The CP pattern in Figure 7, right panel, is the risk assessment indicator with respect to
the unknown true value of δCP. As one can see from the curve for (NuFact-II)2L, there is a
range for the CP coverage from 40◦ to 190◦, i.e., almost a factor of five. Not only can the
minimum of this range reduced with the magic baseline option, i.e., the performance at the
best point, but also the amplitude to about 40◦ compared to 150◦ before. Thus, the risk
of ending up with a very poor measurement of δCP – just because nature was not kind – is
substantially lowered. However, it is important to note that there are regions in parameter
space where no synergy is needed because problems with correlations and degeneracies are
small. In particular, the single baseline option does very well in the first quadrant, which
means that the second baseline would be a waste of resources in this case. Thus, we conclude
that one should definitively design the muon storage ring for these two baselines. However,
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one may use a staged approach with adding the second detector later.9

5.3 Superbeam upgrade plus neutrino factory?

As it has been pointed out in Section 4, superbeams and neutrino factories have a comple-
mentary behavior in δCP-space if δCP is in the third or fourth quadrants. Therefore, it is a
natural question to ask for the synergy between superbeam upgrades and neutrino facto-
ries [43]. In this case, it is not obvious how to show synergy effects, i.e., how to distinguish
between addition of statistics and real gain in physics potential. In order to test this synergy,
we show in Figure 8 the CP scalings for NuFact-II, T2HK, NuFact-II+T2HK, and NuFact-II+
NuFact-II@MB (L = 3 000 km plus L = 7 500 km at “Magic Baseline”) for δCP = 3π/2.
First of all, one can see from this figure that the combination of NuFact-II and T2HK in-
deed performs much better than the individual experiments. In fact, in comparison with
(NuFact-II)2L, one can show that there is a real synergy effect in 10−3 . sin2 2θ13 . 10−2.
However, there is no real gain below sin2 2θ13 . 10−3 except from adding a bit of statistics,
which confirms that superbeam upgrades would not help much below sin2 2θ13 . 10−3. As
far as the CP pattern is concerned, one can show that the synergy effect is restricted to the
third and fourth quadrants, which means that the combination with a superbeam upgrade

9Note that the muon storage ring tunnel for the 7 500 km option might actually be a major cost factor
compared to the second detector because of the strong decay tunnel slope. As well as the installation of the
beam pipe and magnets at such a steep angle. Therefore, the staged approach might be a good solution.
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only helps in a part of the parameter space.

One can now ask the question if one should have a superbeam upgrade or a second neutrino
factory baseline instead. If the assume that the neutrino factory is necessary for the gray-
shaded range in Figure 8, i.e., that it will be built anyway, it could be fair to compare the
additional effort for the magic baseline (including 50 kt detector) with the megaton water
Cherenkov detector necessary for T2HK. Comparing the respective curves in Figure 8, the
magic baseline option is about a factor of two better in the discussed sin2 2θ13-range. Since
there is no real synergy effect between neutrino factory and superbeam upgrade below
sin2 2θ13 . 10−3 anymore, this ratio increased to about a factor of three there. Thus, if
sin2 2θ13 turns out to be smaller than 10−3, the superbeam upgrade would not help.

5.4 Other cases: Alternative technologies or non-maximal mixing

The last three subsections have focused on reasonably well-established technologies and the
current best-fit case of maximal atmospheric mixing. In this subsection, we will qualitatively
discuss possible alternatives to these scenarios.

Except from different detector technologies, the most interesting alternative beam could
be a β-beam [8, 94]. In particular, if a higher gamma β-beam [9] is feasible, then it could
be a real competitor to neutrino factories. Another challenging conceptual alternative for
synergy effects is the ντ appearance “silver” channel [44,51]. We do not analyze these options
quantitatively in this study, since it is premature to anticipate the most promising direction
on the relevant time scales. In addition, there are different technological questions to be
clarified, and the analysis would therefore go far beyond the scope of this work. However,
for the precision of δCP, we can qualitatively formulate the requirements of a competitor
to a neutrino factory from Figure 7 (including maximal potential, i.e., “magic baseline”
option):

The alternative configuration should be able to measure δCP in the full range
10−4 . sin2 2θ13 . 10−2 and 0 . δCP < 2π to about 50◦ at the 3σ confidence
level (including all correlations and degeneracies).

Similarly, if we assume that we have a neutrino factory with one baseline, the requirement
for synergy effects reads

The complementary experiment should be able to provide good information on
δCP in the full range 10−4 . sin2 2θ13 . 10−2 and the third and fourth quadrants
in δCP.

Note that it is dangerous to compare two configurations for only specific selected true values
of sin2 2θ13 and δCP, since once can always find regions in parameter space which make this
configuration appear to be very competitive. In addition, note that it may not be necessary
to have a complementary experiment at all if an eariler measurement confirmed δCP be in
the first or second quadrants.

Besides the technological options or alternatives, there are also physics alternatives. Within
the framework of three-flavor neutrino oscillations, the most likely alternative might be a
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substantial deviation from maximal mixing which would lead to the full eight-fold degen-
eracy [35].10 In this case, further options could be necessary to resolve this degeneracy.
Depending on the parameter region, possible options include large reactor experiments or
superbeams for sin2 2θ13 & 10−2 [43, 95], very long baseline superbeam upgrades [96], an
additional β-beam facility [91], or another neutrino factory baseline. In each of these cases,
the determination of the competitive parameter space region needs further investigation.

Finally there are further reasons which justify different technologies or channels. The ντ

appearance channel (silver channel) might, for example, be the best candidate for unitarity
tests, since neutral current measurements at neutrino factories do not seem to be promising
high precision measurements [97]. In the same spirit, interferences with lepton flavor vio-
lating operators [98–104], neutrino decay (see e.g. Ref. [105]), or other effects might lead to
a different strategy.

6 Summary and conclusions

In this study, we have discussed δCP precision measurements, where we have used the con-
cept of CP coverage as performance indicator. CP coverage represents the fraction of the
remaining parameter space for δCP, i.e., small values correspond to very high precisions,
large values to very poor measurements, and 360◦ to no information on δCP at all. In com-
parison to CP violation measurements, the CP coverage exploits all available information
on δCP. A measurement of CP violation will, for example, hardly be possible for next-
generation experiments, whereas some values of δCP could already be excluded. In addition,
for high precision measurements, the detection of CP violation might not be possible if the
true value of δCP is close to a CP conserving value. The concept of the CP coverage carries
therefore more information than a discussion of CP violation alone.

So far there exist many, very different quoted values for the precision of δCP in the literature
which are based on special values of an assumed CP phase δCP. As one can see from Table 1,
these different values are justified for these special values of δCP. Depending on parameter
values and confidence level one can, for example, easily obtain any value between 7◦ (very
precise measurement) and 360◦ (no information on δCP) for T2HK from this table. It is
also apparent that there exist regularities in these values, which we have studied in this
work. In particular, the strong dependence on the true value of δCP has turned out to
be rather complicated, though qualitatively understandable on a quite technical level. It
changes from a low-statistics (or systematics) dominated scheme to a sin δCP-term dominated
scheme (from the oscillation probabilities) as function of sin2 2θ13. In addition, there is in
many cases a strong non-Gaussian dependence on the confidence level. For example, for
sin2 2θ13 = 0.001, δCP = π/2, the CP coverage for NuFact-II changes more than a factor of
six from the 1σ to 3σ confidence level. This non-Gaussian behavior can be understood in
terms of degeneracies, which are usually not present below a certain confidence level. As an
important consequence, we conclude that it does not make sense to compare the CP coverage
of different experiments for selected parameter values, because one can come to almost any

10Note, however, that there has to be a substantial deviation from maximal mixing to separate the
θ23 > π/4 and θ23 < π/4 fit regions and to change the discussion qualitatively.
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Experiment/Combination δCP = 0 δCP = π/2 δCP = π δCP = 3/2 π

sin2 2θ13 = 0.1

T2K+NOνA+Reactor-II 90◦ (360◦) 108◦ (360◦) 96◦ (360◦) 145◦ (300◦)
T2HK 10◦ (46◦) 24◦ (75◦) 7◦ (63◦) 25◦ (65◦)
NuFact-II 38◦ (133◦) 47◦ (131◦) 28◦ (99◦) 46◦ (132◦)

sin2 2θ13 = 0.01

T2K+NOνA+Reactor-II 259◦ (360◦) 232◦ (360◦) 360◦ (360◦) 187◦ (360◦)
T2HK 41◦ (134◦) 58◦ (132◦) 42◦ (162◦) 47◦ (117◦)
NuFact-II 24◦ (74◦) 31◦ (94◦) 11◦ (40◦) 39◦ (101◦)

sin2 2θ13 = 0.001

T2K+NOνA+Reactor-II 360◦ (360◦) 360◦ (360◦) 360◦ (360◦) 296◦ (360◦)
T2HK 139◦ (360◦) 124◦ (360◦) 360◦ (360◦) 135◦ (360◦)
NuFact-II 27◦ (141◦) 17◦ (111◦) 23◦ (93◦) 30◦ (133◦)

Table 1: The CP coverage for different simulated values of δCP (columns) and sin2 2θ13 (row groups)

for the indicated experiments or combinations of experiments. CP coverage represents the fraction of the

remaining parameter space for δCP, i.e., small values correspond to very high precisions, large values to very

poor measurements, and 360◦ to no information on δCP at all. The numbers are given at the 1σ confidence

level (3σ confidence level). For the other oscillation parameters, we use the standard values in this study.

The definition of the assumed experimental scenarios is given in the text.

conclusion. Only a complete comparison as function of the full range of simulated values of
sin2 2θ13 and δCP can support such conclusions, where the comparisons should be performed
at rather high confidence levels (e.g., 3σ) to include the effects of the degeneracies.

We have discussed the very complicated topology of the neutrino factory parameter space
which requires the highest level of sophistication. The following major complications for
the analysis and interpretation of δCP precision measurements at neutrino factories were
encountered:

• The topology becomes rather flat for small values of sin2 2θ13, leading to the pres-
ence of many local minima, i.e., the degeneracies are often present in complicated
configurations.

• The final CP coverage depends on the relative position of the best-fit solution and
sgn(∆m2

31)-degeneracy. In particular, for the true δCP in the third and fourth quad-
rants, the sgn(∆m2

31)-degeneracy moves as function of the simulated parameter values
in the δCP fit space. This leads to complicated parameter dependencies.

• Depending on the parameter values, each of the best-fit solution and sgn(∆m2
31)-

degeneracy may have a (δCP, θ13) clone, which could actually double the CP coverage.
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Figure 9: The ranges of possible values of the CP coverage for selected true values of sin2 2θ13 and

experiments as given in the figure. The possible values of the CP coverage are given by the bands at the

1σ, 2σ, and 3σ confidence levels (from left to right). The bands therefore represent the possible outcomes

of a CP precision measurements depending on the actual value of δCP, i.e., they are an indicator for risk

minimization of a CP precision measurement. The left half of the figure corresponds to CP precision

measurements, and the right half to CP exclusion measurements, where the vertical line in the middle is a

very crude estimate for CP violation capabilities (since the bands are not shown for a specific value of δCP,

such as maximal CP violation δCP = π/2).

Thus, in total, the CP coverage can vary by about a factor of four only by changing
the simulated value of δCP and thus the topology of the degeneracies. Here also the
strong non-Gaussian dependence on the confidence level originates.

• For large values of sin2 2θ13, neutrino factories can be highly affected by matter density
uncertainties.

• Correlations other than with sin2 2θ13 can not be neglected. In some cases, their effect
can even be as large as 100% (cf., Figure 1).

• Neutrino factories contain good spectral information, which means that they can not
be easily understood on the oscillation probability level.

We summarize the impact of the true value of δCP at different confidence levels for different
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selected setups and simulated values of sin2 2θ13 in Figure 9. In this figure, the bands reflect
the possible values of the CP coverage due to the unknown true value of δCP. This means
that the CP coverage at a chosen confidence level may lay anywhere within each band. As a
matter of high precision and risk minimization, one therefore wants to have the right edges
of the bands as far left as possible. In addition, because of the non-Gaussian dependence
on the confidence level in many cases, one wants to have good performances at the 3σ
confidence level.

From the discussion in this study, one can finally derive a comprehensive, clean strategy
to δCP precision measurements with the discussed experiments. For this purpose, we have
compared the dependence on the true values of sin2 2θ13 and δCP within the full relevant
ranges. The comparison as function of the true value of sin2 2θ13 has illustrated that different
experiment classes clearly operate in different sin2 2θ13 regimes. The discussion as function
of the true value of δCP has shown that only choosing specific values does not reflect an
objective comparison. For example, choosing δCP = 0, π/2, π, and 3π/2 is misleading for
a neutrino factory, because its behavior is not extreme at these values (but somewhere in
between). We finally conclude for δCP:

sin2 2θ13 & 10−2: In this case, sin2 2θ13 > 0 will be established by a reactor experiment or
superbeam. As far as δCP precision is concerned, the choice to go for is a superbeam
upgrade, such as T2HK. A neutrino factory is not needed in this region for a precision
determination of δCP.

sin2 2θ13 . 10−2: For δCP precision, one wants to have a neutrino factory at a baseline of
3 000 km, but with the option to add another section to the muon storage ring and a
detector at a baseline of ∼ 7 500 km later (staged neutrino factory approach). This
approach allows to first look for sin2 2θ13 down to ∼ 10−3, and check the crude value of
δCP once sin2 2θ13 > 0 is established. If sin2 2θ13 turns out to be smaller than ∼ 10−3

or δCP turns out to be in the third or fourth quadrants, the operation of the second
“magic” baseline becomes necessary.

Note that we have not included a higher gamma β-beam in this discussion, which could, if
technically feasible and competitive, replace the role of the neutrino factory. Furthermore,
a substantial deviation from maximal atmospheric mixing or different physics requirements
(such as unitarity tests) could require additional experiments. However, the combination
between a neutrino factory and a superbeam upgrade could not be used if sin2 2θ13 turned
out to be smaller than 10−3. In addition, if one assumes at least one neutrino factory
baseline anyway, one will from the point of view of neutrino physics have to weigh the effort
of a megaton-size water Cherenkov detector (plus another accelerator facility) against the
large decay tunnel slope for a second neutrino factory baseline. Therefore, one should allow
for a second “magic” baseline from the beginning in the planning of a neutrino factory. This
may actually not mean that one has to operate or dig the steep decay tunnel already from
the beginning – one could only plan the option to do so later.
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