OPERA with the CNGS v_{μ} beam: an experiment for $v_{\mu} \rightarrow v_{\tau}$ and...

News from the detector
 Update of the performances for v_µ → v_τ
 Sensitivity to θ₁₃ with v_µ → v_e

• Opera-Like detector for future (θ_{13}, δ)

Jean-Éric Campagne LAL-Orsay on behalf of the Opera Collaboration

COLLABORATION Asia-Europe

36 groups ~ 165 physicists **Belgium** IIHE(ULB-VUB) Brussels

> Bulgaria Sofia <u>University</u>

China IHEP Beijing, Shandong

> **Croatia** Zagreb University

France LAPP Annecy, IPNL Lyon, LAL Orsay, IRES Strasbourg

> **Germany** Berlin, Hagen, Hamburg, Münster, Rostock

> > **Israel** Technion Haifa

Italy Bari, Bologna, LNF Frascati, <u>L'Aquila</u>, LNGS, Naples, Padova, Rome, Salerno

> **Japan** Aichi, Toho, Kobe, Nagoya, Utsunomiya

Russia INR Moscow, ITEP Moscow, JINR Dubna, <u>Obninsk</u>

> Switzerland Bern, Neuchâtel Turkey

METU Ankara

CNGS beam optimised for V_{τ} search

 v_e + anti- v_e beam contamination ~ 0.87% Limiting factor for θ_{13}

1year = 200days

Beam Line (April 03)

Inner Conductor of the Horn

Assembled with the Outer Conductor by end 2003 at LAL

The beam will start on spring 2006

Experiment layout at Gran Sasso

Fe

5 cm

RPCs inside gaps: <u>muon identification</u>, shower energy Drift Tubes: muon momentum

Fuji Emulsion & Lead Production

Mass production starts April 2003 (~150 000 m²) Refreshing done in the Tono Mine in Japan : 2 years duration One batch sent to LNGS every 2 months starting august 2003 → emulsion storage ready @ LNGS (Hall B) june 2003

v_{μ} -> v_{τ} Search

Expected number of v_{τ} events $\tau \rightarrow e, \tau \rightarrow \mu \text{ and } \tau \rightarrow h$

- full mixing
 5 years run at 6.76x10¹⁹ pot / year

∆m² (x 10 ⁻³ eV²)	signal 1.8	signal 2.5	signal 4.0	Back
Final Design	9.0	17.2	43.8	1.06*
With possible improvements**	10.3	19.8	50.4	0.67

Aim at the evidence of v_{τ} appearance after a few years of data taking

: 40% from charm **: Changeable Sheet (+15% eff.), dE/dx (charm reduction by 40%)

Probability of \geq $n\sigma$ significance for different Δm^2

∆m²(eV²)	3 years* (20.3x 10 ¹⁹ pot)		5 years* (33.8x 10 ¹⁹ pot)		
	Ρ _{3σ} (%)	Ρ _{4σ}	Ρ_{3σ}(%)	$P_{4\sigma}$	
1.8x 10 ⁻³	77.2(91.1)	46.8(68.2)	97.2(99.5)	87.4(96.2)	
2.2x 10 ⁻³	94.9(98.9)	80.5(93.0)	99.9(100)	99.0(99.9)	
2.5x 10 ⁻³	98.9(99.9)	93.9(98.6)	100(100)	99.9(100)	
3.0x 10 ⁻³	100	99.6(100)	100	100	
4.0x 10 ⁻³	100	100	100	100	

The number in parenthesis are obtained assuming possible improvements

*: x 1.5 from original design \Rightarrow 6.76 10¹⁹ pot/yr

v_{μ} -> v_{e} Search

Electron identification and **Energy measurement** Identification

Method based on shower identification and on Multiple Coulomb Scattering of the track before showering

 e/π ratio is measured with Cerenkov and ECC (test beam)

•ECC 1.42±0.17 Cerenkov 1.46±0.11 at 2GeV •ECC 0.41±0.05 Cerenkov 0.32+0.03 at 4GeV $\varepsilon \sim 90\%$, $P(\pi \rightarrow \varepsilon) \sim 5\%$ (high track density) \uparrow 8GeV/c ¹/₂ brick) Energy cm Measured by counting the number of track segments into a cone along the electron track 2 5 $5X_0$ Multiple Coulomb Scattering before showering ΔE 0.4 a few GeV E (test beam)

 $\Delta^2 m_{23}$ = 2.5 10⁻³ eV², θ_{23} = 45°

Θ_{13}	signal	τ →e	ν _μ CC	$ u_{\mu}$ NC	v _e CC beam
9°	9.3	4.5	1.0	5.2	18
7°	5.8	4.6	1.0	5.2	18
3°	1.2	4.7	1.0	5.2	18
3	0.31	0.032	0.34 10-4	7.0 10-4	0.082

1.65kT mean mass/5yrs @ 4.5 10¹⁹ pot/yr

 $P(\pi \rightarrow e) \sim few \% (MC + NN analysis)$ thanks to low track density in OPERA

Sensitivity limited by the statistics on v_ecc

OPERA sensitivity to θ_{13} (5 yrs)

By fitting simultaneously the E_e , missing p_T and E_{vis} distributions we got the sensitivity at 90%

Only 15% increase scanning because the event location is already performed for v_{τ} search.

syst. on the v_e contamination up to 10%

$v_e \rightarrow v_\tau$ search for future...

Combining ECC 5kT @ 732km and Iron 40kT @ 3000km

P. Migliozzi @ NuFact 03 D. Autiero et al. hep-ph/0305185

No clone regions for θ_{13} >1°

Summary about the OPERA physics program

- v_{τ} appearance still an important missing piece of the neutrino oscillation puzzle for the atmospheric sector: OPERA is designed to answer.
- \cdot the CNGS program will provide significant data on θ_{13} before dedicated experiments (even if optimised for ν_{τ} appearance)

We are ready in 2006 Waiting for the beam