Neutrino masses and cosmology

Sergio Pastor (IFIC)

HEP2005, Lisboa, July 2005

We know that flavour neutrino oscillations exist

From present evidences of oscillations from experiments measuring atmospheric, solar, reactor and accelerator neutrinos

First evidence of physics beyond the Standard Model !

Neutrino masses

Data on flavour oscillations do not fix the absolute scale of neutrino masses

What is the value of m₀?

Absolute mass scale searches

The Cosmic Neutrino Background

Neutrinos decoupled at T~MeV, keeping a spectrum as that of a relativistic species $f_{\nu}(p,T) = \frac{1}{e^{p/T} + 1}$

Number density

At present 112
$$(v + \overline{v})$$
 cm⁻³ per flavour

Energy density

Contribution to the energy density of the Universe

$$\Omega_{\nu} h^{2} = 1.7 \times 10^{-5} \qquad \text{Massless}$$

$$\Omega_{\nu} h^{2} = \frac{\sum_{i} m_{i}}{93.2 \text{ eV}} \qquad \text{Massive}$$

Neutrinos are natural DM candidates

$$\Omega_{v}h^{2} = \frac{\sum_{i} m_{i}}{93.2 \text{ eV}} \qquad \Omega_{v} < 1 \rightarrow \sum_{i} m_{i} < 46 \text{ eV}$$
• They stream freely until non-relativistic (collisionless phase mixing) \longrightarrow Neutrinos are HOT Dark Matter

Neutrino Free Streaming

Neutrinos are natural DM candidates

$$\Omega_{v}h^{2} = \frac{\sum_{i} m_{i}}{93.2 \text{ eV}} \qquad \Omega_{v} < 1 \rightarrow \sum_{i} m_{i} < 46 \text{ eV}$$

• First structures to be formed when Universe became matter -dominated

$$41\left(\frac{m_{v}}{30 \text{ eV}}\right)^{-1} \text{Mpc}$$

Effect of Massive Neutrinos: suppression of Power at small scales

Structure forms by gravitational instability of primordial density fluctuations

Smooth

Structured

Effect of Massive Neutrinos: suppression of Power at small scales

Structure forms by gravitational instability of primordial density fluctuations

Smooth

Structured

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

Power Spectrum of density fluctuations

Massive Neutrinos can still be subdominant DM: limits on m_v from Structure Formation (combined with other cosmological data)

• Effect of Massive Neutrinos: suppression of Power at small scales

The small-scale suppression is given by

$$\left(\frac{\Delta P}{P}\right) \approx -8\frac{\Omega_{\nu}}{\Omega_m} \approx -0.8 \left(\frac{m_{\nu}}{1 \,\mathrm{eV}}\right) \left(\frac{0.1N}{\Omega_m h^2}\right)$$

Effect of massive neutrinos on the CMB and Matter Power Spectra

Parameter	Meaning	
τ	Reionization optical depth	
ω_b	Baryon density	
ω_d	Dark matter density	
f_{ν}	Dark matter neutrino fraction	
Ω_{Λ}	Dark energy density	
w	Dark energy equation of state	
Ω_k	Spatial curvature	
A_{5}	Scalar fluctuation amplitude	
n_s	Scalar spectral index	
α	Running of spectral index	
r	Tensor-to-scalar ratio	
n _t	Tensor spectral index	
Ь	Galaxy bias factor	

Max Tegmark www.hep.upenn.edu/~max/

How to get a bound (measurement) of neutrino masses from Cosmology

Fiducial cosmological model: $(\Omega_b h^2, \Omega_m h^2, h, n_s, \tau, \Sigma m_v)$

Cosmological Data

• CMB Temperature: WMAP plus data from other experiments at large multipoles (CBI, ACBAR, VSA...)

- CMB Polarization: WMAP
- Large Scale Structure:

* Galaxy Clustering (2dF,SDSS)

* Bias (Galaxy, ...): Amplitude of the Matter P(k) (SDSS, σ_8)

* Lyman-a forest: independent measurement of power on small scales in the semi-linear regime

- Bounds on parameters from other data: SNIa ($\Omega_{\rm m}$), HST (h), ...

Cosmological bounds on neutrino mass(es)

A unique cosmological bound on m_v DOES NOT exist!

Cosmological bounds on neutrino mass(es)

A unique cosmological bound on m_v DOES NOT exist!

Different analyses have found upper bounds on neutrino masses, since they depend on

- The combination of cosmological data used
- The assumed cosmological model: number of parameters (problem of parameter degeneracies)
- The properties of relic neutrinos

Cosmological bounds on neutrino mass since 2003

	Bound on Σm_v (eV) at 95% CL	Data used
Ichikawa, Fukugita & Kawasaki PRD 71 (2005) 043001	2.0	WMAP
SDSS Coll. PRD 69 (2004) 103501	1.7	WMAP, SDSS
Hannestad JCAP 0305 (2003) 004	1.01	WMAP, other CMB, 2dF, HST
Crotty, Lesgourgues & SP PRD 69 (2004) 123007	1.0 [0.6]	WMAP, other CMB, 2dF, SDSS [HST,SN]
Barger, Marfatia & Tregre PLB 595 (2004) 55	0.75	WMAP, other CMB, 2dF, SDSS, HST
WMAP Coll. ApJ Suppl 148 (2003) 175	0.7	WMAP, other CMB,2dF (bias,galaxy clustering), Ly-a, HST
Fogli et al. PRD 70 (2004) 113003	0.47	WMAP, other CMB, 2dF, SDSS (Ly-a),HST
Seljak et al. PRD 71 (2005) 103515	0.42	WMAP, SDSS (bias, galaxy clustering, Ly-a)

Neutrino masses in 3-neutrino schemes

Fig from Strumia & Vissani, hep-ph/0503246

Global analysis: v oscillations + tritium β decay + $0v2\beta$ + Cosmology

CMB + 2dF

Fogli et al., PRD 70 (2004) 113003

Future sensitivities to $\Sigma m_{\!_{\rm V}}$

• Fisher matrix analysis: expected sensitivities assuming a fiducial cosmological model, for future experiments with known specifications

- 1. CMB (T+P) + galaxy redshift surveys
- 2. CMB (T+P) and CMB lensing
- 3. Weak lensing surveys
- 4. Weak lensing surveys + CMB lensing

PLANCK+SDSS

Fiducial cosmological model: $(\Omega_{b}h^{2}, \Omega_{m}h^{2}, h, n_{s}, \tau, \Sigma m_{v}) =$ $(0.0245, 0.148, 0.70, 0.98, 0.12, \Sigma m_{v})$

 Σ m detectable at 2 σ if larger than

0.21 eV (PLANCK+SDSS) 0.13 eV (CMBpol+SDSS)

> Lesgourgues, SP & Perotto, PRD 70 (2004) 045016

Future sensitivities to Σm_v : new ideas weak gravitational and CMB lensing lensing

no bias uncertainty small scales in linear regime

much smaller masses

Future sensitivities to Σm,:weak gravitationalandCMB lensinglensing

sensitivity of future weak lensing survey (4000°)² to m_v

 $\sigma(m_v) \sim 0.1 \text{ eV}$

Abazajian & Dodelson PRL 91 (2003) 041301 sensitivity of CMB (primary + lensing) to m_v

 $\sigma(m_v) = 0.15 \text{ eV} (Planck)$ $\sigma(m_v) = 0.044 \text{ eV} (CMBpol)$

Kaplinghat, Knox & Song PRL 91 (2003) 241301

Neutrino masses in 3-neutrino schemes

Fig from Strumia & Vissani, hep-ph/0503246

Neutrino masses in 3-neutrino schemes

Fig from Strumia & Vissani, hep-ph/0503246

Conclusions

Cosmological observables can be used to limit (or measure) the absolute scale of neutrino masses

Current bounds on the sum of neutrino masses from cosmological data (best Σm_v<0.42 eV, conservative Σm_v<1 eV)

Sub-eV sensitivity in the next future (0.1-0.2 eV and better) → Test degenerate mass region and eventually the IH case

Galaxy Redshift Surveys

