Prospects

for an European Strategy for neutrino Physics

Yves Déclais CNRS/IN2P3/UCBL IPN Lyon

Review of Neutrino Initiatives, Fermi Lab, june 9th 2004

- Ongoing program: CNGS status
- **Reactor experiment : Double CHOOZ**
- Futur for CERN based program
 - Mwatt proton injector
 - Betabeam and Superbeam
- The Fréjus proposal
- Network for Liquid Argon detector

No time to discuss R&D and Neutrino factories This is already a world wide collaboration

See also:

• http://physicsatmwatt.web.cern.ch/physicsatmwatt

• http://axpd24.pd.infn.it/NO-VE/NO-VE.html

thanks to A. Blondel, H. De Kerret, R. Garoby, M. Mezzetto, A. Rubbia

Neutrino Mixing Matrix Study : which Road Map

CNGS : Physics Motivation

CNGS PROGRAM:

 $\begin{array}{l} \succ \ \mbox{Provide an unambiguous evidence for $v_{\mu} \rightarrow v_{\tau}$ oscillations in the region of atmospheric neutrinos by looking for v_{τ} appearance in a pure v_{μ} beam \\ \hline \ \mbox{Search for the subleading $v_{\mu} \rightarrow v_{e}$ oscillations (measurement of Θ_{13})} \end{array}$

SPL on the CERN site

CNGS beam optimized for appearance

Given the distance: _____ v_{μ} flux optimized for the maximal number of v_{τ} charged current interactions

< Ε ν _μ >	17 GeV
$(v_e + v_e)/v_{\mu}$	0.87%
$\overline{\nu_{\mu}}$ / ν_{μ}	2.1%
$\boldsymbol{\nu}_{\tau}$ prompt	neglegible

L/E (43 Km/GeV) not optimal: « off peak »

CNGS Upgrade

High Intensity Protons Working Group: Recommendations 26 February 2004

launch 3 projects (define in 2004, start in 2005):

(1) low loss extraction at the PS
(2) increase CNGS intensity
(3) 0.9 seconds for PS Booster basic period

Comments by the WG:

- (1) irradiation of accelerators is a major concern
- (2) increase for CNGS only possible via increase per extracted beam pulse
- (3) in the analysis, "other SPS fixed target expts." were given low priority

Expected proton intensity increase : 1.5 by 2007 ?

OPERA Final Design with 2 SuperModules

31 target planes / Super-Module (206336 bricks, 1766 tons)

.... in May 04

ID	Task Name	Duration	Start	Finish	20	04			20	05			- 20	006	
		150.00			2	3	4	1	2	3	4	1	2	3	
226	INSTALLATION IN GS EXPERIMENT HALL C	153.83 W	Mon 2/10/03	Thu 4/2//06	8888888888888888					000000000000000000000000000000000000000			\sim		
227	C R & ELECTRONIC ROOM	7 w	Fri 4/8/05	Mon 5/30/05				<)						
233	BAM	13 w	Mon 6/13/05	Wed 9/14/05					~						
237	SPECTROMETERS (2 MAGNETS & RPC's)	134.03 w	Mon 2/10/03	Mon 11/14/05		*******************									
238	Preliminary working	15 w	Mon 2/10/03	Wed 5/28/03											
239	Veto plane mechanics	2 w	Fri 9/30/05	Fri 10/14/05							•				
240	Veto plane detector	4 w	Fri 10/14/05	Mon 11/14/05											
241	Magnet 1	58.35 w	Fri 5/30/03	Wed 8/11/04											
274	Magnet 2	95.15 w	Fri 5/30/03	Wed 5/25/05											
311	TARGET TRACKERS MOUNTING	72 w	Fri 5/14/04	Fri 11/4/05					*****		*				
330	TARGET WALLS	73.94 w	Wed 8/11/04	Tue 3/7/06							*****				
331	SM1	41.18 w	Wed 8/11/04	Fri 6/24/05						>					
410	SM2	32.76 w	Fri 6/24/05	Tue 3/7/06					0						
489	XPC's & PRECISION TRACKERS	79.34 w	Mon 7/5/04	Tue 3/7/06	<							~~~~			
490	XPC 1	20.88 w	Mon 7/5/04	Tue 11/30/04											
496	Precision tracker 1	46.24 w	Wed 3/16/05	Tue 3/7/06				~							
529	XPC 2	23.05 w	Fri 4/8/05	Wed 9/21/05				<							
535	Precision tracker 2	18 w	Mon 7/25/05	Tue 11/29/05											
568	CABLING (detector to control room)	24.35 w	Wed 6/15/05	Tue 12/6/05					~	******					
571	MANIPULATORS	44.8 w	Wed 5/18/05	Thu 4/27/06						8888888888888	*****	*****			
572	SM1 cavern side	13 w	Wed 5/18/05	Fri 8/19/05											
578	SM1 corridor side	13 w	Thu 6/30/05	Fri 9/30/05					<		>				
585	SM2 cavern side	25.8 w	Fri 9/30/05	Thu 4/27/06						<	******				
589	SM2 corridor side	17.43 w	Wed 11/30/05	Thu 4/27/06							1988				
594	COMMISSIONNING WITHOUT BRICKS	27.35 w	Wed 6/15/05	Tue 1/17/06					<	*****		\$			
597	ECC BRICK MANUFACTURING WITH BAM	43 w	Fri 9/30/05	Wed 8/30/06	- 533					4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
599	WALL BRICK FILLING (2b/min 8h/day)=960 bricks)	47.2 w	Mon 10/3/05	Fri 9/29/06		2/7	1/1	06		<	98888888888		*****		
600	SM1 brick filling	21.6 w	Mon 10/3/05	Fri 3/24/06		512	4/\	UΟ		<			\$		
602	SM2 brick filling	21.6 w	Thu 4/27/06	Fri 9/29/06		~ /~	\sim	\sim							
604	COSMIC DATA TAKING WITH BRICKS	20 w	Mon 10/10/05	Tue 3/21/06		9/2	9/	U6					l.		
605	FULL DETECTOR COMPLETED	0 d	Fri 9/29/06	Fri 9/29/06		terterterter	<u>terneriterne</u>							۲	
606	CNGS Beam delivery	0 d	VVed 4/19/06	Wed 4/19/06									۲		
607	OPERA RUNNING	94.6 w	Mon 5/3/04	Mon 4/24/06											
608	OPERA LNGS external building	60 w	Mon 5/3/04	Wed 7/27/05											
609	Emulsion processing laboratory	20 w	Thu 7/28/05	Fri 12/16/05	-										
610	Processing tests	12 w	Mon 1/9/06	Fri 3/31/06											
611	OPERA brick processing cycle	0.8 w	Wed 4/19/06	Mon 4/24/06									\diamond		
612	First brick extraction	1 d	VVed 4/19/06	VVed 4/19/06	-								1		
613	Brick cosmic rays exposure	10	Thu 4/20/06	Thu 4/20/06									1		
614	Emulsion development	10	Fri 4/21/06	Fri 4/21/06									1		
015	Emulsion snipping to scanning labs	10	MOD 4/24/06	IVIOTI 4/24/06									1.1		

The T600 prototype

- Approved and funded in 1996
- Built between years 1997 and 2002
- **Completely assembled** in the INFN assembly hall in Pavia
- Full scale Demonstration test run of half-unit during first half 2001
 - Three months duration
 - Completely successful
 - Data taking with cosmic rays
 - Detector performance
 - Full scale analyses
- Full unit Assembly terminated in 2002
- Installation should start this summer

(a) LNGS , expecting to be ready by 2006 for Physics run

ICARUS detector configuration in LNGS Hall B (T3000)

The "cloning" pro	ject	<u>≈3 kton of liquid Argon</u>			
First Unit T600 +	T1200 Unit	Magnett	T1200 Unit		
Auxiliary	(two T600		(two T600		
Equipment	superimposed)		superimposed)		

≈ 35 Metres

≈ 60 Metres

The construction of the T1200 modules is not yet granted

Sensitivity versus Background

SK 90% CL

Probability of claiming a 4σ discovery in 5 years

Comparing different scenarios in a two families scheme

H
nor
nin
<u>ם</u>
9
5
ŝ
T
ň
mo
in
<u>ם</u>
9
G
S
×
(TT

θ_{13}	Experiment	$\sin^2 2\theta_{13}$	θ_{13}
and (CHOOZ	<0.14	<11°
$2\theta_{13}$ $\theta_{23}=1$	MINOS 2yr	<0.06	<7.1°
sin ² in ² €	ICARUS 5yr	<0.04 (LI)	<5.8°
011 (2), S.		<0.03(HI)	<5.0°
.L. eV	OPERA 5yr	<0.06(LI)	<7.1°
∕₀ C 10 ⁻³		<0.05(HI)	<6.4°
90% .5x	ICARUS+OPERA 5y:	<0.03(LI)	<5.0°
$s = 3$ at $3^{3}=2$		<0.025(HI)	<4.5°
Δm^2_{2}	JHF 5yr	< 0.006	<2.5°

NB The CNGS sensitivity is limited by statistics \Rightarrow very important high intensity proton beam

Phase I exps

The oscillation probability including matter effect

$$\begin{split} \text{Migliozzi et al, Phys. Lett. B563(2003)73} \\ P_{\nu_{\mu} \rightarrow \nu_{e}} &\cong \boxed{\sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2} \left[\left[1 - \hat{A} \right] \Delta \right]}{\left(1 - \hat{A} \right)^{2}}} & O_{1} \text{ leading term} \\ \hline -\alpha \sin \theta_{13} \xi \sin \delta_{CP} \sin \Delta \frac{\sin \left(\hat{A} \Delta \right) \sin \left[\left[1 - \hat{A} \right] \Delta \right]}{\hat{A} (1 - \hat{A})} & O_{2} \text{: 1 at osc. max} \\ \hline +\alpha \sin \theta_{13} \xi \cos \delta_{CP} \cos \Delta \frac{\sin \left(\hat{A} \Delta \right) \sin \left[\left[1 - \hat{A} \right] \Delta \right]}{\hat{A} (1 - \hat{A})} & O_{3} \text{: 0 at osc. max} \\ \hline +\alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2} \left(\hat{A} \Delta \right)}{\hat{A}^{2}} & O_{4} \text{: suppressed by } \alpha^{2} \\ \hline \alpha &\equiv \frac{\Delta m_{21}^{2}}{\left| \Delta m_{13}^{2} \right|} \xi \equiv \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \approx O(1) \\ \hat{A} &\equiv 2\sqrt{2}G_{F}n_{e} \frac{E}{\Delta m_{13}^{2}} & \Delta &\equiv \frac{\Delta m_{13}^{2}L}{4E} \end{split}$$

 $\Delta m^2 > 0$

 $\Delta m^2 < 0$

There are δ_{CP} values for which the sensitivity on θ_{13} is even better than the one computed in the 2-flavor approximation (δ_{CP} =0).

Notice the different behaviour on Δm^2 of the CNGS sensitivity \Rightarrow Possible measurement of the sign of Δm^2_{31} if Θ_{13} is large !

Double CHOOZ : detector structure

Same concept as CHOOZ : the target mass is defined by the Gd loaded scintillator mass

Target cylinder (f = 2.4m, h = 2.8m) filled with 0.1%Gd loaded liquid scintillator (12.7 Tons)

Gamma catcher inside Acrylic Vessel, thickness : 60cm

Non scintillating buffer \rightarrow **new** !

mechanical structure to house PMTs

Muons VETO of scintillating oil, thickness :60 cm

Shielding : main tank , steel thickness 15cm

Performances (expected):

- S/B : $10 \rightarrow 100$
- target : $5.5 \rightarrow 12.7 \text{ m}^3$
- analysis errors : $1.5\% \rightarrow 0.2\%$

But the changes would probably worsen the bkgd:large increase of passive material (including high Z)

active target less protected

due to the increase of the target volume

Double CHOOZ : Gd loaded scintillator

✓LENS R&D → new metal β-diketone molecule (MPIK)

✓ Stable: 0.1% Gd-Acac (few months)

✓ Baseline recipe ~80% mineral oil + ~20% PXE + Fluors + wavelenght shifters

✓ In-loaded scintillators (0.1 %, 5% loading) are counting @Gran Sasso
 ✓ Spare stable recipes available (MPIK, INFN/LNGS)

✓ Completion of the R&D first half of 2004

✓ Choice of the final scintillator

 \checkmark Stability & Material compatibility \rightarrow Aging tests (MPIK, Saclay)

Warning : long term stability and acrylic vessel damage

Double CHOOZ: close detector

- similar conditions to PaloVerde (46 mwe)
- large dead time for muon veto : 50%
- can a massive detector work at such a shallow depth ?

PaloVerde and Bugey was segmented and used signature for neutron and positron

Double CHOOZ : Background and signal

Double CHOOZ sensitivity

To be conclusive a reactor experiment which intend to reach few 10⁻² in sin²2θ should be able to show an L/E effect according to the value of δm²
(which will be known at a high level of accuracy) and to the disappearance rate measured

European Strategy (Venice , december 03) 4 phases program for θ_{13} and δ

1) CNGS/MINOS(2005-2010)2) JPARC and Reactor(?)(2008-2013)3) Superbeam/betabeam(>2014)4) Neutrino factory(>2020)

a)Are Phase 3 (and 4) needed in case of a signal seen in JPARC
→ Complementarity with Off-axis and Reactor

b) Can we build a high gamma betabeam before

c) Shoud we go directly to phase 4 in case of no signal seen in JPARC

- shift in time for Superbeam/betabeam due to funding profile in Europe
- is the low energy the optimum choice to measure Θ_{13} , δ , sign(Δm^2)

In any case a MW machine is central

SPL Block diagram (CDR1)

"Joint Research Activity" supported by the European Union in the 6th Framework programme

• Main Objectives

R&D of the technology for high intensity pulsed proton linear accelerators up to an energy of 200 MeV ⇒ Improvement of existing facilities (E.U. request) at GSI, RAL and CERN

• Means

9 laboratories: RAL, CEA (Saclay), CERN, FZJ, GSI, Frankfurt University, INFN-Milano, IPN (Orsay), LPSC (Grenoble). 11.1 MEuros + 3.6 MEuros (E.U.) over 5 years (2004 – 2008)

- Organization \Rightarrow 5 Work Packages
 - WP1 : Management & Coordination (R. Garoby CERN)
 - WP2 : Normal Conducting structures (J.M. Deconto LPSC Grenoble)
 - WP3 : Superconducting structures (S. Chel CEA Saclay)
 - WP4 : Beam chopper (A. Lombardi CERN)
 - WP5 : Beam dynamics (I. Hoffmann GSI)

SPL long term interest

		INTEREST FOR						
	LHC upgrade	Neutrino physics beyond CNGS	Radioactive ion beams (EURISOL)	Others				
SPL * (>2 GeV – 50 Hz)	Valuable	Very interesting for super-beam + beta-beam	Ideal	Spare flux ⇒ possibility to serve more users				
RCS (30 GeV – 8 Hz)	Valuable	Very interesting for neutrino factory	No	Valuable				
New PS (30 GeV)	Valuable	No	No	Valuable				
New LHC injector (1 TeV)	Very interesting for doubling the LHC energy	No	No	Potential interest for kaon physics				

* Comparison should also be made with an RCS of similar characteristics.

• 1 ISOL target to produce He⁶, 100 μA , $\Rightarrow 2.9 \cdot 10^{18}$ ion decays/straight session/year. $\Rightarrow \overline{\nu}_e$.

- 3 ISOL targets to produce Ne¹⁸, 100 μA , $\Rightarrow 1.2 \cdot 10^{18}$ ion decays/straight session/year. $\Rightarrow \nu_e$.
- The 4 targets could run in parallel, but the decay ring optics requires:

 $\gamma(Ne^{18}) = 1.67 \cdot \gamma(He^6).$

M. Mezzetto, "Physics potential of future neutrino beams", IPNL, Lyon, 28 may 2004. .

Eurisol schedule

ISOL roadmap

Europe: SPL→Frejus

Frejus site

Two possible sites are proposed in the Fréjus region :

a) "Fréjus I" site : near the present Fréjus Laboratory (LSM), in the central region of the road Tunnel with a good rock covering of 4800 mwe The rock is very dry, of good quality and rather well known

b) "Fréjus II (Mont d'Ambin)" site, at about 15 Km in the East direction from Fréjus I, in a future access tunnel to the "Lyon Turin Ferrovière" long Tunnel, with an excellent rock covering up to 7000 mwe !
The rock is expected to be hard, but not yet studied and with some possible water problems (glaciers above)

France Italy

(latest news : not accepted since the security gallery cannot be used for excavating the new lab)

"Memorandum of Understanding" between French (IN2P3/CNRS, DSM/CEA) and Italian (INFN) Institutions

.

Very attractive for low background experiments

The baseline option is a megaton detector with betabeam and superbeam But other scenari are possible ... « The DSM, IN2P3 and the INFN agree to prepare the design of a very Large Underground Laboratory in the new Fréjus tunnel, with complementary features with respect to the Gran Sasso laboratory, to be submitted as a joint proposal to the French and Italian governements.

The institutions aim at associating the Fréjus and Gran Sasso laboratories in a single entity, a European Joint Laboratory, **open to the world scientific community** to carry out advanced experiments in particle, astroparticle and nuclear physics in the coming decades, on topics such as matter stability, neutrino mixing and mass, stellar collapses and nuclear astrophysics »

Proposed schedule for UNO like detector at Frejus

UNO Proton Decay Sensitivity

ECFA/BENE

Chang Kee Jung

Comments on Organizing International Effor on Next Generation WC Detector

- Model 1
 - Regional Collaborations
 - \Rightarrow HyperK in Japan
 - \Rightarrow UNO in US
 - ⇒ ??? In Europe
 - Cross referencing of the collaborators
 - ⇒ mutual support for local proposals
 - Joint R&D effort for non-site specific common items
 - Formation of an International Steering Committee
 - Advantage: focused regional efforts to bring local enthusiasm
 - Disadvantages: smaller collaborations, proposals can be seen as competing with each other

omments on Organizing International Effort on Next Generation WC Detector

- Model 2
 - Formation of a World-wide Collaboration
 - ⇒ to build one (or two) detectors somewhere in the world
 - ⇒ Frejus-UNO-HyperK
 - FUHK (!) Bad name
 - Advantage: if formed, it will be a powerful collaboration
 - Disadvantage: can people truly overcome local interests?
 - ⇒ Can prioritization be done without prejudice?

⇒ LC dilemma

- "Internationalization" is a word that should be used very cautiously
 - ⇒ should avoid making foreign contributions prerequisite

Combining beta beam with low energy super beam

 > Unique to CERN- based scenario : SPS can accelerate ions upto Γ ≅ 100
 > muon identification is much more easy
 > betabeam is background free

combines CP and T violation tests

$$v_{e} \rightarrow v_{\mu}$$
 (β +) (T) $v_{\mu} \rightarrow v_{e}$ (π^{+})
(CP)
 $\overline{v_{e}} \rightarrow \overline{v_{\mu}}$ (β -) (T) $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ (π^{-})

Flux and rates at Frejus

	Fluxes @ 130 km	$\langle E_{\nu} \rangle$	CC rate (no osc)	$< E_{\nu} >$	Years	Integrated events	
	$ u/m^2/yr$	(GeV)	events/kton/yr	(GeV)		(440 kton $ imes$ 10 years)	
SPL Super Beam							
ν_{μ}	$4.78 \cdot 10^{11}$	0.27	41.7	0.32	2	36698	
$\overline{ u}_{\mu}$	$3.33 \cdot 10^{11}$	0.25	6.6	0.30	8	23320	
Beta Beam							
$\overline{\nu}_e (\gamma = 60)$	$1.97 \cdot 10^{11}$	0.24	4.5	0.28	10	19709	
$\nu_e (\gamma = 100)$	$1.88 \cdot 10^{11}$	0.36	32.9	0.43	10	144783	

M. Mezzetto, "Physics potential of future neutrino beams", IPNL, Lyon, 28 may 2004. .

Beta Beam - Super Beam synergy: CP sensitivity

SUPER BEAM ONLY

$$\delta m_{12}^2 = 7 \cdot 10^{-5} \ eV^2, \ \theta_{13} = 3^\circ, \ \delta_{CP} = \pi/2,$$

 $\operatorname{sign}(\Delta m^2) = +1$

	Beta	Beam	SPL	-SB	
	^{6}He ^{18}Ne		ν_{μ}	$\overline{\nu}_{\mu}$	
	$(\gamma = 60)$	$(\gamma = 100)$	(2 yrs)	(8 yrs)	
CC events (no osc, no cut)	19710	144784	36698	23320	
Oscillated at the Chooz limit	612	5130	1279	774	
Oscillated	44	529	93	82	
δ oscillated	-9	57	-20	12	
Beam background	0	0	140	101	
Detector backgrounds	1	397	37	50	
δ -oscillated events indicates th computed with $\delta=90^\circ$ and with	e difference $\delta == 0.$	between the	oscillated	events	

Assuming UNO like detector

Where will this get us...

High gamma betabeam simulation

 $\vartheta_{13}(deg)$

Burguet-Castell: hep-ph/0312068

See also Terranova : hep-ph/0405081

Optimal baseline and energy for solving degeneracies and Dm2 sign

Neutrino factory case (A. Donini) hep-ph/0305185

The oscillation $v_e \rightarrow v_\tau$ has a nice dependence on δ_{CP} and θ_{13} which, in combination with the golden channel, eliminates the clone regions resolving the $\delta_{CP,-}$ θ_{13} degeneracy

3

Optimal baseline and energy for solving degeneracies and Dm2 sign

Beta Beam and Super beam versus Neutrino factory (A. Donini) hep-ph/0312072

Neutrino Factory

Super / Beta Beams

Liquid Argon TPC : cloning ICARUS

Need to coherently develop conceptual ideas within the international community

International coordination *Argon-Net*

 The further developments of the LAr TPC technique, eventually finalized to the proposal and to the realization of actual experiments, could only be accomplished by an international community of colleagues able to identify and conduct the required local R&D work and to effectively contribute, with their own experience and ideas, to the achievement of ambitious global physics goals. In particular, this is true for a large 100 kton LAr TPC detector that would exploit next generation neutrino facilities and perform ultimate non-accelerator neutrino experiments.

 We are convinced that, given the technical and financial challenges of the envisioned projects, the creation of a Network of people and institutions willing to share the responsibility of the future R&D initiatives, of the experiment's design and to propose solutions to the still open questions is mandatory.

The actions within the Network might include the organization of meetings and workshops where
the different ideas could be confronted, the R&D work could be organized and the physics issues as
well as possible experiments could be discussed. One can think of coherent actions towards
laboratories, institutions and funding agencies to favor the mobility of researchers, to support R&D
studies, and to promote the visibility of the activities and the dissemination of the results.

So far colleagues from 21 institutions have already expressed their Interest in joining Argon-Net, to act as 'nodes' of the network

Liquid Argon medium properties

But no free protons

	Water	Liquid Argon
Density (g/cm ³)	1	1.4
Radiation length (cm)	36.1	14.0
Interaction length (cm)	83.6	83.6
dE/dx (MeV/cm)	1.9	2.1
Refractive index (visible)	1.33	1.24
Cerenkov angle	42°	36°
Cerenkov d²N/dEdx (β=1)	[∼] 160 eV-1 cm-1	[∼] 130 eV-1 cm-1
Muon Cerenkov threshold (p in MeV/c)	120	140
Scintillation (E=0 V/cm)	No	Yes (* 50000 γ/MeV @ λ=128nm)
Long electron drift	Not possible	Possible (µ = 500 cm²/Vs)
Boiling point @ 1 bar	373 K	87 K

When a charged particle traverses LAr:

1) Ionization process W_e = 23.6 ± 0.3 eV

2) Scintillation (luminescence)
 W_γ = 19.5 eV
 UV "line" (λ=128 nm ⇔ 9.7 eV)
 No more ionization: Argon is transparent
 Only Rayleigh-scattering

3) Cerenkov light (if relativistic particle)

Charge 🖉

© Scintillation light (VUV) Cerenkov light (if β>1/n)

Non accelerator physics : H2O versus LAr

	Water Cerenkov (UNO)	Liquid Argon TPC
Fotal mass	650 kton	100 kton
Cost	~ 500 M\$	Under evaluation
$p ightarrow$ e π^0 in 10 years	10 ³⁵ years ε = 43%, ~ 30 BG events	3x10 ³⁴ years ε = 45%, 1 BG event
$p \rightarrow v$ K in 10 years	2x10 ³⁴ years ε = 8.6%, [~] 57 BG events	8x10 ³⁴ years ε = 97%, 1 BG event
$p \rightarrow \mu \pi K$ in 10 years	No	8x10 ³⁴ years ε = 98%, 1 BG event
SN cool off @ 10 kpc	194000 (mostly $v_e^{}p \rightarrow e^+n$)	38500 (all flavors) (64000 if NH-L mixing)
SN in Andromeda	40 events	7 (12 if NH-L mixing)
SN burst @ 10 kpc	~ 330 ν-e elastic scattering	380 v_e CC (flavor sensitive)
SN relic	Yes	Yes
Atmospheric neutrinos	60000 events/year	10000 events/year
Solar neutrinos	E _e > 7 MeV (central module)	324000 events/year E _e > 5 MeV

Ongoing studies and R&D

1) Study of suitable charge extraction, amplification and imaging devices

2) Understanding of charge collection under high pressure

3) Realization and test of a 5 m long detector column-like prototype

4) Study of LAr TPC prototypes immersed in a magnetic field

5) Study of logistics, infrastructure and safety issues for underground sites

Concluding on european activities (and dreams ...)

SPL	330	
EURISOL	200	
PS/SPS upgrade	70	
Decay Ring	340	
Super beam	70	
UNO like detector	500	
Grand total	1510	

Cost in Meuros no manpower, no contingencies

could be provided by Nuclear physics

Concluding remarks by CERN management at MMW

- CERN will reimburse LHC loan up to 2011
- in 2008 new round of negotiations with members state for support for new R&D (not only neutrinos ...)
- CERN machines (quite old) upgrade will cost
- Staff number will decrease from $2500 \rightarrow 2000$ in 5 years

More international coordination is mandatory

The choice will imply consequences on Machines AND Detectors R&D

High power target R&D

Horn focusing system R&D

