



# BENE04 Beams for European Neutrino Experiments Summary

# Towards a consensual road map for accelerator based neutrino programs in Europe

### A complex multi-parameter problem

CARE04 meeting 4 Nov 2004, DESY



# **BENE04**

### 1) Summary of a very intense & productive year initiatives results .... physics case WP1+2 .... technical WP3+4+5

### 2) Summary of a lively workshop Nov 2-3

### thank you, Dieter & Helmut Profs Wagner & Klanner everybody in DESY all participants

CARE04 meeting 4 Nov 2004, DESY

#### **BENE04 Workshop** in DESY

Tue, Nov. 2, 2004, Seminar Room 2

| Meeting         | Time          | Speaker           | Subject                                      |
|-----------------|---------------|-------------------|----------------------------------------------|
|                 |               |                   |                                              |
|                 | 11:00 - 11:05 | Welcome           |                                              |
| Plenary BENE    | 11:05-11:35   | A. Ringwald       | Neutrinos in the universe                    |
| Plenary PHYSICS | 11:35 - 12:05 | M. Lindner        | Neutrino Oscillations: phenomenology         |
| Plenary PHYSICS | 12:05 - 12:35 | D. Wark           | Neutrino Oscillations: experiments           |
| Lunch           |               |                   |                                              |
| Plenary BENE    | 14:00 - 14:20 | J. Dainton        | EU Neutrinos after the SPSC Cogne IX meeting |
| Plenary ENG     | 14:20 - 14:50 | H. Haseroth       | Superbeam & NuFactory Overview               |
| Plenary ENG     | 14:50 - 15:20 | R. Garoby         | HIPPI and high intensity p-drivers           |
| Plenary ENG     | 15:20 - 15:50 | R. Bennett        | High Power Targets                           |
| Coffee          | 15:50 - 16:10 |                   |                                              |
| Plenary ENG     | 16:10 - 16:30 | H. Kirk           | Target experiment (TT2a)                     |
| Plenary/ENG     | 16:30 - 16:50 | JE. Campagne      | Collection of neutrino parents               |
| Plenary/ENG     | 16:50 - 17:20 | U. Bravar         | Muon front end, ionization cooling, MICE     |
| Plenary/ENG     | 17:20 - 17:50 | K. Long           | Neutrino factory activities in the UK        |
| Plenary ENG     | 17:50 - 18:10 | F. Meot           | Acceleration of muons: FFAGs and more        |
| Plenary ENG     | 18:10 - 18:30 | A. Caldwell (tbc) | Frictional muon cooling                      |

#### BENE04 Workshop in DESY

Wed, Nov. 3, 2004

| Meeting          | Time          | Speaker or Convenor                                  | Subject                                       |  |  |
|------------------|---------------|------------------------------------------------------|-----------------------------------------------|--|--|
| PHYSICS/parallel | 09:00 - 10:30 | M. Mezzetto/P.                                       | WP1-PHYSICS & WP2-DRIVER, agenda              |  |  |
|                  |               | Hernandez/C. Cavata                                  |                                               |  |  |
| ENG/parallel     | 09:00 - 10:30 | R.Bennet/J.E.Campagne                                | WP3-TARGET & WP4-COLLECTOR, agenda            |  |  |
| ENG/parallel     | 09:00 - 10:30 | R. Egecock/F. Meot                                   | WP5a&b-MUFRONT & MUEND, agenda                |  |  |
| Coffee           | 10:30 - 11:00 |                                                      |                                               |  |  |
| PHYSICS/parallel | 11:00 - 12:30 | M. Mezzetto/P.                                       | WP1-PHISICS & WP2-DRIVER                      |  |  |
| -                |               | Hernandez/C. Cavata                                  |                                               |  |  |
| ENG/parallel     | 11:00 - 12:30 | R.Bennet/J.E.Campagne                                | Joint WP3-TARGET & WP4-COLLECTOR              |  |  |
| ENG/parallel     | 11:00 - 12:30 | R. Egecock/F. Meot                                   | WP5a&b-MUFRONT & MUEND                        |  |  |
| Lunch            |               |                                                      |                                               |  |  |
| Plenary ENG      | 14:00 - 14:20 | Y. Kadi                                              | Spallation target development for the EU ADS  |  |  |
|                  |               |                                                      | Project                                       |  |  |
| Plenary ENG      | 14:20 - 14:50 | M. Lindroos                                          | ISOL, EURISOL & neutrino Betabeams            |  |  |
| Plenary ENG      | 14:50 - 15:20 | M. Zisman                                            | NuFact & Betabeam News from US APS Study:     |  |  |
| Plenary BENE     | 15:20 - 15:50 | A. Donini                                            | Leptonic Mixing: beams and baseline options   |  |  |
| Coffee           | 15:50 - 16:10 |                                                      |                                               |  |  |
| Plenary BENE     | 16:10- 16:40  | P. Strolin                                           | Detectors for future neutrino experiments     |  |  |
| Plenary BENE     | 16:40 - 17:10 | C. Hagner                                            | The complementary reactor approach: DCHOOZ    |  |  |
| Plenary BENE     | 17:10 - 17:40 | E. Fernandez/R. Klanner<br>DISCUSSION ROUND<br>TABLE | General physics road map                      |  |  |
|                  | 17:40 - 18:10 |                                                      | R&D's tasks ahead of us: choices & priorities |  |  |
|                  | 18:10 - 18:30 |                                                      | Contributions from new laboratories           |  |  |

CARE04 meeting 4 Nov 2004, DESY

BENE thrives on three pre-existing centers of initiative .





CARE04 meeting 4 Nov 2004, DESY

... <u>from BENE proposal</u> :

coordinate and integrate the activities of



the <u>accelerator and particle</u> physics communities working together, in a worldwide context,

## towards achieving superior neutrino (v) beam facilities for Europe.

1) to establish <u>a road map</u> for upgrade of our present facility and the design and construction of new ones

2) to assemble <u>a community</u> capable of sustaining <sup>220 signatures</sup> the technical realisation and scientific exploitation of these facilities 3) to foster a sequence of carefully prioritized&coordinated initiatives HARP, MuSCAT mice capable to establish, propose and execute

the R&D efforts necessary to achieve these goals.

CARE04 meeting 4 Nov 2004, DESY

road map issues ..... of neutrino & accelerator physics together

The physics of v transitions is proving extremely rewarding and demands long term experimentation with accelerator v

EU accelerator v are an endangered species may extinguish after CNGS & upgrades a strong initiative is needed

thrive on the richness of options: Superbeams, NuFact, Betabeam + specific detectors

### Preliminary conclusion: all options very promising

to first comparative appraisalNuFact most attractive & challengingPreliminary road map:head towards it !

pursue NuFact R&D ... driver, target, collection .... μ complex have CDR ready by LHC startup

build a Superbeam along the way?

almost free

combine them with a Betabeam?

may exploit sinergies with CERN & EURISOL & GSI

V. Palladino Univ & INFN Napoli, Italy BENE 04 Summary

1954-200 CERN

CARE04 meeting 4 Nov 2004, DESY

A LARGE & EARLY

FRACTION OF THE

**EFFORT IS COMMON** 

(DRIVER and more ..)



Survived the big risk

**53 participants** 

Did attract new people ..... Germany? Holland? Scandinavia? Poland, Latvia ?

**Did progress on the work** 

Scientific & Technical Consensus ....

CARE04 meeting 4 Nov 2004, DESY

### **C.** Hagner - The present program moves on time







BENE workshop 3.11.2004 Hamburg

Caren Hagner

CARE04 meeting 4 Nov 2004, DESY

OPERA





CARE04 meeting 4 Nov 2004, DESY

### **Congratulation, Konrad!**





Civil engineering completed

Hadron stop installed

CARE04 meeting 4 Nov 2004, DESY

### Congratulations, Yves!



13.8

is

conceivable!

### Conclusions

- Despite difficulties at LNGS installation of OPERA experiment following schedule
- Completion of Supermodule 1 foreseen Sept 05
   Completion of SM2 Feb 06, SM2 filled in Sept 06
   OPERA needs physics run in 2006 to start physics program
- Efficiency and background based on robust numbers from previous experiments: improvements under study
- In order to cover the SuperK allowed range of Δm<sup>2</sup>:
  - At least nominal beam conditions (4.5 10<sup>9</sup> pot/year) needed!
  - Even more protons on CNGS target are needed
    - either by increasing number of CNGS cycles
    - or (and) increasing proton intensity in the SPS
    - $\ensuremath{\cdot}\xspace \rightarrow$  multi-turn ejection from PS to SPS is urgently needed

DENE workshop 2 11 2004 Homburg

Coron Honnor



John Dainton Villars 2004 November 2nd 2004 ECFA BENE @ DESY

Benedikt Garoby

- start 2004/5:
  - PS: multi-turn ejection
  - increase SPS intensity (impacts all machines)
  - 0.9s PSB repetition
- Linac 4 design

 $\rightarrow$  construction decision @ end 2006

- prepare decision on optimum future accelerator
  - study of a Superconducting Proton Linac (SPL)
  - alternative scenarios for the LHC upgrade

context for SPSC strategy and input

### MMW power?



John Dainton Villars 2004 November 2nd 2004 ECFA BENE @ DESY

# With upgrades

Benedikt Garoby

• (i) PSB repetition period of 0.9 s

(ii) 7x1013 ppp in SPS

(iii) Linac4 injecting into PSB

|                                                              | Standard<br>(i) | CNGS<br>x2 batch<br>(i)+(ii) | Linac 4<br>(i)+(ii)<br>+(iii) | Basic user's<br>request |
|--------------------------------------------------------------|-----------------|------------------------------|-------------------------------|-------------------------|
| CNGS flux [×10 <sup>19</sup><br>pot/year]                    | 4.7 (4.5)       | 7.0 (4.5)                    | 7.5 (4.5)                     | 4.5                     |
| FT spills [×10 <sup>5</sup> /year]                           | 3.2 (3.4)       | 3.0 (5.1)                    | 3.2 (5.6)                     | 7.2                     |
| E Hall spills [×106/year]                                    | 2.3             | 2.3                          | 2.3                           | 2.3                     |
| NTOF flux [×10 <sup>19</sup><br>pot/year]                    | 1.7             | 1.6                          | 1.7                           | 1.5                     |
| ISOLDE flux [µA]                                             | 3.0             | 2.45                         | 6.2                           | 1.9                     |
| [no. pulses/hour]                                            | 2126            | 1722                         | 2160                          | 1350                    |
| 72 bunch train for LHC<br>at PS exit [×10 <sup>11</sup> ppb] | 1.5             | 1.5                          | 2                             | 1.3 (2*)                |



John Dainton Villars 2004 October 7th 2004 CERN seminar

## Villars 2004

Report on the SPSC Villars Meeting September 22-28 2004 John Dainton University of Liverpool, GB (on behalf of the SPSC)



John Dainton Villars 2004 October 7th 2004 CERN seminar

# Villars 2004

- 1. Framework
- 2. Machines and Beams
- 3. Heavy Ions
- 4. Neutrinos
- 5. Soft and Hard Protons
- 6. Antiproton Physics
- 7. Flavour Physics
- 8. Other Topics
- 9. Summary

Note 8/10/04: Overheads are here exactly as presented apart from a small number of bugs which have been fixed, and apart from the inclusion of some overheads skipped in the seminar because of time pressure.

CARE04 meeting 4 Nov 2004, DESY



John Dainton Villars 2004 October 7th 2004 CERN seminar



- "to review present and future activities and opportunities in fixed-target physics, and to consider possibilities and options for a future fixed target programme at CERN"
  - 💪 globally important
  - realistic (beams + resources)
  - for the short, intermediate, and long term
- from the SPC

SPSC not in approval/rejection mode !

CARE04 meeting 4 Nov 2004, DESY



John Dainton Villars 2004 November 2nd 2004 ECFA BENE @ DESY

## **CNGS** Horizon

- nominal (1999)
  - 2.4×10<sup>13</sup> p /extraction
  - 4.8×10<sup>13</sup> p /cycle
  - 4.5×10<sup>19</sup> p /year
- 2<sup>nd</sup> look (2001)
  - 3.5x10<sup>13</sup> p/extraction target rods?
  - 7×10<sup>13</sup> p / cycle
- X3 ? 13.8×10<sup>19</sup> p /year ?
- R&D underway

NB decommissioning cost >> construction cost

eg 200 days 55% efficiency LHC MD LHC fill FT

heating: target, horn ?

shielding?





- v physics has noble history at CERN
- v physics is in a new golden era
- CERN beginning again pivotal global role
- CNGS commitment to ~ end of decade vital
- 2006 important: COMPASS then CNGS @ end 06
- CNGS crucial up to 2011 (window @ 4.5x10<sup>19</sup>pot/yr)
- CNGS + COMPASS ? multi-turn xtraction longer running period
- no compelling case for extending CNGS beyond
   2011 @ realisable pot/yr (< ~ 3x 4.5x10<sup>19</sup>pot/yg);

CARE04 meeting 4 Nov 2004, DESY

because neutrino flavour transitions DO exist

### ... beyond a reasonable doubt .... SNO

by now, multiple evidence ..

### Solar v deficit no more ....

... it is  $v_e \rightarrow v_{active}$  instead ... appearance! almost max mix  $(\theta_{12} \sim \pi/6)$   $\lambda_{solar} \sim 200 \text{ Km/1 MeV } (\Delta m_{12}^2 \sim 7.1 \ 10^{-5} \text{ eV}^2)$   $\Rightarrow$  even visible @Japanese reactors Terrestrial (atmospheric)  $v_{\mu}$  deficit confirmed .... looks much like  $v_{\mu} \Rightarrow v_{\tau}$ max mix  $(\theta_{23} \sim \pi/4)$  $\lambda_{atmo} \sim 10^4 \text{ Km/1 GeV } (\Delta m_{23}^2 \sim 2 \ 10^{-3} \text{ eV}^2)$ 

NB: thou 
$$\lambda_{solar}$$
 surprisingly only ~30 times larger (MSW)  
still  $\Delta m_{12}^2 \ll \Delta m_{23}^2 \cong \Delta m_{13}^2$   
so only 2 wavelenghts exist ....  $\lambda_{13} \cong \lambda_{23} \equiv \lambda_{atmo}$ 

CARE04 meeting 4 Nov 2004, DESY

## The matrix of neutrino transition probability







CARE04 meeting 4 Nov 2004, DESY

### The matrix of neutrino transition probability



CARE04 meeting 4 Nov 2004, DESY



CARE04 meeting 4 Nov 2004, DESY





8

CARE04 meeting 4 Nov 2004, DESY

# **2004: a useful first year of life for BENE**



### **Approval of BetaBeam Design Study**, within EURISOL Nasty cancellation of call for NuFact Design Study ready for next call and try NEST, meanwhile

**SPSC Villars recommends future neutrino initiative 22-28 Sep** 

**BENE04 Workshop today at DESY** 

### Waiting for December: 1) Research Board 2) Scientific Policy Committee before the CERN Council

CARE04 meeting 4 Nov 2004, DESY

SPSC

 Future neutrino facilities offer great promise for fundamental discoveries (such as CP violation) in neutrino physics, and a post-LHC construction window may exist for a facility to be sited at CERN.

• CERN should arrange a budget and personneD to enhance its participation in further developing the physics case and the technologies necessary for the realization of such facilities. This would allow CERN to play a significant role in such projects wherever they are sited.

A nigh-power proton driver is a main building block of future projects, and is therefore required.

• A direct superbeam from a 2.2 GeV SPL does not appear to be the most attractive option for a future CERN neutrino experiment as it does not produce a significant advance on T2K.

• We welcome the effort, partly funded by the EU, concerned with the conceptual design of a  $\beta$ -beam. At the same time CERN should support the European neutrino factory initiative in its conceptual design.

# 2004 <u>may</u> have brought us a Betabeam Design Study a construction window 2010-20? budget & personnel ? recognition of MMW driver?

# Will know only if we <u>keep initiative in 2005</u> & beyond

# 2004 <u>did not</u> bring us a NuFact & SuperBeam Design Study earliest possible start 2007 can ESGARD help?

CARE04 meeting 4 Nov 2004, DESY

V. Palladino. Proton Driver Workshop, Fermilab Oct 6, 2004



### **CERN SPL : Parameters and Program**

### few snapshots

admittedly v-centric

### of the debate at & around CERN on accelerator neutrino physics and Multi Mega Watt physics in general

.... RCS also or instead of SPL ...
..... the LHC upgrade in the background

CARE04 meeting 4 Nov 2004, DESY



## MMW and V's back on the EU map, maybe

positive signals, after meager years of LHC crisis

1) EU approval (HIPPI and BENE)

2) attention of CERN & National Agencies .... more vigourous R&D soon maybe

can CERN envisage ahigh intensity (M-MW) frontierbesides itshigh energy (M-TeV) frontier<br/>undisputed mandate

CARE04 meeting 4 Nov 2004, DESY



**Second conclusion** 

# A rich V program appears possible around a SPL

two options

1) high energy v..... NuFact (& Superbeam)

2) low energy v ..... Betabeam (& Superbeam)

### but it so does with other drivers too, most likely

CARE04 meeting 4 Nov 2004, DESY

### Third conclusion .... a question



LHC (& upgrade) will be the first priority



CARE04 meeting 4 Nov 2004, DESY

### During 2004, 2 Multi Mega Watt Workshops in Europe

### Physics with a MMW proton source CERN, 25-27 May

most emphasis on

few GeV SC proton > 4 MW linac (SPL) RCS as a possible alternative neutrino physics and more ....

### High Intensity Frontier Workshop HIF04 Elba, 5-8 June

most emphasis on

**30 GeV rapid cycling several MW synchrotron (RCS)** 

linac as a possible injector

hadronic physics and more (see Bettoni)

Peer review process starting CERN SPSC "Cogne IX" Week Villars, 22-28 Sep

Personal prejudice "Best would be to conceive of a realistic road map to both .... "

CARE04 meeting 4 Nov 2004, DESY

# The reference facility: J-PARC MMW at low & high E





CARE04 meeting 4 Nov 2004, DESY

### HIGH Intensity Frontier Workshop La Biodola, Isola d'Elba, 5-8 June 2004

#### Topics:

- present and future projects
- kaon physics
- muon physics
- neutrino physics
- hadronic and nuclear studies
- high intensity accelerators
- detectors for h.i. beams
- applications in other fields

A Summary for Villars F. Cervelli (INFN-Pisa) Villars Meeting, September 22, 2004

CARE04 meeting 4 Nov 2004, DESY



"the SPL Workshop?"

# Summary of Multi Mega Watt (MMW) Workshop

See http://proj-bdl-nice.web.cern.ch/proj-bdl-nice/megawatt-summaries/WorkshopSummary-3.71.doc

Highlights & outlook for MMW physics
 *admittedly v - centric*

 Rich & debated spectrum of options (π decay channel, μ & β storage ring.... energy, baseline, detector mass & density ...

**but** consensus on highest priority : <u>High Power</u> MMW Drivers MMW Targets MMW Collectors

Tentative timeline & recommendations

CARE04 meeting 4 Nov 2004, DESY

#### Workshop on

## PHYSICS WITH A MULTI-MW PROTON SOURCE

#### CERN, Geneva, May 25-27, 2004

The workshop explores both the short- and long-term opportunities for particle and nuclear physics offered by a multi-MW proton source such as a proton linear accelerator or a rapid-cycling synchrotron. This source would provide Muon and Electron Neutrino beams of unprecedented intensity, superior slow Muon and possibly Kaon facilities, as well as a world-leading Radioactive Ion Beam facility for Nuclear, Astro- and fundamental physics.



#### Scientific Advisory Committee:

J. Äystö (Jyväskylä), R. Aloksan (Socioy) M. Baido Goolin (Padova), J. Bouches (Sociay) E. Goccia (G. Savao), J. Dainton (Liverpool) J.-P. Delphoyo (GERN), G. Detraz (GERN). R. Elchlor (PSI), J. Encolon (CERN) J. Followse (Society), E. Formandez (Barcolona) G. Fortuna (Loonaro), B. Foster (Oxford) W. Golletly (Surray), D. Goutte (GANIL) D. Guerreau (IN293), M. Harakoh (KVI Groningen) H. Hospirath (CERN), W. Herming (CSI) E. Inrocci (INFN), B. Jonson (Göteborg) K. Jungman (KVI Greningen), B. Kayser (Fermiliab) M. Lindner (TU Hunich), A. Muller (IPH Oragy) S. Nagamiya (JPARC), H. Napolitano (Napoli) W. Nazarewicz (Oak Ridge), K. Peach (RAL). R. Petronelo (Roma II), F. Ronga (Francati) D. Schlatter (GERN), M. Spire (IN2P3) L Tonihato (RIKEN), G. Wyss (GERN) J. Zinn-Juvtin (DAPNIA)

#### **Programme Committee**

- A. Biondel (Genera) , A. Baldini (Pisa), Y. Biumenfeld (IPH Grasy), P. Butter (GERN), P. Debu (Saclay), R. Edgececk (RAL), J. Ellis (GERN), R. Garaby (GERN), V. Gavtaid (Legnaro), N. Lindross (GERN), V. Pailadino (Napell),
- J. Ponman (CIDEN), C. Prior (RAL), A. Rubbio (ETH Zurich), P. Schmeizbach (PSI)

#### Local Organizing Comm

H. Benedikt (CERN), A. Blandel, P.Butler (co-chair), L. Ghliardi (CERN), G. Gludice (CERN), E. Gachwendtner (Geneva), H. Lindroos, V. Palladine (co-chair), M. Vietenar (CERN)

#### BENE+EURISOL





EUR SOL



http://physicsatmwatt.web.cem.ch/physicsatmwatt/
# Physics with Megawatt

- Long-range programme in v physics:
   superbeam, β beam, v factory
  - unique and compelling
- Complementary programme in μ physics: rare μ decays, μ properties, μ colliders?
- Next-generation facility for nuclear physics also tests of SM, nuclear astrophysics
- Synergy with CERN programme: LHC, CNGS ν, ISOLDE, heavy ions, β beam

Interesting project – and CERN would be a good place for it

### A road map with three phases of EU initiative in neutrino Physics ?



CARE04 meeting 4 Nov 2004, DESY





### "SPL workshop"?

# SPL block diagram (CDR 1)

### being built





# Proposed Roadmap

Consistent with the content of a talk by L. Maiani at the "Celebration of the Discovery of the W and Z bosons". Contribution to a document to be submitted to the December Council ("CERN Future Projects and Associated R&D").

Assumptions:

- construction of Linac4 in 2007/10 (with complementary resources, before end of LHC payment)
- construction of SPL in 2008/15 (after end of LHC payments)



CARE04 meeting 4 Nov 2004, DESY

# SPL beam characteristics (CDR 1)

| Ion species                                                 | H                    |               |
|-------------------------------------------------------------|----------------------|---------------|
| Kinetic energy                                              | 2.2                  | GeV           |
| Mean current during the pulse                               | 13                   | mA            |
| Duty cycle                                                  | 14                   | %             |
| Mean beam power                                             | 4                    | MW            |
| Pulse repetition rate                                       | 50                   | Hz            |
| Pulse duration                                              | 2.8                  | ms            |
| Bunch frequency (minimum distance between bunches)          | 352.2                | MHz           |
| Duty cycle during the pulse (nb. of bunches/nb. of buckets) | 62 (5/8)             | %             |
| Number of protons per bunch                                 | 4.02 10 <sup>8</sup> |               |
| Normalized rms transverse emittances                        | 0.4                  | $\pi$ mm mrad |
| Longitudinal rms emittance                                  | 0.3                  | π deg MeV     |
| Bunch length (at accumulator input)                         | 0.5                  | ns            |
| Energy spread (at accumulator input)                        | 0.5                  | MeV           |
| Energy jitter during the beam pulse                         | <±0.2                | MeV           |
| Energy jitter between pulses                                | < ± 2                | MeV           |

#### CARE04 meeting 4 Nov 2004, DESY



# SPL beam time structure (CDR 1)



CARE04 meeting 4 Nov 2004, DESY



# SPL acceleration systems (CDR 1)

| Section      | Input<br>energy<br>(MeV) | Output<br>energy<br>(MeV) | Nb. of<br>cavities | Peak RF<br>power<br>(MW) | Nb. of<br>klystrons | Nb. of<br>tetrodes | Nb. of<br>Quads | Length<br>(m) |
|--------------|--------------------------|---------------------------|--------------------|--------------------------|---------------------|--------------------|-----------------|---------------|
| LEBT         | -                        | 0.095                     | -                  | -                        | -                   | -                  | -               | 2             |
| RFQ          | 0.095                    | 3                         | 1                  | 0.9                      | 1                   | -                  | -               | 6             |
| Chopper line | 3                        | 3                         | 3                  | 0.1                      | -                   | 3                  | 6               | 3.7           |
| DTL          | 3                        | 40                        | 3                  | 4.1                      | 5                   | -                  | 111             | 16.7          |
| CCDTL        | 40                       | 90                        | 27                 | 4.8                      | 6                   | -                  | 28              | 30.1          |
| SCL          | 90                       | 160                       | 20                 | 12.6                     | 5                   | -                  | 21              | 27.8          |
| β=0.52       | 160                      | 236                       | 27                 | 1                        | -                   | 28                 | 9               | 67            |
| β=0.7        | 236                      | 383                       | 32                 | 1.9                      | -                   | 32                 | 16              | 80            |
| β=0.8 Ι      | 383                      | 1111                      | 52                 | 9.5                      | 13                  | -                  | 26              | 166           |
| β=0.8 II     | 1111                     | 2235                      | 76                 | 14.6                     | 19                  | -                  | 19              | 237           |
| Debunching   | 2235                     | 2235                      | 4                  | -                        | 1                   | -                  | 2               | 13            |
| Total        |                          |                           | 245                | 49.5                     | 50                  | 63                 | 238             | 649.3         |

W

A R M

C O L D

# Accumulator and Compressor





#### CARE04 meeting 4 Nov 2004, DESY



# Layout (CDR 1)



CARE04 meeting 4 Nov 2004, DESY



# SPL on the CERN site



CARE04 meeting 4 Nov 2004, DESY

Physics with a MMW proton source CERN, 25-27 May



"SPL workshop"? ..... not in the intentions more in practice as 4MW SPL CDR I exists, no MMW RCS is as advanced

"SPL workshop ...... in a way, as a general approach

E<sub>p</sub> no higher than necessary just as high max/proton as many p as possible ... MMW !!!!

Max means here max number of v parents

CARE04 meeting 4 Nov 2004, DESY

# The HARP experiment

CERN



# Typical 30 GeV RCS



#### MMW, in principle

A 30 GeV, 8 Hz Synchrotron as Possible Replacement for CERN PS



CARE04 meeting 4 Nov 2004, DESY

V. Palladino Univ & INFN Napoli, Italy BENE 04 Summary

ASTeC,

### The 2 options that have emerged for v's NB: beam + detector configurations





<u>Conventional beam</u>  $\pi$  decay channel ...  $v_{\mu}$  (0.1-1%  $v_{e}$ )

not compelling ..... but for free with NuFact, same detector as Betabeam

**NB** :  $\overline{\pi}$   $\overline{\mu}$   $\beta$  possible, in all cases, for CP, T & CPT studies

CARE04 meeting 4 Nov 2004, DESY

### The key to novel neutrino beams



the re- acceleration of the neutrino parent !!!

v Flux ≈ 
$$(N_{parent}/L^2)\gamma_{parent}^2$$
 basic kinematics  
v Rate ≈  $\gamma_{parent}^3/L^2$   
v-osc Rate ≈ E<sup>3</sup>sin<sup>2</sup>(L/E)//L<sup>2</sup>

### $\nu$ /parent grows very rapidly with $E_{parent}$

NB 1) not necessarily with E<sub>proton</sub>
 2) low E has independent merits
 N<sub>parent</sub> !!!
 no matter effects
 ie no fake CP V

CARE04 meeting 4 Nov 2004, DESY

## -- Neutrino Factory -- CERN layout





### Neutrino Factory: CERN Scheme





$$\mu \rightarrow e \nu_{\underline{\mu}} \nu_{\underline{e}}$$

DisappearanceAppearance $\overline{\nu}_e \rightarrow \overline{e}$  deficit $\nu_{\mu} \rightarrow \nu_e \rightarrow e$  excess $\nu_{\mu} \rightarrow \mu$  deficit $\nu_{\tau} \rightarrow \tau$  excess

Appearance ... Wrong Charge Signature  $\overline{\nu_{e}} \rightarrow \overline{\nu_{\mu}} \rightarrow \overline{\mu}$  excess Golden  $\nu_{\tau} \rightarrow \overline{\tau}$  excess Silver Magnetic detector

CARE04 meetir

### The matrix of neutrino transition probability

CERN



CARE04 meeting 4 Nov 2004, DESY The Neutrina on Fractory in does them all !



Oscillation parameters can be extracted using energy distributions

- a) right-sign muons
- b) wrong-sign muons
- c) electrons/positrons
- d) positive  $\tau$ -leptons
- e) negative  $\tau$  -leptons
- f) no leptons

### **X2** ( $\mu^+$ stored and $\mu^-$ stored)

<u>Note</u>:  $v_e \rightarrow v_\tau$  is specially important (Ambiguity resolution & Unitarity test): *Gomez-Cadenas et al.*  Simulated distributions for a 10kt LAr detector at L = 7400 km from a 30 GeV nu-factory with  $10^{21} \mu^+$  decays.



#### Old and new european underground laboratories







Cost Savings



- Not practical to do a bottom-up costing of our new design so we scaled from FS2
  - we have done well with the major cost items, but savings on the lesser items are not yet exploited
  - these are hardware-only costs (no ED&I, burden, escalation, contingency)

|                 | All   | No PD | No PD & Tgt. |
|-----------------|-------|-------|--------------|
|                 | (\$M) | (\$M) | (\$M)        |
| FS2             | 1832  | 1641  | 1538         |
| FS2a-scaled (%) | 67    | 63    | 60           |

November 3, 2004

BENE talk - Zisman

CARE04 meeting 4 Nov 2004, DESY





## Why These Choices?

- Areas selected could markedly reduce facility cost
  - RF bunching and phase rotation section shorter than induction linac version, and uses less expensive components
     ₀ original version took 25% of total cost
     ₀ new scheme keeps both µ<sup>-</sup> and µ<sup>+</sup> simultaneously
  - RLAs were major cost (23%) of Study II design
    - large aperture FFAG magnets accommodate energy swing without need for separate arcs
      - avoids large-aperture splitter-recombiner magnets
  - increased acceptance downstream should allow reduction in cooling requirements (20% of facility cost)
- •Note that replacement systems are not free!

November 3, 2004

BENE talk - Zisman

10

CARE04 meeting 4 Nov 2004, DESY

#### **BENE and EURISOL**



### *approval of BENE and HIPPI* July 03

### fruitful confrontation with RIB NUPECC community EURONS, EURISOL ...... Rad Ion Beams could work together towards a betabeam could share a MWatt p-driver

Moriond 03

### new management taking office at CERN





CARE04 meeting 4 Nov 2004, DESY

#### **EURISOL Overall Baseline Layout** Ganil? CERN? LNL?





CARE04 meeting 4 Nov 2004, DESY





- Total budget is 33293300 (9161900 from EU)
- Start date: 1 January 2005
- **Objective:** TDR for end of 2008
- Objective: TDR enabling the Nuclear physics and Neutrino physics communities to take a decision about a future facility
- 2009: Fix site and apply for EU construction project

CARE04 meeting 4 Nov 2004, DESY

### **Eurisol Design Study Tasks**



- Preparatory meeting for EURISOL design study in Orsay.
  - First drafts presented by task coordinators.
    - 1. Proton Accelerator (Alberto Facco, INFN-LNL)
    - 2. Heavy-Ion Accelerator (MH. Moscatello, GANIL)
    - 3. Cryomodule Development (S. Bousson, IPNO)
    - 4. Direct Target/Ion Source (J. Lettry, CERN)
    - 5. Solid Converter-Target/Ion Source (L. Tecchio, INFN-LNL)
    - 6. Liquid-Metal Target/Ion Source (F. Groeschel, PSI)
    - 7. Safety and Radioprotection (D. Ridikas, CEA-Saclay)
    - 8. Beam Preparation (A. Jokinen, JYFL)
    - 9. Physics and Instrumentation (R. Page, U. Liverpool)
    - 10. Beam Intensity Calculations (K.H. Schmidt, GSI)
    - 11. Beta-Beam Aspects (M. Benedikt, CERN)
    - 12. Co-ordination and Layout (Not yet allocated)

BENE WP5c

≈1-MEuros out of ≈ 10

CARE04 meeting 4 Nov 2004, DESY



CARE04 meeting 4 Nov 2004, DESY



• 1 ISOL target to produce He<sup>6</sup>, 100  $\mu A$ ,  $\Rightarrow 2.9 \cdot 10^{18}$  ion decays/straight session/year.  $\Rightarrow \overline{\nu}_e$ .

- 3 ISOL targets to produce Ne<sup>18</sup>, 100  $\mu A$ ,  $\Rightarrow 1.2 \cdot 10^{18}$  ion decays/straight session/year.  $\Rightarrow \nu_e$ .
- The 4 targets could run in parallel, but the decay ring optics requires:

$$\gamma(Ne^{18}) = 1.67 \cdot \gamma(He^6).$$

1954-200

CERN

I. Mezzetto, "Beta Beams", Villars, September 24 2004.

CARE04 meeting 4 Nov 2004, DESY

V. Palladino Univ & INFN Napoli, Italy BENE 04 Summary

9



### Target values for the decay ring

#### <sup>6</sup>Helium<sup>2+</sup>

- In Decay ring:  $1.0 \times 10^{14}$  ions
- Energy: 139 GeV/u
- Rel. gamma: 150
- Rigidity: 1500 Tm

<sup>18</sup>Neon<sup>10+</sup> (single target)

- In decay ring:  $4.5 \times 10^{12}$  ions
- Energy: 55 GeV/u
- Rel. gamma: 60
- Rigidity: 335 Tm
- The neutrino beam at the experiment should have the "time stamp" of the circulating beam in the decay ring.
- The beam has to be concentrated to as few and as short bunches as possible to maximize the number of ions/nanosecond. (background suppression), aim for a duty factor of 10<sup>-4</sup>

CARE04 meeting 4 Nov 2004, DESY

# Intensities



| Stage                   | <sup>6</sup> He                                       | <sup>18</sup> Ne (single target)                      |
|-------------------------|-------------------------------------------------------|-------------------------------------------------------|
| From ECR source:        | 2.0x10 <sup>13</sup> ions per second                  | 0.8x10 <sup>11</sup> ions per second                  |
| Storage ring:           | 1.0x10 <sup>12</sup> ions per bunch                   | 4.1x10 <sup>10</sup> ions per bunch                   |
| Fast cycling synch:     | 1.0x10 <sup>12</sup> ion per bunch                    | 4.1x10 <sup>10</sup> ion per bunch                    |
| PS after acceleration:  | 1.0x10 <sup>13</sup> ions per batch                   | 5.2x10 <sup>11</sup> ions per batch                   |
| SPS after acceleration: | 0.9x10 <sup>13</sup> ions per batch                   | 4.9x10 <sup>11</sup> ions per batch                   |
| Decay ring:             | 2.0x10 <sup>14</sup> ions in four 10 ns<br>long bunch | 9.1x10 <sup>12</sup> ions in four 10 ns<br>long bunch |

Only  $\beta$ -decay losses accounted for, add efficiency losses (50%)

CARE04 meeting 4 Nov 2004, DESY



# Decay losses

- Losses during acceleration are being studied:
  - Full FLUKA simulations in progress for all stages (M. Magistris and M. Silari, *Parameters of radiological interest for a beta-beam decay ring*, TIS-2003-017-RP-TN)
  - Preliminary results:
    - Can be managed in low energy part
    - PS will be heavily activated
      - New fast cycling PS?
    - SPS OK!
    - Full FLUKA simulations of decay ring losses:
      - Tritium and Sodium production surrounding rock well below national limits
      - Reasonable requirements of concreting of tunnel walls to enable decommissioning of the tunnel and fixation of Tritium and Sodium

# Multiple beta beam regimes



| Low energy $\ldots \gamma_{ion} \approx 1-10$ | E,              | few 10 MeV (C. Volpe)                           |
|-----------------------------------------------|-----------------|-------------------------------------------------|
|                                               | <sup>v</sup> e  | neutrino reactions                              |
|                                               |                 | nuclear (astro-)physics,                        |
|                                               |                 | solar, supernovae                               |
| Medium energy γ <sub>ion</sub> ≈100           | E <sub>ve</sub> | few 100 MeV (M. Mezzetto)                       |
| <u>baseline</u>                               | ·               | massive low density detector<br>very large !!!! |
|                                               |                 |                                                 |

High energy ......  $\gamma_{ion} \gtrsim 500$  E<sub>v<sub>e</sub></sub>

GeV & multi GeV (P. Hernandez & al.) denser, smaller, farther detectors

same as NuFact?

### NB Main issues are technical !!!

may well be an evolutive process (M. Lindroos)

CARE04 meeting 4 Nov 2004, DESY



atmo v

Abstract

A Megaton Physics project in the Fréjus underground site, focalised on Proton Decay, Neutrinos from Supernovae, Atmospheric Neutrinos and Neutrinos from a long-baseline, is presented and compared with competitor projects in Japan and USA sites. The advantages of the European project are discussed, including the possibility of a neutrino long-baseline from CERN, at a magic distance. UNO, Hyper-K



Figure 2: Proposal for a new excavation in the Fréjus tunnel.

CARE04

## UNO Detector Conceptual Design

A Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit
- Cost (built-in staging)

ECFA/BENE, May. 2004

Only optical separation

0%

60x60x60m<sup>3</sup>x3 Total Vol: 650 kton Fid. Vol: 440 kton (20xSuperK) # of 20" PMTs: 56,000 # of 8" PMTs: 14,900

#### Detectors ..... again UNO/HyperK but also



#### 100 kton liquid Argon TPC detector



CARE04
#### **CERN-SPL-based** Neutrino **SUPERBEAM**

### Same detectors as Superbeam !



CARE04 meeting 4 Nov 2004, DESY



Mezzetto, "Beta Beams", Villars, September 24 2004

|                                                                                             | Beta            | Beam             | SPL-SB      |                        |  |  |  |
|---------------------------------------------------------------------------------------------|-----------------|------------------|-------------|------------------------|--|--|--|
|                                                                                             | $^{6}He$        | $^{18}Ne$        | $\nu_{\mu}$ | $\overline{\nu}_{\mu}$ |  |  |  |
|                                                                                             | $(\gamma = 60)$ | $(\gamma = 100)$ | (2 yrs)     | (8 yrs)                |  |  |  |
| CC events (no osc, no cut)                                                                  | 19710           | 144784           | 36698       | 23320                  |  |  |  |
| Oscillated at the Chooz limit                                                               | 681             | 5304             | 1491        | 1182                   |  |  |  |
| Oscillated                                                                                  | 1               | 118              | 2           | 34                     |  |  |  |
| $\delta$ oscillated                                                                         | -12             | 54               | -27         | 16                     |  |  |  |
| Beam background                                                                             | 0               | 0                | 140         | 101                    |  |  |  |
| Detector backgrounds                                                                        | 1               | 397              | 37          | 50                     |  |  |  |
| $\delta$ -oscillated events indicates the difference between the oscillated events computed |                 |                  |             |                        |  |  |  |
| $\delta=90^\circ$ and with $\delta=0.$                                                      |                 |                  |             |                        |  |  |  |

![](_page_74_Figure_0.jpeg)

CARE04 meeting 4 Nov 2004, DESY

### **EU Neutrino Complex** 1954-2004 Garoby CERN Haseroth **BetaRing** Lindroos **Muon** Complex **G.Sasso** LMD 2nd generation **0.1 Mto Radioactive Ion Beam** Facility (EURISOL Proton complex Neutrino beam to Frejus tunnel

### Frejus 1 Mton Water C

CARE04 meeting 4 Nov 2004, DESY

V. Palladino Univ & INFN Napoli, Italy BEN

## Joint Particle and Nuclear Venture

![](_page_76_Picture_1.jpeg)

![](_page_76_Picture_2.jpeg)

Physics Reach: the third mixing angle

![](_page_77_Figure_1.jpeg)

![](_page_77_Figure_2.jpeg)

CARE04 meeting 4 Nov 2004, DESY

V. Palladino Univ & INFN Napoli, Italy BENE 04 Summary

![](_page_78_Picture_0.jpeg)

![](_page_78_Figure_1.jpeg)

#### CARE04 meeting 4 Nov 2004, DESY

### Physics Reach: CPV

![](_page_79_Picture_1.jpeg)

![](_page_79_Figure_2.jpeg)

Figure 7 : 99%CL  $\delta$  sensitivity of the beta-beam, of the SPL-SuperBeam, and of their combination, see text. Dotted line is the combined Superbeam+beta-beam sensitivity computed for sign( $\Delta m_2$ )=-1. Sensitivities are compared with a 50 GeV Neutrino Factory producing 2×10<sub>20</sub>µ decays/straight section/year, and two 40 kton detectors at 3000 and 7000 km

CARE04 meeting 4 Nov 2004, DESY

## European MWatt complex: combination of linac+rings in synergy

![](_page_80_Picture_1.jpeg)

![](_page_80_Picture_2.jpeg)

CARE04 meeting 4 Nov 2004, DESY

### LHC upgrade and MMW

![](_page_81_Picture_1.jpeg)

![](_page_81_Picture_2.jpeg)

Linac developments (6/20): Preliminary comparison of drivers at CERN

![](_page_81_Picture_5.jpeg)

| Present     | <b>D</b> onlo com ont   |                                                                                                               | INTEREST FOR   |                                            |                                |                         |  |  |  |
|-------------|-------------------------|---------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------|--------------------------------|-------------------------|--|--|--|
| accelerator | accelerator             | Improvement                                                                                                   | LHC<br>upgrade | v physics<br>beyond CNGS                   | RIB beyond<br>ISOLDE           | Physics with<br>k and μ |  |  |  |
| Linac2      | Linac4                  | $\begin{array}{l} 50 \rightarrow 160 \ \mathrm{MeV} \\ \mathrm{H^{+}} \rightarrow \mathrm{H^{-}} \end{array}$ | +              | 0 (if alone)                               | 0 (if alone)                   | 0 (if alone)            |  |  |  |
|             | 2.2 GeV RCS*<br>for HEP | $1.4 \rightarrow 2.2 \text{ GeV}$<br>$10 \rightarrow 250 \text{ kW}$                                          | +              | 0 (if alone)                               | +                              | 0 (if alone)            |  |  |  |
| PSB         | 2.2 GeV/mMW<br>RCS*     | $1.4 \rightarrow 2.2 \text{ GeV}$<br>$0.01 \rightarrow 4 \text{ MW}$                                          | +              | +++<br>(super-beam, β-<br>beam, v factory) | +<br>(too short beam<br>pulse) | 0 (if alone)            |  |  |  |
|             | 2.2 GeV/50 Hz<br>SPL*   | $1.4 \rightarrow 2.2 \text{ GeV}$<br>$0.01 \rightarrow 4 \text{ MW}$                                          | +              | +++<br>(super-beam, β-<br>beam, v factory) | +++                            | 0 (if alone)            |  |  |  |
| PS          | SC PS*/** for<br>HEP    | 26 → 50 GeV<br>Intensity x 2                                                                                  | ++             | 0 (if alone)                               | 0                              | +                       |  |  |  |
|             | 5 Hz RCS*/**            | $26 \rightarrow 50 \text{ GeV}$<br>$0.1 \rightarrow 4 \text{ MW}$                                             | ++             | ++<br>(v factory)                          | 0                              | +++                     |  |  |  |
| SPS         | 1 TeV SC<br>SPS*/**     | $0.45 \rightarrow 1 \text{ TeV}$<br>Intensity x 2                                                             | ++++           | ?                                          | 0                              | +++                     |  |  |  |

\* with brightness x2

\*\* need new injector(s)

1

R.G.

CARE04 meeting 4 Nov 2004, DESY

## A MMW proton driver is the key issue, worldwide !!!!!!

# CONCLUSIONS

- It seems likely that a new intense proton source will be proposed for construction at FNAL in near future
- Similar in scope to the Main Injector Project (cost/schedule)
- A 8 GeV Synchrotron or a Superconducting Linac appear to be both technically possible. However the SCRF linac strongly preferred if it can be made affordable
- The FNAL management has requested that the 8 GeV linac design be developed including cost & schedule information
- A Technical Design will be developed (charge to Bill Foster)
- The Physics Case needs to be developed (charge to Steve Geer) and of course the goal of this workshop
- These will make it possible to submit a Proton Driver project to the DOE for approval and funding

### B. Kephart

Fermilab Technical Division

![](_page_82_Picture_11.jpeg)

### WP3 TARGET

![](_page_83_Picture_1.jpeg)

![](_page_83_Picture_2.jpeg)

### **Bringing it all Together**

We wish to perform a proof-of-principle test which will include:

- A high-power intense proton beam (16 to 32 TP per pulse)
- A high (≥ 15T) solenoidal field
- A high (> 10m/s) velocity Hg jet
- A ~1cm diameter Hg jet

Experimental goals include:

- Studies of 1cm diameter jet entering a 15T solenoid magnet
- Studies of the Hg jet dispersal provoked by an intense pulse of a proton beam in a high solenoidal field
- Studies of the influence of entry angle on jet performance
- Confirm Neutrino factory/Muon Collider Targetry concept

![](_page_83_Picture_14.jpeg)

Harold G. Kirk

CARE04 meeting 4 Nov 2004, DESY

![](_page_84_Picture_0.jpeg)

![](_page_84_Picture_1.jpeg)

### **Proposal to Isolde and nToF Committee**

CERN-INTC-2003-033 INTC-I-049 26 April 2004

A Proposal to the ISOLDE and Neutron Time-of-Flight Experiments Committee

#### Studies of a Target System for a 4-MW, 24-GeV Proton Beam

J. Roger J. Bennett<sup>4</sup>, Luca Bruno<sup>2</sup>, Chris J. Densham<sup>1</sup>, Paul V. Drumm<sup>1</sup>, T. Robert Edgecock<sup>1</sup>, Tony A. Gabriel<sup>3</sup>, John R. Haines<sup>3</sup>, Helmut Haseroth<sup>2</sup>, Yoshinari Hayato<sup>4</sup>, Steven J. Kahn<sup>5</sup>, Jacques Lettry<sup>2</sup>, Changguo Lu<sup>6</sup>, Hans Ludewig<sup>5</sup>, Harold G. Kirk<sup>5</sup>, Kirk T. McDonald<sup>6</sup>, Robert B. Palmer<sup>5</sup>, Yarema Prykarpatskyy<sup>5</sup>, Nicholas Simos<sup>5</sup>, Roman V. Samulyak<sup>5</sup>, Peter H. Thieberger<sup>5</sup>, Koji Yoshimura<sup>4</sup>

> Spokespersons: H.G. Kirk, K.T. McDonald Local Contact: H. Haseroth

### Participating Institutions

- 1) RAL
- 2) CERN
- KEK
- 4) BNL
- 5) ORNL
- 6) Princeton University

Proposal submitted April 26, 2004

Harold G. Kirk

![](_page_84_Picture_17.jpeg)

![](_page_85_Picture_0.jpeg)

![](_page_85_Picture_1.jpeg)

### **The Experimental Footprint**

![](_page_85_Figure_3.jpeg)

### **WP4 COLLECTION**

![](_page_86_Picture_1.jpeg)

### Pion momentum

![](_page_86_Figure_3.jpeg)

![](_page_87_Picture_0.jpeg)

### Solenoid style of collection

![](_page_87_Figure_3.jpeg)

CARE04 meeting 4 Nov 2004, DESY

![](_page_88_Picture_0.jpeg)

![](_page_88_Figure_1.jpeg)

CARE04 meeting 4 Nov 2004, DESY

![](_page_89_Picture_0.jpeg)

### First Horn at CERN 7<sup>th</sup> April 04

![](_page_89_Picture_2.jpeg)

![](_page_89_Picture_3.jpeg)

The 1<sup>st</sup> Horn had successfully passed a 65,000 double nominal pulses test early may 04.

![](_page_89_Picture_5.jpeg)

/BENE Wor (2 10<sup>7</sup> double-pulses in 5 years) 4

### WP5a MUFRONT

![](_page_90_Picture_1.jpeg)

## **MICE** Layout

![](_page_90_Picture_3.jpeg)

![](_page_90_Figure_4.jpeg)

CARE04 meeting 4 Nov 2004, DESY

![](_page_91_Figure_0.jpeg)

CARE04 meeting 4 Nov 2004, DESY

![](_page_92_Picture_0.jpeg)

![](_page_93_Picture_0.jpeg)

## **MICE Layout at RAL**

![](_page_93_Figure_2.jpeg)

MICE: The International Muon Ionization Cooling Experiment

Ulisse Bravar

CARE/BENE 04

4

### WP5b MUEND

![](_page_94_Picture_1.jpeg)

#### F. Méot CEA DAPNIA/SACM & CERN AB/ABP

### Fixed Field Alternating Gradient Synchrotrons for muons, and more

### Introduction

Heard at ICFA-HB2004 : one of the most active fields in accelarator physics and technology.

| Only 5 FFAG machines operated :<br>- 3 electron machines by the MURA Lab.,<br>50's<br>- 2 proton machines by KEK, these last years<br>- 3 facilities in construction in Japan<br>- the neutrino factory studies triggered strong<br>R&D activity. | l st<br>2nd<br>3rd<br>4th<br>5th<br>6th | FFAG99 (Dec. 1999)<br>FFAG workshop (July 2000)<br>FFAG00 (Oct. 2000)<br>FFAG02 (Feb. 2002)<br>FFAG workshop (Sept. 2002)<br>FFAG03 (July 2003) | KEK PoP<br>CERN<br>KEK<br>KEK<br>LBL<br>KEK |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| R&D activity.<br>Gave rise to the concept of "non-scaling"<br>FFAG.<br>- many applications investigated, e.g. proton<br>driver, hadrontherapy.                                                                                                    | 6th<br>7th<br>8th<br>9th                | FFAG03 (July 2003)<br>FFAG workshop (Sept. 2003)<br>FFAG workshop (Mar. 2004)<br>FFAG04 (Oct. 2004)                                             | KEK<br>BNL<br>TRIUMF<br>KEK                 |

New concepts, new technologies reactivate the interest in the method. "The rebirth of the FFAG", M. Craddock, CERN Courrier, July 2004.

![](_page_95_Picture_0.jpeg)

#### Conclusion (back to the 50's !) : an e-model of a non-scaling muon FFAG

"Since no non-scaling FFAG has ever been built, there is interest in building a small model which would accelerate electrons and demonstrate our understanding of non-scaling FFAG design. " [Review of Current FFAG Lattice Studies in North America, JS Berg et als, 2004]

Main tasks : demonstrate (fast) Xing of resonances. Demonstrate near-crest fast acceleration.

| Energy                        | MeV  | 10 to 20      |
|-------------------------------|------|---------------|
| number of turns               |      | 5 to 11       |
| circumference                 | т    | 17            |
| lattice                       |      | FDF           |
| tune variation                |      | < 0.5         |
| number of cells               |      | 45            |
| cell length                   | т    | 0.38          |
| RF drift length               | сm   | 10            |
| CF magnets:                   |      |               |
| - length F/D                  | сm   | 5/10          |
| - field F/D                   | G    | 375 / 107     |
| - gradient F/D                | T/m  | 6 / -5        |
| <ul> <li>apertures</li> </ul> | ст   | 1.2×1.8       |
| alignement tolerances         |      |               |
| gradient tolerances           |      |               |
| length variation              | rel. | $2 \ 10^{-3}$ |
| RF frequency                  | GHz  | 3             |
| peak RF voltage               | kV   | <80           |
| h                             |      | 171           |
| RF power                      | kW   | <1.5          |
| max. I (beam loading)         | mΑ   | 100           |

![](_page_95_Figure_5.jpeg)

CARE04 meeting 4 Nov 2004, DESY

![](_page_96_Picture_0.jpeg)

Technical progress is remarkable in all sectors

A full NuFact & Superbeam Design Study is ready & necessary

### DRIVER ...... Consolidate SC Linac studies Enhance RCS effort

# TARGET .....Target experiment readyneeds men and resources

### **COLLECTOR... LAL effort should be saved**

### **MUFRONT... MICE**

### MUEND ... e-FFAG model

### As it is for Betabeam (WP5c)

### How to bridge to FP7? Jan 07? Can ESGARD help?

CARE04 meeting 4 Nov 2004, DESY

## 2004 <u>may</u> have brought us a Betabeam Design Study a construction window 2010-20? budget & personnel ? recognition of MMW driver?

## Will know only if we <u>keep initiative in 2005</u> & beyond

## 2004 <u>did not</u> bring us a NuFact & SuperBeam Design Study earliest possible start 2007 can ESGARD help?

CARE04 meeting 4 Nov 2004, DESY

### BENE Week, CERN 14-16 Mar

BENE05 with CARE05 in the Fall

| Jan05      | Feb05              | Mar05          | Apr05   | May05 | Jun05       | Jul05      | Aug05 | Sep05 | Oct05     | Nov05    | Dec05 |
|------------|--------------------|----------------|---------|-------|-------------|------------|-------|-------|-----------|----------|-------|
| 1          | 1                  | 1 La Thuile    | 1       | 1     | 1           | 1 LP05     | 1     | 1     | 1         | 1        | 1     |
| 2          | 2                  | 2 La Thuile    | 2       | 2     | 2           | 2 LP05     | 2     | 2     | 2         | 2 HARPOM | 2     |
| 3          | 3                  | 🕴 La Thuile    | 3       | 3     | 3           | 3 LP05     | 3     | 3     | 3         | 3 HARPOM | 3     |
| 4          | 4                  | 4 La Thuile    | 4       | 4     | 4           | 4 LP05     | 4     | 4     | 4         | 4 HARPOM | 4     |
| 5          | 5                  | 5 La Thuile    | 5       | 5     | 5           | 5          | 5     | 5     | 5         | 5        | 5     |
| 6          | 6                  | 6              | 6       | 6     | 6 WIN05     | 6          | 6     | 6     | 6         | 6        | 6     |
| 7          | 7                  | 7              | 7 NNN05 | 7     | 7 WIN05     | 7          | 7     | 7     | 7         | 7        | 7     |
| 8          | 8                  | 8              | 8 NNN05 | 8     | 8 WIN05     | 8          | 8     | 8     | 8         | 8        | 8     |
| 9          | 9                  | 9 NARPCM 8     | 9 NNN05 | 9     | 9 WIN05     | 9          | 9     | 9     | 9         | 9        | 9     |
| 10         | 10 MICE            | 10 HARPCM 8    | 10      | 10    | 10 WIN05    | 10         | 10    | 10    | 10        | 10       | 10    |
| 11         | 11 MICE            | 11 HARPCM 8    | 11 7    | 11    | 11 WIN05    | 11         | 11    | 11    | 11        | 11       | 11    |
| 12         | 12 MICE            | 12             | 12      | 12    | 12 Nufact05 | 12         | 12    | 12    | 12        | 12       | 12    |
| 13         | 13                 | 13             | 13      | 13    | 13 Nufact05 | 13         | 13    | 13    | 13        | 13       | 13    |
| 14         | 14 US MC           | 14 BENE        | 14      | 14    | 14 Nufact05 | 14         | 14    | 14    | 14        | 14 MICE? | 14    |
| 15         | 15 US MC           | 15 BENE        | 15      | 15    | 15 Nufact05 | 15         | 15    | 15    | 15        | 15 MICE? | 15    |
| 16         | 16 US MC           | 16 BENE        | 16      | 16    | 16 Nufact05 | 16         | 16    | 16    | 16        | 16 MICE? | 16    |
| 17 RALBETA | 17 US MC           | 17             | 1       | 17    | 17 Nufact05 | Y          | 17    | 17    | 17        | 17 MICE? | 17    |
| 18 RALBETA | 18                 | 18             | 8       | 18    | 18 Nufact05 | 13         | 18    | 18    | 18        | 18       | 18    |
| 19         | 19                 | 19 Moriond EW  | 19      | 19    | 19 Nufact05 | 19         | 19    | 19    | 19        | 19       | 19    |
| 20         | 20                 | 20 Moriond EW  | 20      | 20    | 20 Nufact05 | 20         | 20    | 20    | 20        | 20       | 20    |
| 21         | 21                 | 21 Moriond EW  | 21      | 21    | 21 NUFACT05 | 21 EPS HEP | 21    | 21    | 21        | 21       | 21    |
| 22         | 22 Venice          | 22 Moriond EW  | 22      | 22    | 22 NUFACT05 | 22 EPS HEP | 22    | 22    | 22        | 22       | 22    |
| 23         | 23 Venice          | 23 Moriond EV  | 23      | 23    | 23 NUFACT05 | 23 EPS HEP | 23    | 23    |           | 23       | 23    |
| 24         | 24 Venice          | 24 Moriond E/V | 24      | 24    | 24 NUFACT05 | 24 EPS HEN | 24    | 24    | 24 BENE7  | 24       | 24    |
| 20         | 25 Venice          | 25 Moriond W   | 20      | 20    | 20 NUFACTOS | 25 EPS HEP | 20    | 20    | 20 BENE7  | 25       | 20    |
| 20         | 20<br>27 La Thuile | 20 Monone EW   | 20      | 20    | 20 NUFA 105 | 20 EPS HEP | ·     | 20    | 20 BENE7  | 20       | 20    |
| 27         | 27 La Thuile       | 27 Easter      | 27      | 27    | 20 1 005    | 2/         | 20    | 2/    | 27 CARE?  | 20       | 20    |
| 28         | 26 La Thuie        | 20             | 28      | 20    | 28 LP05     | 20         | 20    | 20    | 28 CARE / | 28       | 26    |
| 29         |                    | 29             | 29      | 29    | 29 LP05     | 29         | 29    | 29    | 29        | 29       | 29    |
| 21         |                    | 24             | 30      | 21    | 30 1-03     | 30         | 21    | 30    | 21        | 30       | 21    |
| 31         |                    | 31             |         | 31    |             | <b>1</b>   | 51    |       | 31        |          | 51    |
|            |                    |                |         |       |             |            |       |       |           |          |       |
|            |                    |                |         |       |             |            |       |       |           |          |       |
|            |                    |                |         |       |             |            |       |       |           |          |       |

NuFact05 Int. Workshop June 21-26, LNF School June 12-20

NNN05 Int. Workshop at Frejus, 7-9 April CARE04 meeting 4 Nov 2004, DESY

the Fall

### Interim BENE Report late 2005 General Document along NuFact05 Prodeedings

![](_page_99_Picture_1.jpeg)

### (progress on) Definition of Proton Driver Strategy LHC upgrade .... SC Linac/RC Synchro

BENE, Eurisol, Eurotrans, FixedTarget EMCOG

SPSC, SPC ..... ESGARD, ECFA .....

### Advance on World Wide Design Study(US/EU/J) Application to EU programs .... NEST ..... I3?

### On going R&D projects HARP, MUSCAT, HIPPI LALhorns TT2a, MICE, eFFAG

CARE04 meeting 4 Nov 2004, DESY

![](_page_100_Picture_0.jpeg)

### The end

CARE04 meeting 4 Nov 2004, DESY