

Horn R&D: present and future

Simone Gilardoni CERN – PS/PP DPNC Université de Genève

For the CERN Horn working group

Horn prototype developed in the frame of the NUFACT Target-Collector activity

Working Group

Autin B. - Gilardoni S. - Grawer G - Maire G. Maugain J-M. - Rangod S. - Sievers P. - Voelker F.

Reference: CERN-NUFACT Note 80

From the lecture "Physique de Base" the Ampere law:

 $\oint B \cdot dl = 2\pi r B = \mu_0 I$

First horn built

Horn features:

- Focus only one particle sign
- Compact element
- Radiation hard
- Low Cost

Horn in use at CERN

AD horn (see Microcosm) 300 kA, 0.5 Hz, 1M pulses

LAL - Orsay

Simone Gilardoni

AD Target station

LAL - Orsay

Simone Gilardoni

3/12/2002

Horn optic design

Maximization of secondary flux into a given acceptance:

Accelerator acceptance

- Max divergence fixed by focusing in the channel
 - Max radius fixed by the beam pipe aperture

Neutrino beam experiment

- Max divergence small to have a small spot size at the experiment site
 - Max radius doesn't matter

From equation of motion in 1/R field:

For a monoenergetic beam and a point like source

Theoretical shape to have a point to parallel beam

Design choices

- Shape both the profiles: AD, Numi
- Approx the theoretical profiles with straight lines: NuFact
- Fix one and shape the other: CNGS
- Combine the first two approaches: MiniBoone

Numi horn inner conductor

• From trasp. of Ioanis Kourbanis

- The target is not point-like:
 - Normally 1-2 interaction lengths
 - Order 1 m for light targets (Be)
 - Order 20-30 cm for heavy targets (Hg)
- Particle produced with large energy spread
- In any case, as Van der Meer dixit:
 - Max angle for a given momentum depends only on the square root of the current $\theta_{MW} = \frac{\mu_0}{\mu_0}$

Simone Gilardoni

Optimisation criterium = Physics reach

LAL - Orsay

Nufact + SuperBeam

Same Horn operation mode:

- 4 MW proton beam
- 50 Hz rep. rate
- Current as high as possible

3/12/2002

Old horn Nufact

Horiz.+ Vert. scale different

LAL - Orsay

Simone Gilardoni

3/12/2002

Particles at target

After the horn

After the horn II

LAL - Orsay

Simone Gilardoni

3/12/2002

Double Horn

Double horn concept

LAL - Orsay

Transverse phase space:

- Simulation and tracking by MARS
- Pion Yield: 0.0013 π /POT with CUT ϵ_n =1.5 cm rad 0.3 GeV < Et <0.6 GeV

Experi ment	curr	freq	Neck radius (cm)	Wall thickn ess neck(mm)	Out cond radius (cm)	Induct ance (nH)	Resist (micro hom)	Tempr ise at neck	A g fr c t p k
Numi	200	1.87 sec	0.9	4.5	14.9	685- 690	208ms	22.8	1
Minibo one	170	5.0 hz	2.2				0.24m illi		2
k2k	250	2.18s	3.0				2.5ms	15	6
LAI	- Orsay		Simo	ne Gilardo	ni		3/12/2002		

• Verify the reliability of a **300kA-50Hz** horn built according the conventional technique of pulsed horns and providing a minimum lifetime of <u>one month</u>.

 In the same period one has to change <u>2 or 3 ISOLDE</u> <u>Uranium-Carbide targets</u>

Main Parameters

 Radius of the waist 	40 mm			
•Peak current	300 kA			
 Repetition rate 	50 Hz			
Pulse length	93 µs			
 Voltage on the horn 	4200 V			
 rms current in the horn 	14.5 kA			
 Power dissipation (by current) 	39 kW			
•Skin depth	1.25 mm	ו		
•Total length		1030 mm		
•Outer diameter		420 mm		
•Max diameter (electrical connection flam	nge)	895 mm		
•Free waist aperture		56 mm		
•Waist outer diameter		80 mm		
 Average waist wall thickness 		6 mm		
 Double skin thickness 		2 mm		
LAL - Orsay Simone Gilardon	i	3/12/2002		

- AA 6082-T6 / (AIMgSi1) is an acceptable compromise between the 4 main characteristics:
 - Mechanical properties
 - Welding abilities
 - Electrical properties
 - Resistance to corrosion

Not compatible with Mercury

Simone Gilardoni

- First "inner" horn 1:1 prototype
- Power supply for Test One: 30 kA and 1 Hz, pulse 100 µs long
 - More or less done ✓ First mechanical and thermal stresses measurements
 - Test of numerical results for vibration
 - ✓ Test of cooling system
- Test Two: 300 kA and 1 Hz
- Last test: 300 kA and 50 Hz

Inknown schedule

Goal: Horn Life-Time 6 weeks (2*10⁸ pulses)

Very good news

LAL - Orsay

Simone Gilardoni

3/12/2002

Mechanical design

- Main features:
- Staying in conventional mechanical technology
- Thickness of the walls calculated for a minimum absorption.
- Improvement of the cooling efficiency.
- Low cost radiation hardness insulation.

Highlights:

- Creation of a double skin.
- Sprayers directly feed by an annular low pressure water film.
- Cooling circuit shared out for the waist zone
- Inner waist exchange surface magnified by a factor 2 (round shape inner screw thread)
- Ceramic balls used as spacers between inner conductor and double skin to ensure the concentricity of the both components.
- \succ Use of a glass disc insulator.

LAL - Orsay

Simone Gilardoni

3/12/2002

E.B. Welding

Magnification: x25

Magnification: x25 Under polarized light

CERN/EST document

LAL - Orsay

Magnification: x25

3/12/2002

Longitudinal section

• Mean power dissipation in the horn by current (kW) 39

SCHEMATIC WATER CIRCUIT

Water cooling circuit 2

LAL - Orsay

Simone Gilardoni

Inner conductor flange

LAL - Orsay

Simone Gilardoni

Drilling operation for radial holes

Punching of the outer skin

LAL - Orsay

Simone Gilardoni

Spherical blind holes for ceramic balls spacers

Construction of horn at CERN

Inner conductor

LAL - Orsay

Simone Gilardoni

Inner and outer skins

LAL - Orsay

Simone Gilardoni

Front side assembly

Discharger Unit

LAL - Orsay

Simone Gilardoni

Power supply scheme

LAL - Orsay

- Building a new power supply
 - 70 kA, 120 µs, 1 Hz
 - Mechanical vibration tests
- Studying how to connect the CNGS power supply
 - 100-120 kA, few ms, 0.5 Hz
- Looking for someone interested in developing the final power supply
 - 300 kA, 100 µs (better less), 50 Hz
- Looking for someone to develop a numerical model
 for horn vibration

Laser Measurements

CNGS horn

Laser vibrometer

LAL - Orsay

Simone Gilardoni 3/12/2002

Preliminary vibration meas.

New campaigns of measurements with laser vibrometer and a microphone as the new power supply ready. Would you like to hear a laser?

Any suggestions how to measure a surface that you cannot touch, the INNER conductor ?

Simone Gilardoni

Horn failures ...When? Why?

AD horn (see Microcosm) 300 kA, 0.5 Hz, 1M pulses

LAL - Orsay

Simone Gilardoni

Reasons for horn failure

- Fatigue limit
 - stress due to electro-magnetic forces
 - Max pressure: ≈14 MPa (140 kg/cm²)
 - Operation always in material elastic regime
- Thermal stresses
 - joule losses: 39 kW
 - particle energy deposition (still to be evaluated)
- Neutron irradiation
 - Swelling
 - Mechanical properties variation

CMS Magnets Power supply

- Total RMS current for CMS magnets: 19 kA DC
- Ramping in 5h
- Horn RMS current: 14.5 kA

Simone Gilardoni

Pulse length optimisation

- Proton beam pulse length 3.2 µs
 - Why a current pulse length of 100 μs ?
- Power dissipated in horn $\propto \sqrt{\tau_0}\, I_M{}^2$
 - $-\tau_0$ pulse duration = half sine wave
 - I_M peak current
 - Shorter current pulse length wanted
- Voltage across the capacitor banks $\propto \, I_{\text{M}} \, / \tau_0$
 - Limit now is 6 kV

30 times shorter pulse length reduces the power by a factor of 5 but increase the voltage to 180 kV

How produce a shorter pulse length ? Optimum to be found or a new idea ...

Target Nufact

Target:

- Mercury: $Z = 80 \rightarrow$ short target Liquid \rightarrow easy to replace $(v_{//} \approx 20 \text{ m/s})$ - Dimensions: L $\approx 30 \text{ cm}, \text{R} \approx 1 \text{ cm}$

 \rightarrow 4 MW of proton into a pint of beer

Target experiment

Experiments @BNL and @CERN

- Measurements of Hg explosion speed
 - Speed of protons >> Speed of sound
- Maximum $v_{\perp} \approx 20$ m/s
- $v_{\prime\prime} \approx 3 \text{ m/s}$

LAL - Orsay

Simone Gilardoni

Jet test a BNL E-951

Event #11 25th April 2001

Protons

P-bunch:

Hg- jet :

K. Mc Donald, H. Kirk, A. Fabich LAL - Orsay Simone Gilardoni

Picture timing [ms]

0.00 0.75 4.50 13.00

Target and Horn integration

Target INSIDE for low energy

Max p_t more or less independent from the energy

Target Inside

- Problem of integration between AI alloy and Hg
 - Hg compatible only with Ti
 - How to weld Ti with Al alloy?
- Neutron irradiation damage
 - Neutron spectrum is isotropous
 - Most of neutrons stay in the neck

Neutron damage

Typical neutron spectrum

W Converter 150 mm

LAL - Orsay

Simone Gilardoni

$$DPA = 0.4 \frac{T_{dam}(MeV - barn)}{T_{d}^{a}(MeV)} \Phi\left(\frac{n}{cm^{2}s}\right) t(s) = \sigma_{damage} \Phi t$$

 T_{dam} : damage energy cross section

 \rightarrow Total available energy to cause displacement

 $T^a{}_d$: effective threshold displacement energy \rightarrow Energy required to displace an atom (AI = 27 eV)

And the 0.4 ? Please don't ask ...

DPA for spallation sources

Neutron damage

Damage cross section

Neutron spectrum

Large neutron fraction where damage cross section is high

LAL - Orsay

Simone Gilardoni

Simone Gilardoni

Neutron flux from Hg typical of a Neutron Spallation Source (ESS, SNS)

Approx 10²⁶ n/m²

- Mechanical tests of Aluminum-Alloys before and after irradiation
 - Variation of the mechanical parameters
 - CERN is not equipped for such measurements
 - Isolde as irradiation facility but somewhere else for tests
- Test for define material as a wall between Aluminum and Hg
 - Highly "active" environment:
 - Mercury splashing around
 - Minimum thickness but high mechanical resistance (Ti-Alloys? Stainless Steel? See ESS, SNS target)

Principle: high current flowing axially in a conductor

Magnetic field rise linearly inside the conductor

Li-Lens: how it looks like

From Nufact Note 10

Simone Gilardoni

Simulation parameters

Conducting target

- Current: 2.49 MA (B=20 T at R_{max})
- Phase : π
- Target : L = 13 cm R = 2.26 cm

Tilted target in solenoidal field

- B field: 20 T
- Target : L = 30 cm R = 0.75 cm
- Solenoid : L = 30 cm R= 7.5 cm

Li-lens studies

Fig. 2. CERN solid lithium lens with rigidly supported shell.

1- cooling inlet channels; 2 -current contacts; 3 - silicon nitride spheres; 4 -stainless steel container; 5 - titanium window; 6 -lithium rod, 7 -steel housing.

1 – lithium rod; 2 – thin wall titanium shell; 3 – thick wall pipe; 4 – buffer volume; 5 – liquid lithium input; 6 – hydrodynamical dampers; 7 – current input; 8 – retaining bolts; 9 – insulation gap; 10 – weld; 11 – beryllium windows.

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

LIQUID LITHIUM LENS WITH HIGH MAGNETIC FIELDS

B. Bayanov, V. Belov, A. Chernyakin, V. Eschenko, V. Karasuk, M. Petrichenkov, G. Silvestrov[#],

T. Vsevolozhskaya, BINP, Novosibirsk, Russia Simone Gilardoni

3/12/2002

Limitation of conducting target

- High power dissipation ≈ 3.18 MW (Mercury)
- π production: protons defocused inside the target
- Windows for target/beam-line separation

Why not lithium ?

- Long target (1 λ = 1.37 m): large π time spread
- Proton focusing inside the target
- High power deposition: 33.6 MW (liquid Li needed)

Big lithium lens

x (cm)

Let 1 MA flowing in wedge parallel to the beam axis

- More focusing at large radius (x4 normal horn flux)
- Dead zone for material interaction

LAL - Orsay

Simone Gilardoni

3/12/2002

- A lot of work has still to be done:
 - Horn development
 - Final power supply
 - Final horn design
 - Horn life time
 - Other ideas:
 - Still on paper (or on my hard-disk)

New ideas, friends and fresh air is WELCOME !!!