The T2K program

Yoshikazu Yamada (KEK-IPNS) for T2K collaboration and J-PARC Neutrino facility construction group Talk at plenary session of NUFACT05, June 21, 2005

Contents

- Introduction of T2K experiment
- •J-PARC
- Neutrino beam facility
- Neutrino detectors & physics
 ⇒ at session 5 of WG1 on June 23

T2K experiment

Long baseline neutrino oscillation experiment from Tokai to Kamioka.

Physics motivations

•Discovery of $V_{\mu \rightarrow} V_e$ appearance •Precise meas. of disappearance $V_{\mu \rightarrow} V_X$ •Discovery of CP violation (Phase2)

J-PARC Facility

J-PARC status

- •Buildings for LINAC and 3GeVPS finished.
- North-east part of tunnel for 50GeVPS finished.
- •South-west part of tunnel will finish in FY2006.
- •First beam on 50GeV PS in FY2008

Expected Beam Power

Neutrino facility

Components

- Primary proton beam line
- Target/Horns
- Decay volume (130m)
- Beam dump
- Muon monitor
- Near neutrino detector (280m)
- Second near neutrino detector (~2km): future option

Proton beam line

Arc section

Superconducting magnet

Prototype magnet worked•as designed•without quench

Target and horns

Graphite target in 1st horn
3 horns made with Aluminum
Water cooling test for horn finished
320kA pulse current test in this year

 Prototype inner & outer conductor for 1st horn

Target

•Carbon graphite target: 30mm(D)x900mm(L)

•2 interaction length (70% int.)

•Energy deposit: 58kJ/spill

Energy deposit in the target (/ 1 spill) J/g

streamline of He gas

•Cooled by He gas at outer surface (640W/m²K achieved)

Prototype of target and cooling tube

Off-axis beam

Decay Volume

Off-axis beam at SK/HK

Copyright(C)2001 ALPS M

Cover this region

Civil construction of DV

Oct. 26, 2004

Beam dump & Muon monitor

Neutrino detectors

- Near detector @280m
 - Neutrino intensity/spectrum/direction
 - Two detector systems for on and off axis.
- Second Near Detector @2km
 - In future option to reduce systematic errors
 - v_{μ} energy spectrum and v_e background study with almost same condition as for SK
- Far Detector @295km: Super Kamiokand
 - \Rightarrow at session 5 of WG1 on June 23

Schedule of v beam line

- T2K collaboration started in 2003. •Discovery of $\nu_{\mu \rightarrow} \nu_{e}$ appearance 100 times larger intensity than K2K •Off axis(2~3°) configuration with SK Neutrino beam facility Construction started in 2004 Start T2K-I experiment in 2009 Future upgrade for T2K-pahse-II
 - with 4MW beam and Hyper-Kamiokande

supplement

Possible upgrade to 4MW

- Preliminary study done
- •Rep. rate x 2.5
 - Double RF cavities (space OK)
 - •Eliminate idling time in acc. cycle
- # of circulating protons x 2
 "barrier bucket method"
 to avoid space charge limit
- Issues
 - Achieve first goal (0.75MW) Beam loss Target,

MR Patterns and Beam Power (Phase-I)

eam power: 666kV (400MeV Linac)

MR Patterns and Beam Power

•Increase Rep. Rate

Increase Injected Particles by Stacking

•beam loss issue

Rep. Rate

- •energy storage system
- magnet power supply
- •rf system
- •water cooling system

My Personal Page!!

MR Energy

50GeV Assumed pattern

requirement

- beam power ---40GeV?
- high energy -->50GeV

total 1.9s

High Intensity

Neutrino Flux ~ Proton beam power $(E_p \times N_p)$

750kW @ J-PARC 50GeV (design)

High Beam Power->

- Controlling BEAM LOSS is CRITICAL
 - Radio-activation of beam line components (maintenance)
 - Radiation shielding
- Cooling problem
 - Most of 750kW heat deposited in target area, decay volume, beam dump
 - (cf ~13kW escaped with neutrino)

Budget Decision for 2005

2) Need a big increase in JFY2006.

Requirements on v beam

Intense beam

- Very far detector, extremely small cross section, search small osci. probability
- → High proton beam power: J-PARC 0.75MW 50 GeV PS
- High efficiency pion collection with magnetic Horns
- Fast time structure
 - Background in detector: Cosmic rays, atmospheric v
 - Discriminate by timing information
 - Single-Turn Fast Extraction
- Narrow energy spectrum
 - As many v's as possible at oscillation maximum
 - As less v's as possible at small osc. prob. (reduce BG)
 - Joff-axis beam

Preparation Section

Matching beam from PS to ARC section

Final Focusing section

Beam monitors

Long baseline oscillation

 $\text{Maki-Nakagawa-Sakata (MNS) matrix} \quad \begin{vmatrix} v_l \\ v_l \end{vmatrix} = \sum U_{li} \begin{vmatrix} v_i \\ v_i \end{vmatrix} \quad s_{ij} = \sin \theta_{ij}, \quad c_{ij} = \cos \theta_{ij} \\ s_{ij} = \sin \theta_{ij}, \quad c_{ij} = \cos \theta_{ij} \\ 0 \quad c_{23} \quad s_{23} \\ 0 \quad c_{23} \quad s_{23} \\ 0 \quad 0 \quad e^{-i\delta} \end{vmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

•Precise meas. of disappearance $V_{\mu \rightarrow} V_{x}$ $P_{\mu \rightarrow x} \approx 1 - \cos^{4} \theta_{13} \cdot \sin^{2} 2\theta_{23} \cdot \sin^{2} (1.27 \Delta m_{23}^{2} L / E_{v})$

•Discovery of $V_{\mu \rightarrow} V_e$ appearance

 $P_{\mu \to e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 \left(1.27 \Delta m_{13}^2 L / E_{\nu}\right)$

Discovery of CP violation (Phase2)

$$A_{CP} \approx \frac{\Delta m_{12}^2}{4E_{\nu}} \cdot \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \cdot \sin \delta$$

J-PARC Neutrino facility

Components

- Primary proton beam line
 - 50GeV, 0.75MW, Fast extracted
- Target/Horns
- Decay volume (130m)
- Beam dump & Muon monitor
- Near neutrino detectors @280m
- Second near neutrino detector
 @2km: future option (Off-axis)

• Far detector SK (Off-axis)

Near Detector @ 280m

Near Detector @2km

Future option to reduce systematic errors

- v_{μ} energy spectrum for v_{μ} disappearance
- v_e background study for v_e appearance

\Rightarrow Next speaker

Far Detector: SK

- Partial reconstruction in 2002
 - 47% of PMT's(~5200)
- Full reconstruction
 - PMT's attachment: Nov.2005 ~ Mar.2006
 - Water filling: Apr. ~ May 2006
 - Data taking: from June 2006

41.4m

Sensitivity on disappearance

Discovery of v_e appearance

$v_{e} \text{ appearance: } \theta_{13} \& \Delta m_{13}$ $P_{\mu \rightarrow e} \approx \sin^{2} \theta_{23} \cdot \sin^{2} 2 \theta_{13} \cdot \sin^{2} \left(1.27 \Delta m_{13}^{2} L / E_{\nu} \right)$

Background for v_e appearance

- -Intrinsic ν_e component in initial beam
- •Merged π^0 ring from v_{μ} interactions Requirement: 10% uncertainty for BG estimation

Sensitivity on appearance

sin²2θ ₁₃	Background in Super-K			Signal	Signal
	$ u_{\mu}$	v_e	total	Signal	+ BG
0.1	10	13	23	103	126
0.01				10	33

Development of sensitivity

Comparison with NOvA

T2K phase-II

$x \sim 100$ sensitivity for CP violation ■ J-PARC: 0.75MW \Rightarrow 4MW (x5)

■ SK:22.5kton ⇒ HK:0.54Mton (x24)

CP violation in lepton sector

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})} \approx \frac{\Delta m_{12}^{2} L}{4E_{\nu}} \bullet \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \bullet \frac{\sin \delta}{\sin \theta_{13}}$$

Maki-Nakagawa-Sakata (MNS) matrix $|v_l\rangle = \Sigma U_{li}|v_i\rangle$ $s_{j} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-i\delta} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ 0 & 1 & 0 \\ -s_{13} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Hyper-Kamiokande

Super-Kamiokande (50kt, 11000 PMT's)

Fiducial mass: 22.5kt

Hyper-Kamiokande (~1Mt, ~ 200000 photo-sensors)

Not official, Not approved

Expected signal and BG

CPV vs matter effect

 $v_{\mu} \rightarrow v_{e}$ osc. probability w/ CPV/matter

J-PARC/T2K: smaller distance/lower energy small matter effect ⇒Pure CPV & Less sensitivity on sign of ∆m²

3σ Sensitivity for CPV

