When $\delta_{C P}=0^{\circ}$ and Matter Effects are neglected then,

$$
\begin{align*}
P_{\nu_{\mu} \rightarrow \nu_{e}} & \simeq 4 c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin ^{2} \Delta_{31} \tag{1}\\
& +\left(8 c_{12} s_{12} c_{13}^{2} s_{13} s_{23} c_{23}-8 s_{12}^{2} c_{13}^{2} s_{13}^{2} s_{23}^{2}\right) \cos \Delta_{23} \sin \Delta_{31} \sin \Delta_{21}(2) \tag{2}
\end{align*}
$$

As $\Delta_{23}=\Delta_{21}+\Delta_{13}$ then

$$
\cos \Delta_{23}=\cos \Delta_{21} \cos \Delta_{13}-\sin \Delta_{21} \sin \Delta_{13}
$$

and in numerical application $\Delta_{21}=1.27 \delta m_{21}^{2} L / E \approx O\left(10^{-2}\right)$. So,

$$
\begin{align*}
P_{\nu_{\mu} \rightarrow \nu_{e}} & \simeq 4 c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin ^{2} \Delta_{31} \tag{3}\\
& +\left(8 c_{12} s_{12} c_{13}^{2} s_{13} s_{23} c_{23}-8 s_{12}^{2} c_{13}^{2} s_{13}^{2} s_{23}^{2}\right) \Delta_{21} \cos \Delta_{13} \sin \Delta_{31} \tag{4}
\end{align*}
$$

If one uses $s_{12}^{2}=0.314$ and $s_{23}^{2}=0.44$ then one realizes that in the parenthesis the second term is of the order s_{13} compared to the first term, so it may be neglected hereafter as we will focus on $s_{13}<10^{-2}$. Then, it yields

$$
\begin{equation*}
P_{\nu_{\mu} \rightarrow \nu_{e}} \simeq \alpha \cos \beta \sin ^{2} \Delta_{31}+\alpha \sin \beta \cos \Delta_{13} \sin \Delta_{31} \tag{5}
\end{equation*}
$$

with

$$
\begin{align*}
\alpha \cos \beta & \equiv 4 c_{13}^{2} s_{13}^{2} s_{23}^{2} \tag{6}\\
\alpha \sin \beta & \equiv 8 c_{12} s_{12} c_{13}^{2} s_{13} s_{23} c_{23} \tag{7}
\end{align*}
$$

It is remarkable that now the oscillation probability may be written as

$$
\begin{equation*}
P_{\nu_{\mu} \rightarrow \nu_{e}} \simeq \frac{\alpha}{2}\left[\cos \beta-\cos \left(2 \Delta_{13}+\beta\right)\right] \tag{8}
\end{equation*}
$$

The maximum of the probability is obtained at

$$
\begin{align*}
\Delta_{31} & =\frac{\pi}{2}-\frac{\beta}{2} \tag{9}\\
\text { with } \tan \beta & =2 \Delta_{21} \frac{c_{12} s_{12} c_{23}}{s_{13} s_{23}} \tag{10}
\end{align*}
$$

The "usual" 2-famillies case is obtain with $\beta=0$. In case of $E \sim 0.3 \mathrm{GeV}$, $L \sim 130 \mathrm{~km}$ and $\sin ^{2} 2 \theta_{13}=10^{-3}$ then

$$
\begin{align*}
\left(\delta m_{31}^{2}\right)_{\max } & =2.910^{-3} \text { if } \beta=0 \tag{11}\\
& =1.810^{-3} \tag{12}
\end{align*}
$$

