



Super– Kamiokande: Atmospheric Neutrinos

Christopher Mauger ICHEP, Jul 2002

ICHEP 2002 – Mauger – p.1/1

### Introduction **Origin of Atmospheric Neutrinos Neutrino Oscillation** Full SK I - 1489 days $u_{\mu} \leftrightarrow \nu_{\tau}$ Search for $\nu_{\tau}$

- $\blacktriangleright$   $\nu_{\mu} \leftrightarrow \nu_{\tau}$  VS.  $\nu_{\mu} \leftrightarrow \nu_{s}$
- Sterile Neutrino Admixture
- Three Active Flavor Oscillations

# **Origin of Atmospheric Neutrinos**





- Primary cosmic-rays + atmospheric nuclei → hadronic showers
- Showers → many  $\pi^{\pm}$

• 
$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu})$$

- Expect  $\nu_{\mu}/\nu_{e} \sim 2$
- Absolute flux uncertainty  $20\% \Rightarrow \text{measure } \frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_e + \bar{\nu}_e}$

Two-flavor neutrino oscillations.  $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2 2\theta \sin^2(1.27\Delta m^2 \frac{L}{E}).$ 

## Super-Kamiokande





- zinc mine Kamioka, Japan
- 1000 m rock overburden
   2700 meters water
   equivalent
- 50 kton water Cherenkov detector
- 22.5 kton fiducial volume
- 11,146 inner photo-multiplier tubes (PMTs)
- 1885 outer photo-multiplier tubes (PMTs)
- cosmic-ray  $\mu$  rate 2.7 per second

## **SK Atmospheric** $\nu$ **Detection**





| Event type                      | $E_{\nu}$      |
|---------------------------------|----------------|
| FC ( $ u_e$ 's and $ u_\mu$ 's) | $\sim 2~GeV$   |
| PC (> $98\%~ u_{\mu}$ )         | $\sim 10\;GeV$ |
| up-going stopping $\mu$         | $\sim 10~GeV$  |
| up-going through $\mu$          | $\sim 100~GeV$ |

FC and PC

 $-1 < \cos \theta < 1$ 

• upward-going  $\mu$ 's  $-1 < \cos \theta < 0$ 

## Reconstruction





For FC and PC events, we measure:

- position
- number of rings
- momentum of each ring
- **particle ID** ( $\mu$ -like or e-like)



Evis < 1.33 GeV  $p_e > 100 \ MeV/c$  $p_{\mu} > 200 \ MeV/c$ 

|                       | DATA | MC(Honda) | MC(Bartol) |
|-----------------------|------|-----------|------------|
| 1 Ring <i>e</i> -like | 3266 | 3081.0    | 3032.1     |
| 1 Ring $\mu$ -like    | 3181 | 4703.9    | 4564.6     |
| Multi-Ring            | 2457 | 2985.6    | 2952.6     |
| Total                 | 8904 | 10770.5   | 10549.2    |

 $\frac{(\mu/e)_{DATA}}{(\mu/e)_{MC}} = 0.638 \pm 0.016(stat.) \pm 0.050(sys.) \text{ (Honda).}$  $\frac{(\mu/e)_{DATA}}{(\mu/e)_{MC}} = 0.647 \pm 0.016(stat.) \pm 0.051(sys.) \text{ (Bartol).}$ 



### $\textbf{Multi-GeV} \rightarrow \textbf{Evis} > 1.33 \; GeV$

|                          | DATA | MC(Honda) | MC(Bartol) |  |
|--------------------------|------|-----------|------------|--|
| 1 Ring <i>e</i> -like    | 772  | 707.8     | 734.2      |  |
| 1 Ring $\mu$ -like       | 664  | 968.2     | 967.8      |  |
| Multi-Ring               | 1532 | 1903.5    | 1972.3     |  |
| Total (Multi-GeV)        | 2968 | 3579.4    | 3674.3     |  |
| PC (assumed $\mu$ -like) | 913  | 1230.0    | 1297.5     |  |
| (u/z) 0.000              |      |           |            |  |

 $\frac{(\mu/e)_{DATA}}{(\mu/e)_{MC}} = 0.658 \pm \frac{0.030}{0.028} (stat.) \pm 0.050 (sys.) \text{ (Honda).}$  $\frac{(\mu/e)_{DATA}}{(\mu/e)_{MC}} = 0.662 \pm \frac{0.030}{0.028} (stat.) \pm 0.050 (sys.) \text{ (Bartol).}$ 

## **Zenith Angle Distributions**





Null hypothesis  $u_{\mu} \leftrightarrow \nu_{\tau}$  fit to these data

### $\nu_{\mu} \leftrightarrow \nu_{\tau}$ Oscillation





No oscillation  $\chi^2_{min} = 456.5/170$  d.o.f.)

 $\begin{array}{l}
\nu_{\mu} \leftrightarrow \nu_{\tau} \\
\text{Best fit:} \\
\Delta m^{2} = 2.5 \times 10^{-3} eV^{2}, \sin^{2} 2\theta = 1.0 \\
\chi^{2}_{min} = 163.2/170 \text{ d.o.f.})
\end{array}$ 

 $\begin{array}{ll} \Delta m^2 {\in} \ 1.6 \sim 3.9 \times 10^{-3} eV^2 \\ \sin^2 2\theta {>} \ {\rm 0.92} & {\rm 90\% \ C.L.} \end{array}$ 

ICHEP 2002 - Mauger - p.10/1





Threshold for  $\nu_{\tau} \rightarrow \tau = 3.5 \ GeV$ 3 different analyses for  $\tau$  search

#### **BASIC IDEA**

hadronic decays  $\tau$  heavy - fat events
RESULTS  $145 \pm 44(stat.) + 11/ - 16(sys.)$   $99 \pm 39(stat.) + 13/ - 21(sys.)$ 

Super–Kamiokande is consistent with  $\tau$  appearance.

 $\nu_{\mu} \leftrightarrow \nu_{s}$  vs.  $\nu_{\mu} \leftrightarrow \nu_{\tau}$ 



 $\nu_s$  does not interact with matter (definition) If pure  $\nu_\mu \leftrightarrow \nu_s$  is correct,

- NC events reduced
- Matter effects suppress oscillation at high  $E_{\nu_{\mu}}$

$$\mathsf{P}(\nu_{\mu} \rightarrow \nu_{s}) = \frac{\sin^{2} 2\theta_{v}}{R} \times \sin^{2}(\pi \frac{L\Delta m^{2}}{\frac{4\pi E_{\nu}}{\sqrt{R}}}), \text{ where}$$
$$R = (\mp \frac{\sqrt{2}G_{F}N_{n}E_{\nu}}{\Delta m^{2}} - \cos 2\theta)^{2} + \sin^{2} 2\theta$$

Look beyond single rings to get directional NC sample. Measure up-down asymmetry (systematic error cancellation).

- Multi-Ring NC enhanced sample ( $\sim 30\%$  NC)
- PC sample  $Evis > 5 \ GeV \rightarrow E_{\nu} \sim 20 \ GeV$
- Through- $\mu$  sample  $E_{\nu} \sim 100 \; GeV$

 $\nu_{\mu} \leftrightarrow \nu_{s} \text{ vs. } \nu_{\mu} \leftrightarrow \nu_{\tau}$ 



#### NC enhanced



When combined with single ring oscillation result, pure  $\nu_{\mu} \leftrightarrow \nu_{s}$  is ruled out at the 99% C.L.

ICHEP 2002 - Mauger - p.13/1



Analysis follows Fogli, Lisi, Marrone (PRD63) (2001) 053008 Assume 3 active + 1 sterile neutrino such that  $\delta m^2(solar) \ll \Delta m^2(atm) \ll$  $M^2(LSND) \Rightarrow$ simply to 3 quantities:  $\Delta m^2$ ,  $\sin^2 2\theta$ ,  $\sin^2 \xi$  $\nu_{\mu} \rightarrow \cos\xi \ \nu_{\tau} + \sin\xi \ \nu_s$  $\sin^2 \xi = 0 \Rightarrow$  pure  $\nu_{\mu} \leftrightarrow \nu_{\tau}$  $\sin^2 \xi = 1 \Rightarrow$  pure  $\nu_{\mu} \leftrightarrow \nu_s$ 







Recent results from K2K have made possible  $\nu_{\mu} \leftrightarrow \nu_{s}$  studies using the NC  $\pi^{0}$  sample.

- define double ratio:  $R_{\pi^0} \equiv \frac{(\pi^0/\mu)_{data}}{(\pi^0/\mu)_{MC}}$
- for each oscillation scenario, make predictions
- compare data with the predictions

$$\begin{array}{l} R_{\pi^0} = 1.49 \pm 0.08 \pm 0.22 \\ \nu_{\mu} \leftrightarrow \nu_{\tau} \text{ prediction is } 1.34 \\ \nu_{\mu} \leftrightarrow \nu_{s} \text{ prediction is } 1.12 \end{array}$$

SK  $R_{\pi^0}$  more consistent with  $u_\mu \leftrightarrow 
u_{ au}$ .



#### Assumptions:

Fit to three parameters:  $\Delta m_{23}^2, \theta_{13}, \theta_{23}$   $P(\nu_e \rightarrow \nu_\mu) = \sin^2 2\theta_{13} \times \sin^2 2\theta_{23} \times \sin^2(1.27\Delta m^2 \frac{L}{E}).$   $P(\nu_\mu \rightarrow \nu_\tau) = \cos^4 2\theta_{13} \times \sin^2 2\theta_{23} \times \sin^2(1.27\Delta m^2 \frac{L}{E}).$  $P(\nu_\tau \rightarrow \nu_e) = \sin^2 2\theta_{13} \times \cos^2 2\theta_{23} \times \sin^2(1.27\Delta m^2 \frac{L}{E}).$ 

For  $E_{\nu} > 3 \ GeV$ , matter effect can enhance oscillations ( $\theta_{13}$ )

ICHEP 2002 - Mauger - p.16/1









#### $\, \bullet \, \nu_{\mu} \leftrightarrow \nu_{\tau}$

- SK data consistent with each other
- Best Fit  $\Delta m^2 = 2.5 \times 10^{-3} eV^2$ ,  $\sin^2 2\theta = 1.0$  $\Delta m^2 \in 1.6 \sim 3.9 \times 10^{-3} eV^2 \sin^2 2\theta > 0.92$  90% C.L.
- Search for  $\nu_{\tau}$  consistent with  $\tau$  appearance

9 
$$u_{\mu} \leftrightarrow \nu_{\tau}$$
 VS.  $u_{\mu} \leftrightarrow \nu_{s}$ 

- NC and CC $\mu$  zenith angles: pure  $\nu_{\mu} \leftrightarrow \nu_{s}$  disfavored 99% C.L.
- $\nu_{\mu} \leftrightarrow \nu_{s}$  admixture  $\sin^{2} \xi < 0.19$  90% C.L.
- NC-rate ( $R_{\pi^0}$ ) pure  $\nu_{\mu} \leftrightarrow \nu_s$  disfavored 90% C.L.
- Three Active Flavor Oscillations
  - Consistent with maximal  $\nu_{\mu} \leftrightarrow \nu_{\tau}$
  - Small  $\theta_{13}$  allowed consistent with CHOOZ, Palo Verde





If CPT violated  $\delta = \Delta m_{\nu}^2 - \Delta m_{\bar{\nu}}^2 \neq 0$ Assume  $\sin^2 2\theta = 1$  for neutrinos and anti-neutrinos Best fit( $\nu, \bar{\nu}$ ):  $\delta = (2.8, 1.9) \times 10^{-3} eV^2$ Consistent with 0 CPT asymmetry (-0.0075 <  $\delta$  < 0.0055 $eV^2$ )

ICHEP 2002 - Mauger - p.19/1





Consider  $\Delta m^2 \rightarrow 0$  case  $P(\nu_{\mu} \rightarrow \nu_{\mu}) = (\cos^2 \theta + (\sin^2 \theta \times \exp(-\frac{m}{2\tau}\frac{L}{E})))^2$  FC 1-ring+PC+up- $\mu$  fit well NC enhanced sample does not fit well