# Atmospheric Neutrino Fluxes

- Historical introduction
- Sub-GeV v in three dimensions
- Multi-GeV and v-induced upward  $\mu$
- Atmospheric v as background & calibration for neutrino telescopes

Tom Gaisser August 20, 2004

## Historical context

#### Detection of atmospheric neutrinos

- Markov (1960) suggests Cherenkov light in deep lake or ocean to detect atmospheric v interactions for neutrino physics
- Greisen (1960) suggests water Cherenkov detector in deep mine as a neutrino telescope for extraterrestrial neutrinos
- First recorded events in deep mines with electronic detectors, 1965: CWI detector (Reines et al.); KGF detector (Menon, Miyake et al.)

#### Two methods for calculating atmospheric neutrinos:

- From muons to parent pions infer neutrinos (Markov & Zheleznykh, 1961; Perkins)
- From primaries to  $\pi$ , K and  $\mu$  to neutrinos (Cowsik, 1965 and most later calculations)
- Essential features known since 1961: Markov & Zheleznykh, Zatsepin & Kuz'min
- Monte Carlo calculations follow second method

Stability of matter: search for proton decay, 1980's v backg

- IMB & Kamioka -- water Cherenkov detectors
- KGF, NUSEX, Frejus, Soudan -- iron tracking calorimeters
- Principal background is interactions of atmospheric neutrinos
- Need to calculate flux of atmospheric neutrinos Tom Gaisser August 20, 2004 Atmospheric Neutrino Fluxes



## Historical context (cont'd)

р

π

 $\nu_{\mu}$ 

ve

 $v_{\mu}$ 

#### Atmospheric neutrino anomaly - 1986, 1988 ...

- IMB too few  $\mu$  decays (from interactions of  $v_{\mu}$ ) 1986
- Kamioka μ-like / e-like ratio too small.
- Neutrino oscillations first explicitly suggested in 1988 Kamioka paper
- Hint of pathlength dependence from Kamioka, Fukuda et al., 1994

### Discovery of atmospheric neutrino oscillations by S-K e

- Super-K: "Evidence for neutrino oscillations" at Neutriino 98
- Subsequent increasingly detailed analyses from Super-K 1998...
- Confirming evidence from MACRO and Soudan
- Analyses based on ratios comparing to 1D calculations

### Need for precise, complete, accurate, 3D calculations

- $\Theta \sim P_T / E$  is large for sub-GeV neutrinos
- Bending of muons in geomagnetic field important for  $\nu$  from  $\mu$  decay
- Complicated angular/energy dependence of primaries (AMS measurement)
- Use improved primary spectrum and hadroproduction information

Tom Gaisser August 20, 2004

## Atmospheric neutrino beam

- Up-down symmetric except for geomagnetic effects
- One detector for both
  - long baseline
  - short baseline
- $1 < L/E < 10^5 \text{ km/GeV}$
- $v_{\mu}/v_e \sim 2$  for  $E_v < GeV$



Tom Gaisser August 20, 2004 Atmospheric Neutrino Fluxes

D. Ayres, A.K. Mann et al., 1982

р

π

ν<sub>e</sub>

 $\nu_{\mu}$ 

Also V Stenger, DUMAND, 1980

#### Summary of Atmospheric Neutrino Calculations

| Zatsepin, Kuz'min                      | SP JETP 14:1294(1961)                | Mu |    |                                 |
|----------------------------------------|--------------------------------------|----|----|---------------------------------|
| Many calculations                      | ~ 1965 ~1990                         | 1D |    |                                 |
| D.H. Perkins                           | Asp.Phys. 2: 249 (1994)              | Mu |    |                                 |
| Honda, Kajita, Kasahara, Midorikawa    | PRD 52: 4985 (1995)                  | 1D | *  | FRITIOF                         |
| Agrawal, Gaisser, Lipari, Stanev       | PRD 53: 1314 (1996)                  | 1D | *  | Target                          |
| Battistoni et al                       | Asp.Phys 12:315 (2000)               | 3D |    | FLUKA                           |
|                                        | Asp.Phys 19:269 (2003)               |    |    |                                 |
| P. Lipari                              | Asp.Phys 14:171 (2000)               | 3D |    |                                 |
| V. Plyaskin                            | PL B516:213 (2001)<br>hep-ph/0303146 | 3D |    | GHEISHA                         |
| Tserkovnyak et al                      | Asp.Phys 18:449 (2003)               | 3D |    | CALOR-FRITIOF<br>GFLUKA/GHEISHA |
| Wentz et al                            | PRD 67 073020 (2003)                 | 3D |    | Corsika: DPMJET<br>VENUS, UrQMD |
| Liu, Derome, Buénerd                   | PRD 67 073022 (2003)                 | 3D |    |                                 |
| Favier, Kossalsowski, Vialle           | PRD 68 093006 (2003)                 | 3D |    | GFLUKA                          |
| Barr, Gaisser, Lipari, Robbins, Stanev | PRD 70 023006 (2004)                 | 3D |    | Target                          |
| Honda, Kajita, Kasahara, Midorikawa    | PRD 64 053011 (2001)                 | 3D | ** | DPMJET                          |
|                                        | astro-ph/0404457 to PRD              |    | ** |                                 |

\* Used for analysis of Super-K data in publications before 2004; \*\* used now

## Overview of the calculation

Dy = primary flux & cutoffs & Yield

 $= \phi_p \otimes R_p \otimes \gamma_{p \to v_i} + \sum \{\phi_A \otimes R_A \otimes \gamma_{A \to v_i}\}$   $2 \text{ protons} \qquad 2 \text{ nuclei}$ 

Yield:  $p \rightarrow \pi^{\pm} (k^{\pm}) \rightarrow \mu^{\pm} + V_{\mu} (\bar{V}_{\mu})$  $\downarrow \quad \bar{V}_{\mu} (V_{\mu}) + V_{e} (\bar{v}_{e}) + e^{\pm}$ 

[Signal ~ \$r. & Tr.]

Tom Gaisser August 20, 2004



## Primary spectrum

- Largest source of overall uncertainty
  - 1995: experiments differ by 50% (see lines)
  - Present: AMS, BESS within 5% for protons
  - discrepancy for He larger,
     but He only 20% of
     nucleon flux
  - CAPRICE lower by 15-20%

## Primary spectrum: new standard?



Tom Gaisser August 20, 2004

# Primary spectrum

- Compare 3 fits using same ۲ event generator (Target 2.1)
  - AGLS = PRD 53: 1996
  - Hamburg = TG et al., ICRC 2001 p. 1643 used for comparisons
  - 1.7 x E<sup>-2.7</sup> (c.g.s.) for analytic estimates



August 20, 2004

1.4

0

0.6

Ratio

# Hadronic interactions

- Sub-GeV v depend most on treatment of  $\pi$  production
- K<sup>+</sup> dominate  $E_v > 100 \text{ GeV}$
- Compare 5 calculations:
  - Bartol (Target-1, 2.1)
  - Honda et al. (1995: Fritiof; present: Dpmjet3)
  - Battistoni et al. (Fluka)
- Uncertainties from interactions ~ +/-15%



Tom Gaisser August 20, 2004

## Hadronic interactions

Example: Compare original Target 1 with Target 2.1 (Target 3D): pions down, kaons up



Tom Gaisser August 20, 2004

# Comparison (using same flux)

- New calculations lower than old, e.g.:
  - Target-2.1/ -1
  - Dpmjet3 / HKKM
  - 3 new calculations agree at Kamioka but less well at Soudan/SNO
- Larger uncertainty at high geomagnetic λ

   Interactions < 10 GeV are important



Tom Gaisser August 20, 2004 Atmospheric Neutrino 1

## Super-K atmospheric neutrino data (T. Kajita)



## Flavor ratio at production

- $r = v_{\mu}/v_{e}$  at production sets background for search for effects of solar and s<sub>13</sub> mixing
- $\Delta_{e} = P_{2}(r \cos^{2}\theta_{23} 1)$ Peres & Smirnov, 2004
- $\rightarrow 0$  for r = 2,  $\theta_{23} = 45^{\circ}$
- $r_{sub-GeV} \sim 2.04 2.1$

![](_page_13_Figure_5.jpeg)

Tom Gaisser August 20, 2004

## New hadro-production data expected

- Diagram:
  - Lego plot shows phase space weighting for sub-GeV events
  - Bars show existing data
- New sources of data
  - HARP
  - NA49 (P322)
  - MIPP (E907)

![](_page_14_Figure_8.jpeg)

Tom Gaisser August 20, 2004

## **3-dimensional effects**

- Characteristic 3D feature:
  - excess of v near horizon
  - shown in top, left panel
  - lower panels show directions of  $\mu$  and e
  - cannot see 3D effect directly; however:
- Horizontal excess is associated with a change in path-length distribution

![](_page_15_Figure_7.jpeg)

From Battistoni et al., Astropart. Phys. 12 (2000) 315

Tom Gaisser August 20, 2004

#### Zenith angle dependence **F** 10000 10000 v<sub>u</sub> North America v<sub>u</sub> at Kamioka 1D 3D 100-159 MeV 251-398 MeV (GeV m<sup>-2</sup>s<sup>-1</sup>sr<sup>-1</sup>) (GeV m<sup>-2</sup>s<sup>-1</sup>sr<sup>-1</sup>) 100-159 MeV 1000 1000 251-398 MeV 631-1000 MeV 631-1000 MeV 1.00-1.59 GeV 1.00-1.59 GeV E dN/d In(E) E dN/d In(E) 1.59-2.51 1.59-2.51 100 100 <u>2.</u>51-3.98 2.51-3.98 3.98-6.31 6.31-10.0 <u>6.</u>31-10.0 10 10 -0.5 0.5 -0.5 0.5 0 0 -1 G.D. Barr et al., PRD70 (2004) 023006 $\cos \theta_{7}$ $\cos \theta_{\tau}$

## Path-length dependence

- Path length shorter near horizon on average in 3D case
  - $-\cos(\theta) > 0$  only,
  - phase space favors nearby interaction scattering to large angle
  - 5-10% (E<sub>v</sub> ~0.3-1 GeV)
- Size of effect not yet known
  - δm<sup>2</sup>L/E: decrease L by 5% in 1 angular bin out of 20
  - increase  $\delta m^2$  by ~1%?

![](_page_17_Figure_8.jpeg)

from M. Honda et al., Phys. Rev. D64 (2001) 053001 Atmospheric Neutrino Fluxes

Tom Gaisser August 20, 2004

## 3D orthogonal to S-K L/E analysis

Giles Barr, v-2004

|                    | ł           | >30%    |  |  |
|--------------------|-------------|---------|--|--|
|                    | 3D<br>pigge | 10%-30% |  |  |
| $\triangle$        | )r          | 3%-10%  |  |  |
| 0                  |             | <3%     |  |  |
| $\bigtriangledown$ | 1<br>big    | 3%-10%  |  |  |
| •                  | D           | 10%-30% |  |  |

![](_page_18_Figure_3.jpeg)

4

3

Reconstructed zenith angle  $(\cos \Theta)$ 

Selected

-0.5

0

Selected

0.5

A

Selected

0.5

10

9

8

6

3

10

3

0

Selected

-0.5

0

Reconstructed E<sub>v</sub> (GeV)

![](_page_18_Figure_4.jpeg)

Difference between 3D and 1D calculations

![](_page_18_Figure_6.jpeg)

 $\cos \theta_{z}$ 

## Geomagnetic cutoffs & E-W effect as a consistency check

- Picture shows:
  - 20 GeV protons in geomagnetic equatorial plane
  - arrive from West and from near the vertical
  - but not from East
- Comparison to data:
  - provides consistency test of data & analysis

![](_page_19_Picture_7.jpeg)

From cover of "Cosmic Rays" by A.M. Hillas (1972) Atmospheric Neutrino Fluxes

Tom Gaisser August 20, 2004 Cutoffs at Super-K Measurement of East-West effect with atmospheric neutrinos--an important confirmation of analysis & interpretation of Super-K data as neutrino oscillations

 $v \text{ flux}, 0.4 < E_v < 3 \text{ GeV}$ 

 $-0.5 < \cos(\theta) < 0.5$ 

![](_page_20_Figure_4.jpeg)

Tom Gaisser August 20, 2004

# Higher energy atmospheric v

- Mean  $E_{\nu} \sim 100$  GeV for  $\nu$ induced upward  $\mu$
- Note difference in normalization

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

Tom Gaisser August 20, 2004

## Analytic approximation

 $\phi_{v}(E_{v}) = \frac{\phi_{v}(E_{v})}{1-\overline{2}_{NN}} \underbrace{\frac{\overline{2}_{N\pi} \overline{2}_{\pi v}}{1+D_{\pi} \underbrace{\cos \varphi } E_{v}}}_{E_{\pi}}$ 

$$\mathbf{v} = \mathbf{v}_{\mu} + \overline{\mathbf{v}}_{\mu}$$

-- good for  $E_v > 10 \text{ GeV}$ 

 $Z_{\pi\nu} = .087$   $Z_{\mu\nu} = .34$  $E_{\pi} = 115 \ GeV$   $E_{\mu} = 850 \ GeV$ 

Tom Gaisser August 20, 2004

# High energy ( e.g. $\nu_{\mu} \rightarrow \mu$ )

- Importance of kaons
  - main source of v> 100 GeV
  - $p \rightarrow K^+ + \Lambda$ <br/>important
  - Charmed analog important for prompt leptons

![](_page_23_Figure_5.jpeg)

Atmospheric Neutrino Fluxes

Tom Gaisser August 20, 2004

## Importance of kaon production

![](_page_24_Figure_1.jpeg)

Tom Gaisser August 20, 2004

# Calibration with atmospheric v

- MINOS, etc.
- Neutrino telescopes
- Example<sup>\*\*\*</sup> of  $v_{\mu} / v_{e}$ 
  - flavor ratio
  - angular dependence

![](_page_25_Figure_6.jpeg)

\*\*\*Note: this is maximal effect: horizontal = 85 - 90 deg in plots

Tom Gaisser August 20, 2004

## Global view of atmospheric v spectrum

![](_page_26_Figure_1.jpeg)

## Summary - oscillations

- Evidence for v oscillation uses ratios:
  - Contained events
    - $(v_{\epsilon} / v_{\mu})_{data} / (v_{e} / v_{\mu})_{calculated}$
    - upward / downward
  - Neutrino-induced upward muons
    - stopping / through-going
    - vertical / horizontal
  - Broad response functions minimize dependence on slope of primary spectrum
- Uncertainties tend to cancel in comparison of ratios
- Observation of geomagnetic effects confirms experiment & interpretation

![](_page_27_Figure_11.jpeg)

Tom Gaisser August 20, 2004

# Summary & outlook

- Current generation of calculations is 3D but
  - changes due to improved treatment of primary flux and treatment of hadronic interactions, not primarily to 3D
  - Need further refinements to see sub-dominant aspects of three flavor oscillations in atmospheric neutrinos
  - Calculate  $20 < E_v < 100$  MeV: background for SNR neutrinos. Only FLUKA has done this so far
- Incorporate new hadro-production results
  - HARP below 15 GeV
  - NA 49, MIPP ~ 100 GeV
- Uncertainty in kaon production limits accuracy of flux above 100 GeV
- Uncertainty in charm production (prompt v) limits sensitivity for diffuse astrophysical (> TeV) neutrinos

Tom Gaisser August 20, 2004