UNO (Underground Nucleon decay and Neutrino Observatory)

See UNO home page: http://ale.physics.sunysb.edu/uno/

Jeffrey Wilkes University of Washington, Seattle

> *Neutrino Telescopes* 25 Feb 2005

Outline

- Overview
 - what, who, how
- Physics goals, briefly
- Where UNO could go
- Neutrino beams to UNO
- Outreach and education
- DUSEL?

UNO Detector Concept

Water Cherenkov Detector optimized for:

- Light attenuation length limit
- PMT pressure limit
- Cost (staging built-in) (Total \$500M incl. contingency)

3 sections, each (60m)³ 13x Super-K total mass 20x Super-K fiducial mass excavation: \$100~250M

60m

60m

40% photocathode

2.5m veto layer with outward-facing PMTs optical separation between sections

10%

photocathode

60x60x180m³ Total Vol: 650 kton Fid. Vol: 440 kton Inner: 56,000 20" PMTs Outer: 14,900 8" PMTs Detector cost: \$250M

Salient features

- ~ 20X Super-K fiducial mass
- Build on well-known water Cherenkov techniques
 - Significant new detector development not required
 - Cost estimates can be made with reasonable confidence, BUT
 - Detector R&D may reduce costs significantly
- Site independent proposal!
 - Will use one potential site to illustrate numbers involved
 - More or less independent of DUSEL site selection process
 - Most proposed sites do not address megaton detector anyway
 - Physics goals can be met at any site with <a>3000 mwe depth

UNO Collaboration (4/04): 98 members, 40 institutes

SUNY at Stony Brook Marcus Ackerman John Hobbs Chang Kee Jung
John Hobbs
Chang Kee Jung
Tokufumi Kato
Dan Kerr
Kenkou Kobayashi
Matthew Malek
Bob McCarthy
Clark McGrew
Michael Rijssenbeek
Antony Sarrat
Ryan Terri
Chiaki Yanagisawa
IRES / ULP - Strasbourg, France
Chantal Racca
Jean-Marie Brom
Tuft Univ.
Tomas Kafka
Tony Mann
Univ. of Utah
Kai Martens
Warsaw Univ., Poland
Danka Kielczewska
Univ. of Washington
Rick Gran
Jeff Wilkes
Tianchi Zhao
College of William and Mary
Jeff Nelson
WIPP
Roger Nelson
Bill Thompson

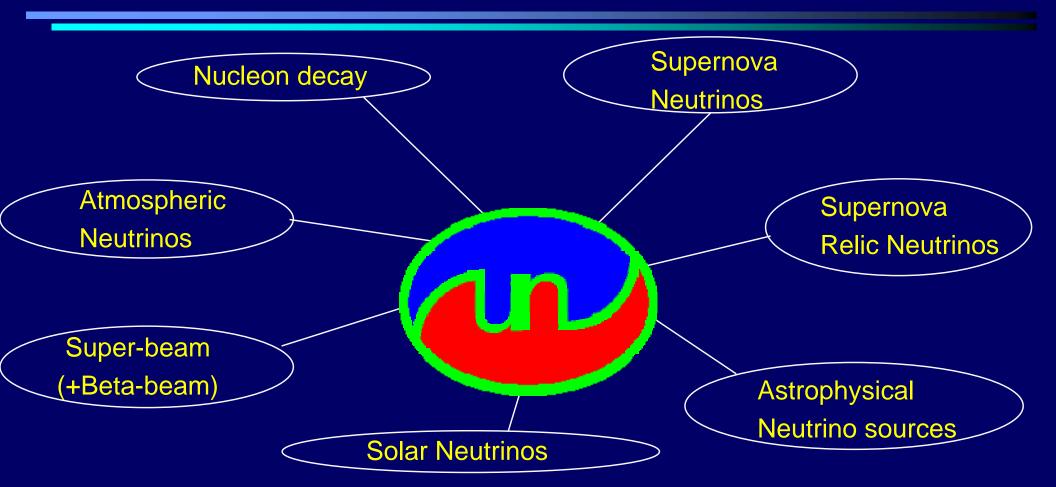
joined in past year

Advisory committees

- UNO advisory committee
 - Jacques Bouchez (Saclay)
 - Maury Goodman (ANL)
 - Tom Kirk (BNL)
 - Takahaki Kajita (ICRR)
 - Tony Mann (Tufts)
 - Kenzo Nakamura (KEK)
 - Masayuki Nakahata (ICRR)
 - Yoichiro Suzuki (ICRR)
 - Jeff Wilkes (U. of Washington)
 - Bob Wilson (Colorado State U.)

- Theoretical advisory committee
 - John Bahcall (IAS/Princeton)
 - John Beacom (FNAL)
 - Adam Burrows (U. of Arizona)
 - Maria Concepcion Gonzales-Garcia (Stony Brook)
 - Jim Lattimer (Stony Brook)
 - Bill Marciano (BNL)
 - Hitoshi Murayama (Berkeley)
 - Jogesh Pati (U. of Maryland)
 - Robert Shrock (Stony Brook)
 - Frank Wilczek (MIT)
 - Edward Witten (IAS/Princeton)

HEP Facilities Summary Table


HEPAP Facilities Committee (2003)

"Nice, but ...?"

UNO	

Project	Туре	Physics	Cost	Scientific Potential	Proposed Facility	State of Readiness	Possible Time Scale	
Linear Collider	Facility	Energy Frontier	\$5B – \$7B	Absolutely Central	Absolutely Central	R&D	2015 Operation	
LHC Luminosity Upgrade	Facility	Energy Frontier	\$150M (US Part)	Absolutely Central Central		R&D	2014 Operation	
LHC Energy Upgrade	Facility	Energy Frontier	Unknown	Don't Know Enough Yet	Don't Know Enough Yet	R&D	Decision in Next Decade	
SNAP	Experiment	Cosmology	\$400M – \$600M			R&D	2009 Launch	
BTEV	Experiment	Quark Physics	\$120M	Decision		Ready for Decision on Construction	2008 Operation	
СКМ	Experiment	Quark Physics	Decision		Ready for Decision on Construction	2008 Operation		
Super-B Factory	Facility	Quark Physics	Unknown Don't Know Don't Know R&D Enough Yet Enough Yet		R&D	Decision Later This Decade		
Double-Beta Decay	Experiment	Neutrino Physics	\$100M	Absolutely Central	Don't Know Enough Yet	R&D	2005 Prototype	
Off-Axis Neutrino Detector	Experiment	Neutrino Physics	\$120M	Important	Important	Project Engineering and Design	2010 Operation	
Neutrino Super Beam	Facility	Neutrino Physics	\$250M – \$500M (Accelerator and Beam Only)	Absolutely Central	Don't Know Enough Yet	Project Engineering and Design	Decision Later This Decade	
Underground Detector	Facility	Neutrino Physics and Proton Decay	\$500M	Absolutely Central	Don't Know Enough Yet	R&D	Decision Later This Decade	
Neutrino Factory	Facility	Neutrino Physics	Unknown	Don't Know Enough Yet	Don't Know Enough Yet	R&D	Decision in Next Decade	

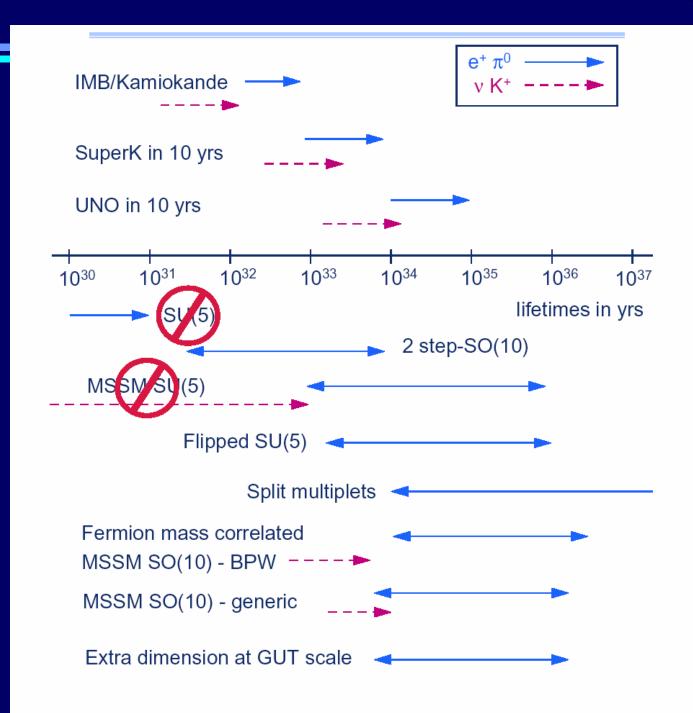
UNO Physics Goals

- Multi-purpose detector
- Comprehensive programs in astrophysics, nuclear and particle physics
- Synergy between accelerator and non-accelerator physics
- Nominal cost: \$500M total (for strawman site @ Henderson mine)

J. Wilkes, 25 Feb '05

Recent Collaboration meeting (Oct 2004)

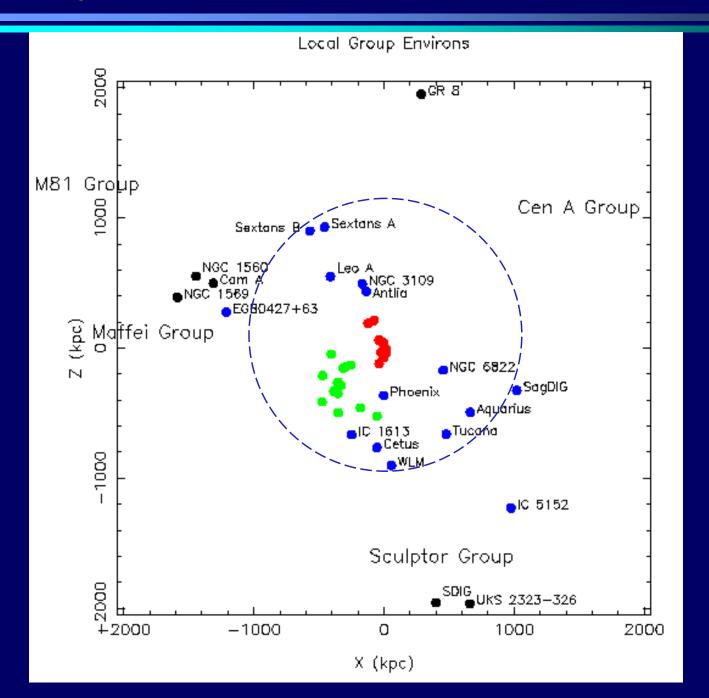
Friday, October 15, 2004


- Theorists

 interested in UNO physics lured to a special session organized by Ed Witten
- Goal: trick them into providing latest info needed for our R&D proposal (next slide)

Unification Day Workshop

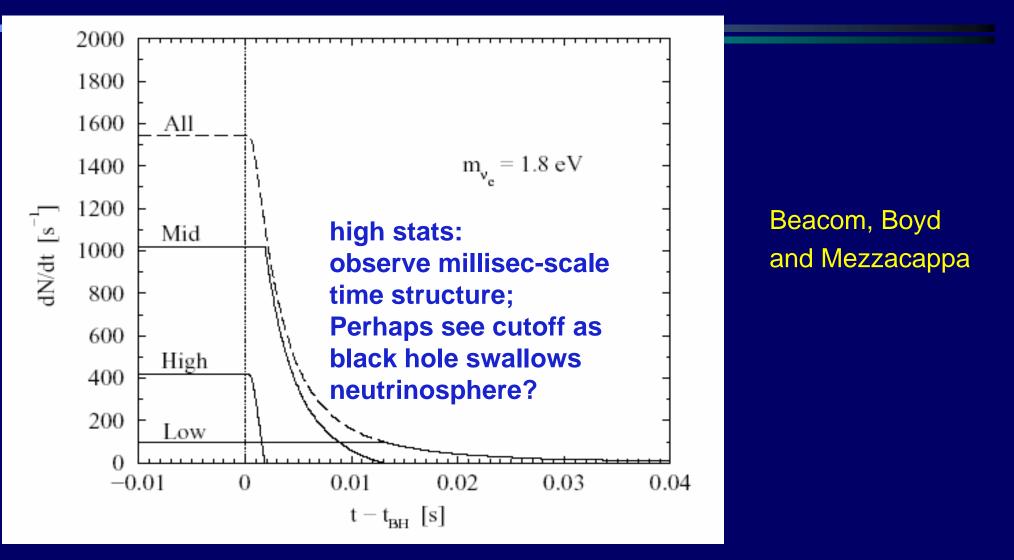
		Chair: B. Marciano
08:30-09:00	Experimental Status of the Proton Decay Searches	C. K. Jung
09:00-09:30	Proton Decay In String/M-Theory Unification	E. Witten
09:30-10:00	Unification in String Theory	J. Maldacena
10:00-10:30	Splitting SUSY	S. Dimopoulos
		•
10:30-10:45	Coffee Break	
		Chair: K. Babu
10:45-11:15	Three family models from the Heterotic string	S. Raby
11:15-11:45	No GUTs Needed: Planck Scale Nucleon Decay	D. Larson
11:45-12:15	Gauge Boson Mediated Proton Decay Rates	B. Marciano
12:15-13:30	Lunch	
		Chair: E. Witten
13:30-14:00	Proton Decay: From (the) MSSM to SUSY SO(10)	Q. Shafi
14:00-14:30	Predictive minimal SO(10) for neutrinos and proton decay	R. Mohapatra
14:30-15:00	The Flavor Puzzle and its implications for Proton Decay	K. Babu
15:00-15:30	Proton Decay In Minimal Susy and Ordinary GUTs	G. Senjanovic
15:30-15:45	Coffee Break	
		Chair: C.K. Jung
15:45-16:15	Proton Decay: A Compelling Feature Within	
	a Unified Picture	J. Pati
16:15-16:45	Unification and Proton Decay in Higher Dimensions	K. Dienes
16:45-17:15	Unified Theories in Higher Dimensions and Proton Decay	Y. Nomura
17:15-17:45	Raising Higgs boson mass and its implication to	
	proton decay	I. Gogoladze
17:45-18:30	Conclusion/Discussion	E. Witten/C.K. Jung


UNO Proton Decay Sensitivity

Not yet updated!)

Conclusion Theorists are smarter than experimentalists

Supernovae

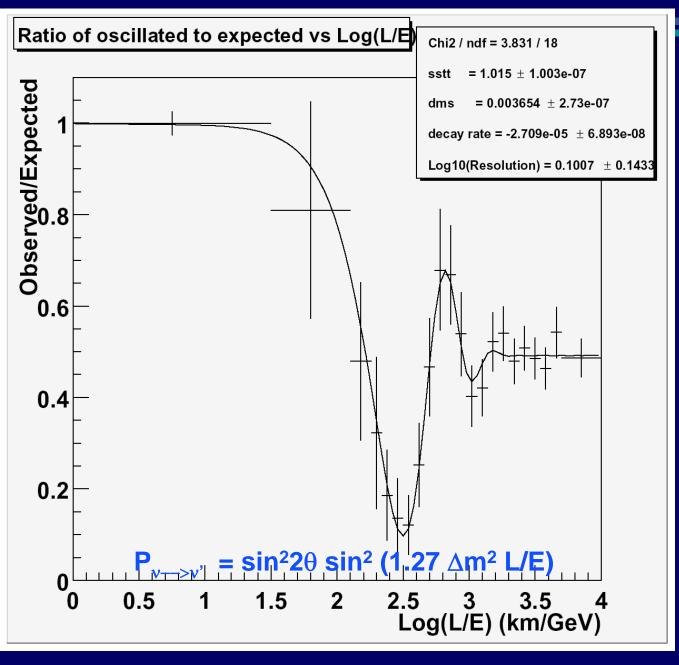


UNO's Supernova Reach: ~ 1 Mpc (Local Group of galaxies)

Supernova Rate: ~ 1 per 10 ~ 15 yr

140K events for SN @ 10 kpc

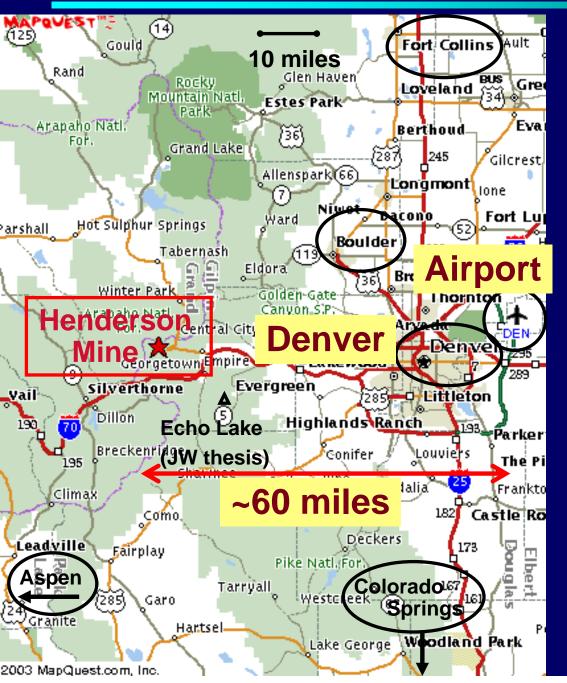
Galactic Supernova


~140,000 events in UNO:

msec timing structure of the flux \Rightarrow Determination of core collapse mechanism Possible Observation of Birth of a Black Hole via cutoff

Diffuse supernova relic flux

- Super-K limit (1.2 v_e/cm²s >19 Mev @ 90%CL) must be reduced by factor of ~6 to address all current predictions
- Can be reached by UNO in ~6 yrs @ 4000 MWE depth (longer if shallower)
 - Event rate 20~60 / year for 450 MT fiducial volume
 - BG-limited search


Direct Observation of Oscillatory Behavior in atm v L/E

~7 years of UNO exposure ($\Delta m^2 = 0.003 \text{ eV}^2$, $\sin^2 2\theta = 1.0$) Cuts:

- 1 muon w/ E > 1GeV or
- $E_{vis}(\mu) > 0.5 E_{vis}$ (total)
- removal of horizontal events

Baseline site for study: Henderson Mine (Colorado)

Use site details for simulations and proposal

- Working molybdenum mine; 150M\$ modernization completed in 2000
- Easily accessible, roads kept clear in winter
- Near major urban/industrial area and airline hub
 - ~1 hr drive from Denver International Airport
 - Nearby research infrastructure, institutes and universities:

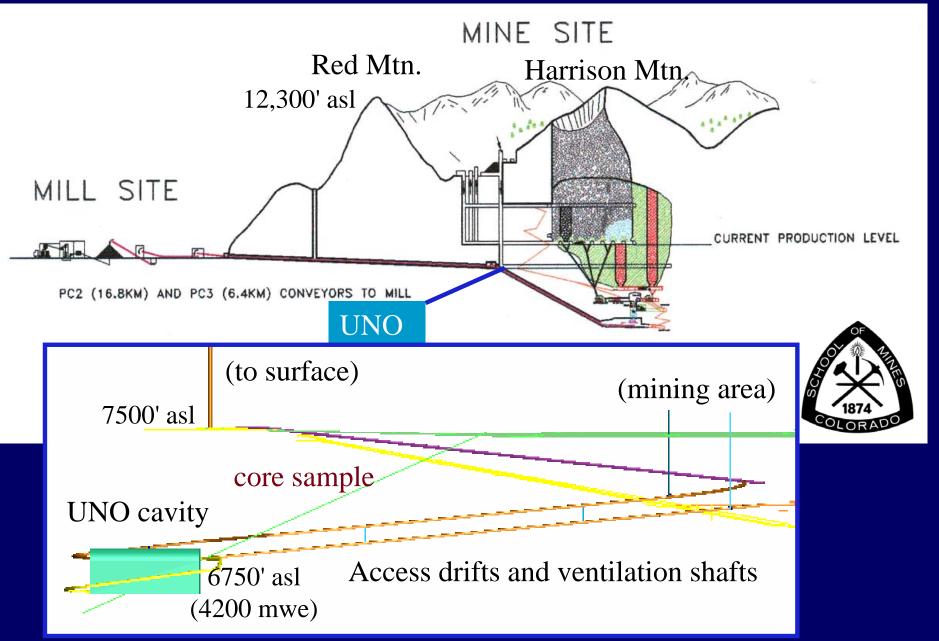
U. Colorado, NIST, Colorado State U., Denver U., USAFA, Colorado College, Aspen Center for Physics

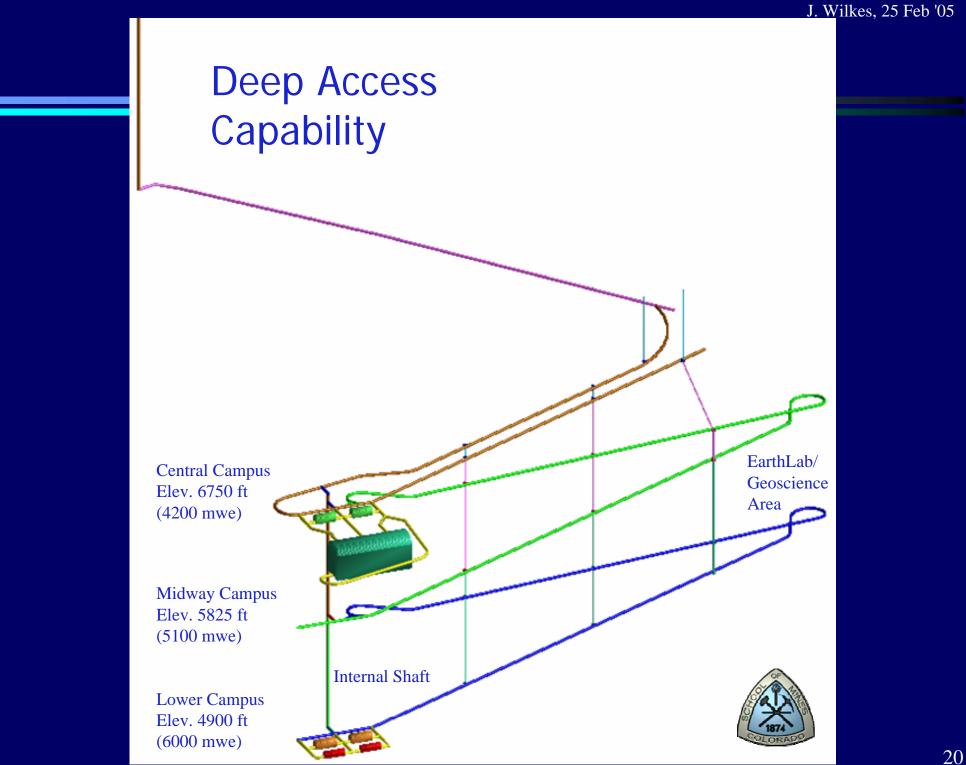
Direct flights to major cities around the world

Henderson Mine

- Owned by Climax Molybdenum Company, a subsidiary of Phelps Dodge Corporation
- Established in 1970's
 - modern mine developed under strict environmental and safety regulations: company just spent \$150M updating
 - 10th largest underground hard rock mine operating in the world
- Mining: Molybdenum (Moly) ore, via Panel Caving (Block Caving)
- Huge elevator/hoist available (1 of a total of 5 shafts)
 - Collar at 3,100 m above sea level
 - 8.5 m diameter shaft with with two hoisting compartments
 - Large hoist: 7m long X 2.5m wide X 4m tall, 20 tons normal capacity
 - fits a ship container!
- Mining levels 2100 m and 2500 m above sea level
 - ~1000m deep, minimum overburden ~2700 mwe
 - Can go deeper...

J. Wilkes, 25 Feb '05


Henderson Mine, Empire, Colorado



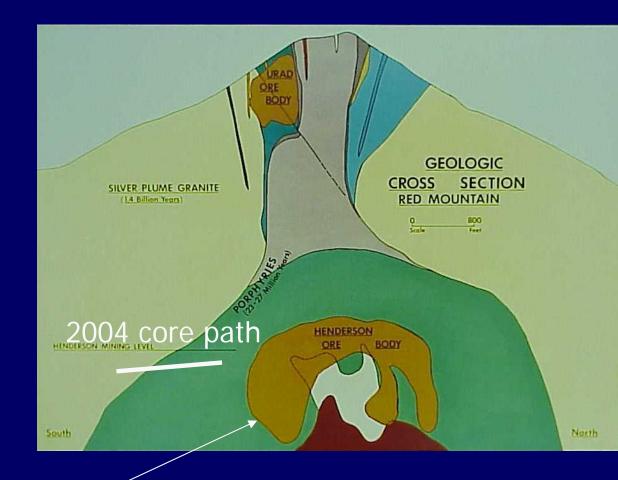
Henderson Mine

- Excavation Capacity: ~40,000 50,000 ton/day
 - Actual operation: ~20,000 30,000 ton/day: under-utilized capacity
- 10 mile tunnel with high speed conveyor and train track
 - Conveyor belt: 50kton/day max capacity, 20kton/day normal operation
- Moderate temperature cool air available year round
 - no mechanical cooling necessary
- High capacity water and sewage treatment plant
- Electric power station: 2 x 30 MW
- Tailing site owned by mine company
 - existing permit allows the deposition of over 340Mton
- Large office building and warehouses
- Anticipated mine closing in 10~20 years
 - Mine Co. and local politicians see science as one possible way of retaining employment, revitalizing the area, etc

possible UNO Site

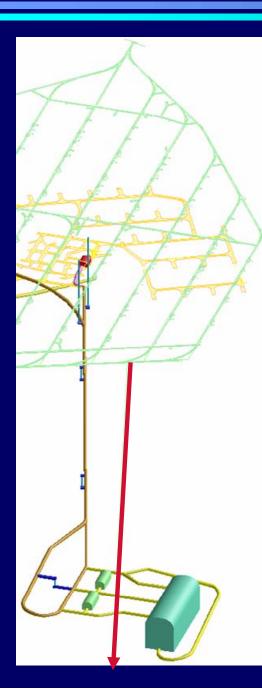
Huge Rock Handling/Removal System

- 1. 80 ton trucks dump rock at crusher.
- 2. 10 mile long underground conveyors belts remove rock.
- 3. 4 mile long surface conveyor to mill site.
- ~40k 50kton/day capacity



Red Mountain Geology: an instructive case study

Molybdenite deposit (porphyry).


Chemically and mineralogically similar granitic rocks, differ mostly in texture.

150,000 m of core drilling over the past 40 year: "No surprises..."

Ore body 700x900x200 m³, approximately 360 million tons. Second largest known molybdenum deposit in the world.

Core Sample Drilling 2004: results

- 750 m long, inclination of -26 degrees, from top at 7,500' elevation to bottom at 6,300' (past UNO site)
- Surprise! Did *not* enter silver plume granite as expected!
 - demonstrates need for actual sampling...
- Results (good news):
 - Extremely competent Urad Porphyry (Granite)
 - very hard with a high percentage of quartz.
 - expected to have high compressive strength
 - RQD is quite high, 70 100.
 - no evidence of mineralization
 - Good news!
 - No problem foreseen for constructing UNO

J. Wilkes, 25 Feb '05

Example of mineralized core from ore-bearing area

UNO Design and Construction Timeline

Conceptual UNO Schedule												
	Year -2	Year -1	Year 1	2	3	4	5	6	7	8	9	10
R&D Proposal/LOI												
Tech. Proposal												
Excavation												
Water containment												
PMT delivery												
Preparation												
Installation												
Water fill												
											contingency	

Two years of rigorous detector design needed

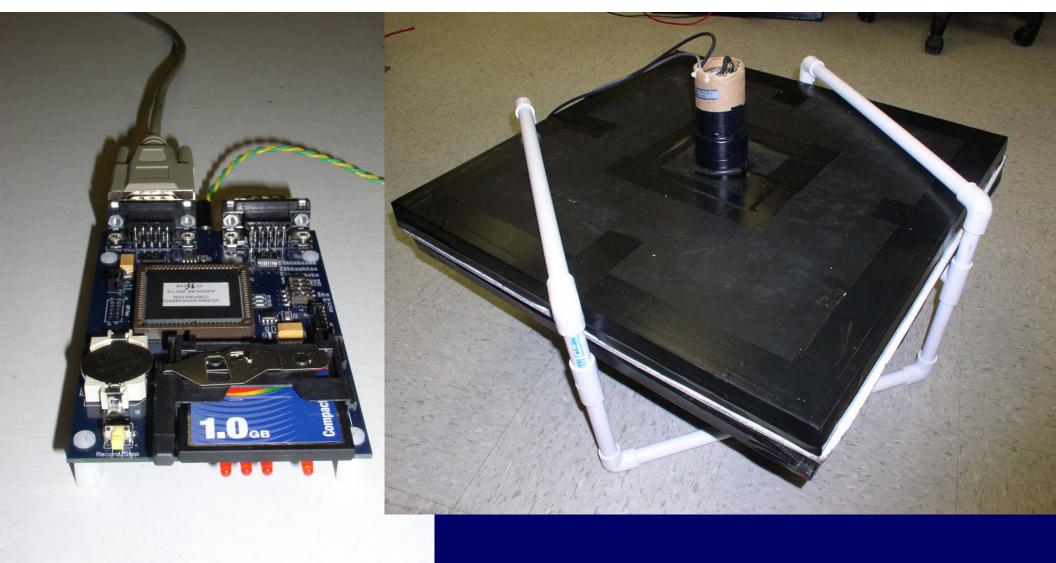
UNO already has an active outreach program!

SALTA: Snowmass Area Large Time-Coincidence Array

SALTA began independently of UNO, as part of Snowmass 2001

Secondary-school students and teachers are now collecting underground muon data

- Aspen High School, Aspen, CO
- Basalt High School, Basalt, CO
- Roaring Fork Valley High School, Carbondale, CO
- Lake County High School, Leadville, CO

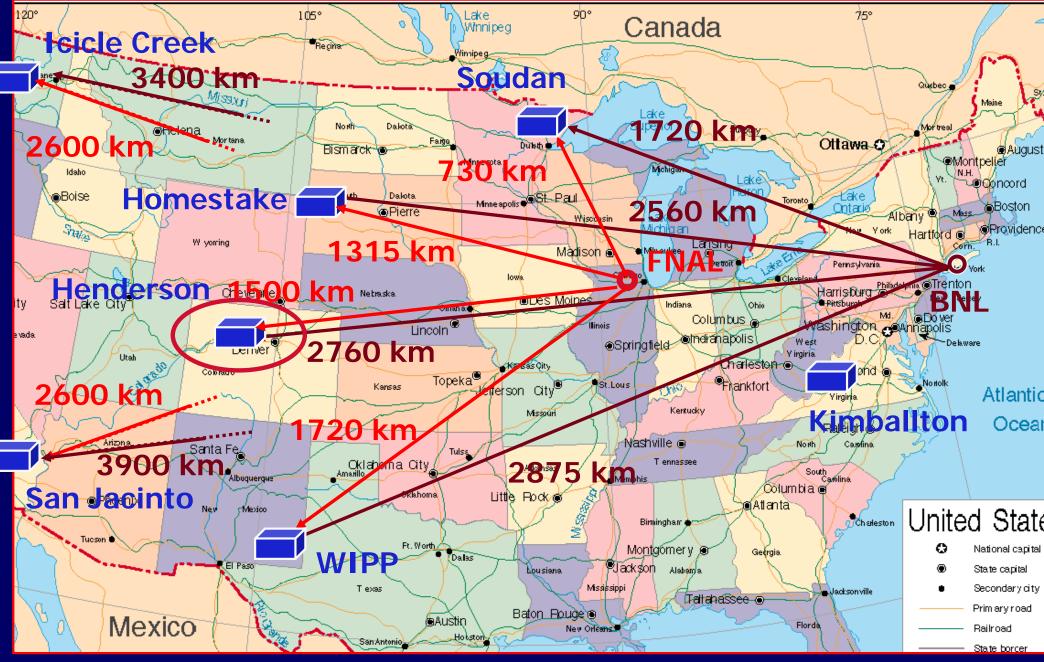

The highest-elevation school in U.S. -- 10,152 feet above sea level

• Clear Creek High School, Empire, CO

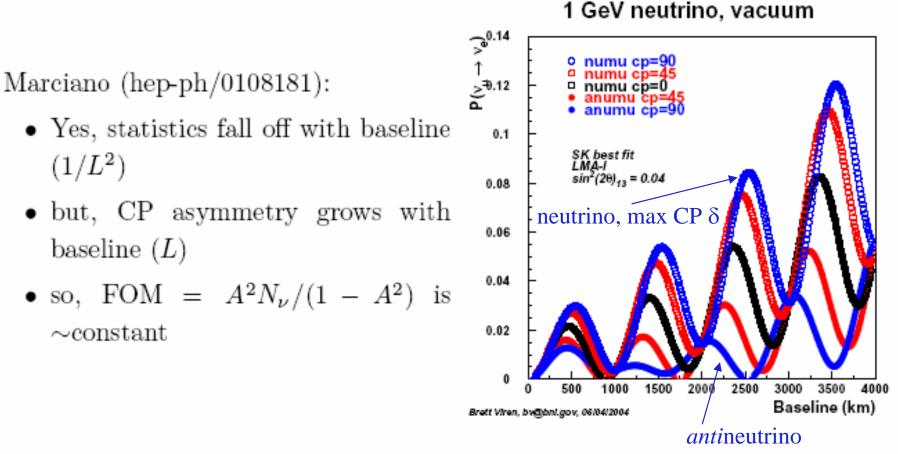
Aspen Center for Physics Education & Outreach Workshop July 6-8, 2004: SALTA schools take over the library, setting up cosmic ray telescopes, for training in the new DAQcard that will be used in all their data-taking.

A portable stand holds each muon telescopes.

with dust a problem for a PC we house a low-power serial digital data logger


SALTA's underground muon effort is launched September, 2004

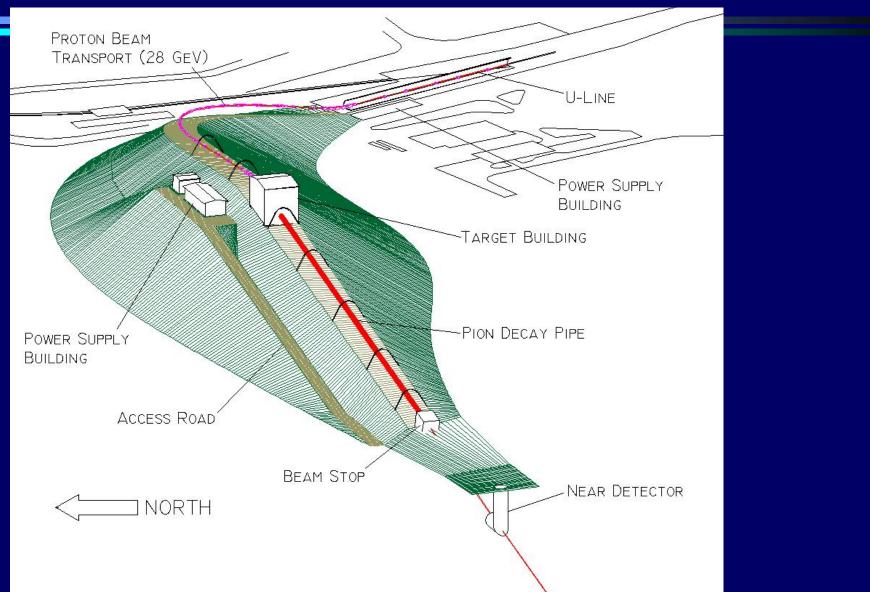
US DUSEL process under way


- Solicitiation 1: Gather infrastructure requirements for potential experiments in physics, geosciences, biology, & engineering
 - 14 working groups established
 - Held meetings and workshops: deliver final report 3/05(?)
- Solicitation 2: Site specific responses to solicitation 1 requirements: Conceptual designs
 - Proposals due Feb 28 (postponed from Jan), selection in Sept?
 - "3 to 5 awards", total funding of 1.5M\$
- Solicitation 3: full site proposal, selection (end of '05 ?)

DUSEL Candidate Sites and Potential Superbeam Experiments

Why VLBL?

 Marciano pointed out that for HE neutrino beams, 2nd and 3rd oscillation dips can be very handy...



Message: don't be afraid to get high and go long!

M. Diwan, B. Viren

J. Wilkes, 25 Feb '05

3-D Neutrino Super Beam Perspective

T. Kirk February 15, 2003

UNO plans

- Submit UNO R&D proposal to US DOE and NSF
 - R&D for *proposal* : items covered:
 - Site independent rock engineering, surface treatment, water containment
 - Structural and PMT mounting design
 - PMT/photodetector, optical R&D (under way with other funds)
 - Detector detailed-design R&D
 - Professional project management estimates
 - Target date for UNO R&D proposal: late spring
 - Use Henderson Mine (near Denver) as strawman site
 - Need *some* site's parameters for various studies
 - UNO is still site-independent
 - Will build it wherever we can!