KamLAND (Anti-Neutrino Status)

The 10th International Conference on Topics in Astroparticle and Underground Physics Sep. 14, 2007 Itaru Shimizu (Tohoku Univ.)

KamLAND Collaboration

T. Ebihara,1 S. Enomoto,1 K. Furuno,1 Y. Gando,1 K. Ichimura,1 H. Ikeda,1 K. Inoue,1 Y. Kibe,1 Y. Kishimoto,1 M. Koga,1 Y. Konno,1 A. Kozlov,1 Y. Minekawa,1 T. Mitsui,1 K. Nakajima,1, K. Nakajima,1 K. Nakamura,1 K. Owada,1 I. Shimizu,1 J. Shirai,1 F. Suekane,1 A. Suzuki,1 K. Tamae,1 S. Yoshida,1 J. Busenitz,2 T. Classen,2 C. Grant,2 G. Keefer,2 D.S. Leonard,2 D. McKee,2 A. Piepke,2 M.P. Decowski,3 S.J. Freedman,3 B.K. Fujikawa,3 F. Gray,3, L. Hsu,3, R. Kadel,3 K.-B. Luk,3 H. Murayama,3 T. O'Donnell,3 H.M. Steiner,3 L.A. Winslow,3 D.A. Dwyer,4 C. Jillings,4, 、C. Mauger,4 R.D. McKeown,4

C. Zhang,4 B.E. Berger,5 C.E. Lane,6 J. Maricic,6 T. Miletic,6 M. Batygov,7 J.G. Learned,7 S. Matsuno,7 S. Pakvasa,7 J. Foster,8 G.A. Horton-Smith,8 A. Tang,8 S. Dazeley,9, K. Downum,10 G. Gratta,10 K. Tolich,10 W. Bugg,11 Y. Efremenko,11 Y. Kamyshkov,11 O. Perevozchikov,11 H.J. Karwowski,12 D.M. Markoff,12 W. Tornow,12 K. M. Heeger,13 F. Piquemal,14 and J.-S. Ricol14

(KamLAND Collaboration)

1Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan 2Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA 3Physics Department, University of California at Berkeley and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 4W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA 5Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA 6Physics Department, Drexel University, Philadelphia, Pennsylvania 19104, USA 7Department of Physics and Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA 8Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA 9Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA 10Physics Department, Stanford University, Stanford, California 94305, USA 11Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 12Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Physics Departments at Duke University, North Carolina State University, and the University of North Carolina at Chapel Hill 13Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706, USA 14CEN Bordeaux-Gradignan, IN2P3-CNRS and University Bordeaux I, F-33175 Gradignan Cedex, France

Kamioka Liquid Scintillator Anti-Neutrino Detector

2 flavor neutrino oscillation

34% photo-coverage with 1325 17" and 554 20" PMTs

,000 ton LS

most sensitive region

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \sin^2\left(\frac{1.27\Delta m^2 [\text{eV}^2]l[m]}{E[\text{MeV}]}\right)$$

$$\Delta m^2 = (1/1.27) \cdot (E[\text{MeV}]/L[m]) \cdot (\pi/2)$$
$$\sim 3 \times 10^{-5} \text{eV}^2$$

reactor neutrino : sensitive to LMA solution

Physics Target in KamLAND

observed energy (MeV) 0.4 2.6 8.5 1.0 solar neutrino geo neutrino supernova neutrino reactor neutrino solar neutrino reactor neutrino ν_x geo neutrino prompt ν_x ν_e р delayed mean capture time ~ 200 µsec on proton neutrino detection by electron scattering anti-neutrino detection by inverse beta-decay

Reactor and Geo Neutrino Analysis

(1) efficient accidental background rejection(2) combined analysis of reactor and geo neutrinos

Anti-Neutrino Event Selection

Systematic Uncertainty

"full volume" calibration lowered the fiducial volume error

preliminary (4.7	7% in previo	ous analysis)	
Detector related		Reactor related	
Fiducial volume	1.8%	$\overline{\nu}_e$ spectra	2.4%
Energy scale	1.5%	Reactor power	2.1%
L-selection eff.	0.6%	Fuel composition	1.0%
OD veto	0.2%	Long-lived nuclei	0.3%
Cross section	0.2%	Time lag	0.01%
	2.4%		3.4%

Total systematic uncertainty : 4.1%

Full Volume Calibration

(a, n) Background Estimation

Rate Analysis above 2.6 MeV

Energy Spectrum above 0.9 MeV

exposure : 2881 ton-year (3.8 × 766 ton-year for "KamLAND 2004")

L/E plot

Distortion effect is clearly illustrated by L/E plot

Neutrino Oscillation

KamLAND covers the 2nd and 3rd maximum

characteristic of neutrino oscillation

Alternate Hypothesis

best model is neutrino oscillation

Alternate Wavelength

LMA 0 and LMA II are disfavored at more than 4σ

Oscillation Parameters

Precise measurement of Δm^2

 Δm^2 is measured at 2.8% precision by KamLAND

TNU (Terrestrial Neutrino Unit) = events/10³² target-proton/year

Summary

- KamLAND improved sensitivity to $\overline{\nu}_e$ observation. data-set : 766 ton-yr \rightarrow 2881 ton-yr (α , n) B.G. uncertainty : E threshold : 2.6 MeV \rightarrow 0.9 MeV 32% \rightarrow 10% (ground state) syst. uncertainty : 6.5% \rightarrow 4.1% 100% \rightarrow 20% (excited state)
- In the reactor neutrino analyses, we showed
 - Oscillatory shape including 2nd and 3rd maximum
 - Exclusion of LMA II and 0 at more than 4σ C.L.
 - Precise measurement of oscillation parameters.

KamLAND only $\tan^2\theta = 0.56^{+0.14}_{-0.09}$ $\Delta m^2 = 7.58^{+0.21}_{-0.20} \times 10^{-5} \, eV^2$ KamLAND + SNO $\tan^2\theta = 0.49^{+0.07}_{-0.05}$ $\Delta m^2 = 7.59^{+0.20}_{-0.21} \times 10^{-5} \, eV^2$

Geo neutrino flux is measured with better precision.