Status of

OPERA/CNGS

NAKAMURA M. Nagoya Univ. OPERA Collaboration

2003 Feb. 11 for NOON2003, Kanazawa

OLLABORATION

35 groups ~ 160 physicists from 11 countries IIHE(ULB-VUB) Brussels

China IHEP Beijing, Shandong

> Croatia Zagreb

France LAPP Annecy, IPNL Lyon, LAL Orsay, IRES Strasbourg

> **Germany** Berlin, Hagen, Hamburg, Münster, Rostock

> > Israel Technion Haifa

Italy Bari, Bologna, LNF Frascati, <u>L'Aquila</u>, LNGS, Naples, Padova, Rome, Salerno

> Japan Aichi, Toho, Kobe, Nagoya, Utsunomiya

Russia INR Moscow, ITEP Moscow, JINR Dubna, <u>Obninsk</u>

> **Switzerland** Bern, Neuchâtel

Turkey

2006/June Start beam exposure

CNGS beam Optimized to study ν_{τ} appearance

$\Rightarrow Interactions at Gran Sasso$ $\sim 3600 v NC+CC /kton/year$ $\sim 16 v_{\tau} CC /kton/year$

for $\sin^2 2\theta = 1$, $\Delta m^2 = 2.5 \times 10^{-3} \, eV^2$

Construction started on Oct. 2000 Due to CERN financial situation we have one year delay. The beam will start on spring 2006.

OPERA Detector in Gran Sasso Hall C

nén nén st di

1. 7kton ECC detector

ECC Brick

Sandwich of Emulsion Films and Lead Plates

scanning station @ Nagoya Univ.

Emulsion Film 3D tracker with sub-micron accuracy

T.INAKAHO(INAgoya UHIV. Film Read-out Current version -UTS R&D (a) Nagoya

Read-out head

CCD Camera 1 frame/s

> Emulsion Film.

lens

Objective

Z stage

Track recognition hardware

A LE LE LE LE LE

Film Read-out Principle

R&D @ Nagoya

Film Read-out Performance

- Scanning speed :1cm²/h
- Track detection efficiency :~99%

Position resolution

T.INAKAHO(INAgoya UHIV.

R&D (a) Nagoya

Angular resolution $\sigma \sim 2.1 \text{ mrad}$ σ~ **0.2** μm 3500 3500 110 900 500 ID 13 14217 14217 Entries Entries Entries 1594 450 3000 3000 4/60 .5378E-02 Mean .4452E-02 Mean .1035E-03 RMS RMS .1943 .1933 400 χ^2/ndf 388.0 400df - 367.4 RMS .2301E-02 43 44 2500 2500 χ^2/ndf 42.10 17 883.2 \$<u>5</u>0 949.3 P1 350 Constant 293.0 -.1332E-03 P2 .1199E-02 .1132E-03 2000 2000 300 P4 Mean P.3.1970 .1892 300 Sigma .2106E-02 P4 1683. 1677 250 P6 250 .5873E-02 Ρ5 .3718E-02 1500 1500 P6 .5933E-01 .5648E-01 200 200 1000 1000 150 50 100 500 500 50 0 0 -0.5 0.5 -0.5 0 1.5 0 $\cap 0$ 0 -0.01-0.010.01 0.02 0 $\delta x(\mu m)$ δι $\delta \vartheta$, 1 measurement δv(μm)

region (4179 tracks)

Detection of ν_{τ}^{CC} in DONUT

IN.INOHAKA, IVI. KOHIAISU(INAgoya UHIV.)

Expected number of events

full mixing; 5 years run @ $4.5 \ 10^{19} \text{ pot / year}$

τ decay	Δm	b.g.		
mode	1.6	2.5	4.0	
e	1.6	3.9	9.7	0.16
μ	1.3	3.2	8.3	0.29
h	1.4	3.2	8.3	0.20
Total	4.3	10.3	26.3	0.65

Aim at evidence of v_{τ} appearance after a few years of data taking

Room for improvements:
low energy muon tag by dE/dx : background 0.65 → 0.41
Changeable Sheet : increase efficiency by 10-15 %
Beam intensity increase by 30-50 %

Emulsion Film

R&D @ Nagoya & Fujifilm

Emulsion Film Refreshing

Erasing unwanted cosmic ray tracks recorded randomly during the film production process, before installation

Refresh Facility

Cosmic ray flux

- 1stroom 1/50(115m.w.e.)
- 2nd room 1/400(220m.w.e.)

Under construction

TONO Mine underground

Refresh Facility

R&D @ Nagoya & Fujifilm

Film lay out on the plate

Room Size $4.5m \times 4.5m \times 20m$

Film installation

Vacuum packing

Facility design & Prototype

Film read-out Next generation

R&D @ Nagoya

S-UTS Scanning speed: 40cm²/h × 40 faster than current system (UTS)

- fast CCD (3k frame/sec) : tested
- FPGA preprocessor and track recognition board : in progress
- actuator/stage (piezo) synchronisation: tested
- mechanics : tested
- S-UTS ready by Spring 2003

Driving in constant velocity

0.8

MC

MC

Electron identification

1.10SIIIIO(INagoya UIIIV.) Electromagnetic shower Test exp. @ CERN (May200 In analysis

in study)

Momentum measurement

Univ.) R&D @ Nagoya for DONUT Analysis.

Pβ measurement using Multiple Scattering

For example: 10 GeV/c has *rms* deflection of $0.3\mu m$

Momentum measurement Test exp. @ KEK(Nov.2002

Pβ measurement using Multiple Scattering

(Germany) Broup

Lead plate production

Lead Production :

- Low radio activity lead (Boliden) Pb+0.7%Ca
- Detailed specifications in progress
- Lead production of 8 t /day possible
- Thickness control : $1030 \pm 10 \ \mu \text{ m}$
- Transportation : 111 truck load (16.2 t) for 1800 t

Rolling and thickness control

N.Naganawa (Nagoya Univ.) Chemical compatibility test @ NAGOYA

Goslar (Germany)

Brick Manupulator System prototype tests

inces shubboung (interior) shoup

Target Tracker

Dipolar magnet {

LNF Frascati (Italy) group Drift Tubes: muon momentum

Hamburg (Germany) group

Full scale prototype magnet Constructed and tested at Frascati

- Iron slabs ordered, resuming ordering machining
- Yokes, coils, supplies being ordered

- starts installation : march 2003 ← critical path
- magnetic field in good agreement with simulation
- some fringing field in the area of MAPMT (10 Gauss)

Schedule

	starting	ending					
Spectrometer	March 2003	September 20)04				
Drift tubes, XPC		January 2004	April 20	005			
Target walls & tra	cker D	ecember2003	Sep	tember 200	5		
BAM		October 2004 April 2005					
BMS		April 2005 December 2005					
ECC Brick filling			July	y 2005	June 2006		

- 1) Civil Engineering:
 - All excavations are now completed (see http://cern.ch/cngs)
 - Concreting work is ongoing, expected to be completed by end May 2003.
- 2) Next steps:
 - Installation of beam dump ("hadron stopper"): Summer 2003
 - Decay tube installation (1 km long steel tube, 2.45 m diameter): Sept 2003-April 2004
 - in parallel:
 - delivery of all magnets and quadrupoles for the proton beam during 2003
 - delivery of first final horn and final reflector in 2003
 - start extensive series of horn tests in final configuration
- 3) Planned start-up of CNGS beam: unchanged, spring 2006

3.5

OPERA on CNGS : v_{τ} Appearance experiment sensitive to the SK atm. parameter region

OPERA detector and CNGS beam can be ready in 2006.

(One year delay from the proposal due to CERN financial problem)

First evidence in few years data taking