Neutrino oscillations:

Present status and outlook

Thomas Schwetz-Mangold

CERN

Outline

- Introduction
- Global fit to present oscillation data impact of 2007 new data
- LSND puzzle in the light of MiniBooNE results
- Future oscillation experiments

prospects for measuring θ_{13} CP violation, determination of the mass hierarchy Measurements of absolute neutrino masses

- Tritium beta-decay
- neutrinoless double beta-decay
- neutrino mass determination from cosmology

... but focus on neutrino oscillations

Neutrino mixing

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} W^{\rho} \sum_{\alpha=e,\mu,\tau} \bar{\nu}_{\alpha L} \gamma_{\rho} \ell_{\alpha L} + \text{h.c.}$$
$$\mathcal{L}_{M} = -\frac{1}{2} \sum_{i} \nu_{iL}^{T} C^{-1} \nu_{iL} m_{i} + \text{h.c.}$$

with
$$\nu_{\alpha L} = \sum_{i} U_{\alpha i} \nu_{iL}$$
, $(\alpha = e, \mu, \tau)$

- $\nu_{\alpha L}$: neutrinos with CC interaction ("flavour neutrinos")
- u_{iL} : neutrinos with mass m_i
- $U_{\alpha i}$: PMNS lepton mixing matrix

in a basis where the charged lepton mass matrix is diagonal

Neutrino oscillations

osc.prob. (vac):
$$P_{\nu_{\alpha} \to \nu_{\beta}}(L) = \sum_{jk} U_{\alpha j} U^*_{\beta j} U^*_{\alpha k} U_{\beta k} \exp\left[-i \frac{\Delta m^2_{kj} L}{2 E_{\nu}}\right]$$

2-neutrino oscillations

Two-flavour limit:

Neutrino oscillations in matter

MSW effect (3 flavours):

$$H_{\text{mat}} = \underbrace{U \text{diag}\left(0, \frac{\Delta m_{21}^2}{2E_{\nu}}, \frac{\Delta m_{31}^2}{2E_{\nu}}\right) U^{\dagger}}_{H_{\text{vac}}} \pm \underbrace{\frac{\text{diag}(\sqrt{2}G_F N_e, 0, 0)}_{V^{\text{eff}}}}_{V^{\text{eff}}}$$

 $N_e(x)$: electron density along the neutrino path

$$i\frac{d}{dt}\left(\begin{array}{c}a_e\\a_\mu\\a_\tau\end{array}\right) = H_{\mathrm{mat}}(t)\left(\begin{array}{c}a_e\\a_\mu\\a_\tau\end{array}\right)$$

Global data and three-neutrino oscillations

Maltoni, TS, Tortola, Valle, hep-ph/0405172 v6; TS, 0710.5027

Neutrino oscillation experiments

solar neutrinos

Homestake, SAGE+GNO, Super-Kamiokande, SNO, Borexino

- atmospheric neutrinos
 Super-Kamiokande
- reactor neutrinos
 Chooz (1 km), KamLAND (180 km)
- long-baseline accelerator experiments K2K (250 km), MINOS (735 km)

3-flavour oscillation parameters

3-flavour effects are suppressed because $\Delta m^2_{21} \ll |\Delta m^2_{31}|$ and $\theta_{13} \ll 1$

 \Rightarrow dominant oscillations are well described by effective two-flavour oscillations

The "solar" parameters Δm^2_{21} , $heta_{12}$

Solar neutrino experiments

Solar nontrina ornorimonte

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(OP)]

 7σ evidence for a non-zero $\nu_{\mu,\tau}$ flux from the sun

T. Schwetz, Southampton, 15 April 2008 - p.14

'Solar' parameters

adiabatic evolution of the neutrino state from the center of the sun to the surface

First data from Borexino

0708.2251 [astro-ph] measurment of the Be7 neutrino line at 0.862 MeV by $e\nu \rightarrow e\nu$ scattering (\Rightarrow) 47 ± 7 (stat) ± 12 (sys) ev/(day x 100t), without osc.: 75 ± 4

First data from Borexino

0708.2251 [astro-ph] measurment of the Be7 neutrino line at 0.862 MeV by $e\nu \rightarrow e\nu$ scattering (\Rightarrow)

 47 ± 7 (stat) ± 12 (sys) ev/(day x 100t), without osc.: 75 ± 4

Kamioka Liquid scinitillator Anti-Neutrino Detector

detection of $\bar{\nu}_e$ produced in surrounding nuclear power plants

70 GW of nuclear power (7% of world total) is generated at a distance 175 ± 30 km from Kamioka New data released this summer:

2881 ton yr data

4 times more than previous 2004 data

 reduced syst. error due to full volume calibration from 4.7% to 1.8% dominating error for ∆m² determination is now the uncertainty on the energy scale of 1.5%

observed number of events: 985

expectation without oscillations:

1550 reactor neutrino events + 63 background

The KamLAND energy spectrum

evidence for oscillations in $1/E_{\nu}$

 $\Delta m_{21}^2 = 7.6 \pm 0.20 \times 10^{-5} \,\mathrm{eV}^2$, $\sin^2 \theta_{12} = 0.32 \pm 0.023$

The "atmospheric" parameters Δm^2_{31} , $heta_{23}$

Super-K atmospheric neutrino data

Super-K atmospheric neutrino data

Long-baseline experiments

first generation of LBL experiments (ν_{μ} -disappearance)

Long-baseline experiments

first generation of LBL experiments (ν_{μ} -disappearance)

	K2K	MINOS
source	KEK	Fermilab
detector	Super-K	Soudan
baseline	250 km	735 km
neutrino energy	1.3 GeV	3 GeV
$E_{ u}/L$ [eV 2]	5.2×10^{-3}	4.1×10^{-3}
obs. events	112	563
expect. w/o osc.	$158.1\substack{+9.2 \\ -8.6}$	738 ± 30

MINOS energy spectrum

arxiv:0708.1495, 2.5×10^{20} pot

Super-K + K2K + MINOS

 $\Delta m_{31}^2 = 2.4 \pm 0.15 \times 10^{-3} \,\mathrm{eV}^2$, $\sin^2 \theta_{23} = 0.50 \pm 0.063$

The bound on $heta_{13}$

The bound on θ_{13} emerges from an interplay of the global data

The bound on θ_{13} emerges from an interplay of the global data

The bound on θ_{13} emerges from an interplay of the global data

The bound on θ_{13}

 $\sin \theta_{13} = |U_{e3}| < 0.224 \,(3\sigma) \quad \leftrightarrow \quad |V_{us}| = 0.2257 \pm 0.0021$

Summary 3-flavour oscillation parameters
3-flavour oscillation parameters

	$\mathbf{bf} \pm 1\sigma$	acc. $@3\sigma$	
Δm_{21}^2	$(7.6 \pm 0.2) 10^{-5} \mathrm{eV}^2$	(8%)	KamLAND
$\sin^2 heta_{12}$	0.32 ± 0.023	(22%)	SNO
$ \Delta m_{31}^2 $	$(2.4 \pm 0.15) 10^{-3} \mathrm{eV}^2$	(17%)	MINOS
$\sin^2 heta_{23}$	0.50 ± 0.063	(33%)	SK atm
$\sin^2 heta_{13}$	$< 0.05 \ @ 3\sigma$		CHOOZ

Maltoni, TS, Tortola, Valle, hep-ph/0405172 v6; TS, 0710.5027

Three flavour osc. parameters summary

two possibilities for the neutrino mass spectrum

What do we learn from these numbers?

Do they indicate some structure?

What do we learn from these numbers?

Do they indicate some structure?

example: Tri-bimaximal mixing

Harrison, Perkins, Scott, PLB 2002, hep-ph/0202074

$$\sin^2 \theta_{12} = 1/3, \quad \sin^2 \theta_{23} = 1/2, \quad \sin^2 \theta_{13} = 0 \qquad \Rightarrow$$
$$U = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2}\\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

3-flavour oscillations

Open questions:

 Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?

- Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?
- Increase the precision on sol and atm params (e.g. Is θ_{23} exactly 45°? Tri-bimaximal mixing?)

- Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?
- Increase the precision on sol and atm params (e.g. Is θ_{23} exactly 45°? Tri-bimaximal mixing?)
- How small is θ_{13} ?

- Is this basic picture correct? LSND hint? non-standard effects beyond oscillations?
- Increase the precision on sol and atm params (e.g. Is θ_{23} exactly 45°? Tri-bimaximal mixing?)
- How small is θ_{13} ?
- What is the value of the CP phase δ ?

- Is this basic picture correct?
 LSND hint?
 non-standard effects beyond oscillations?
- Increase the precision on sol and atm params (e.g. Is θ_{23} exactly 45°? Tri-bimaximal mixing?)
- How small is θ_{13} ?
- What is the value of the CP phase δ ?
- Type of the neutrino mass ordering (sign of Δm_{31}^2)

The LSND puzzle and MiniBooNE results

Maltoni, TS, 0705.0107

The LSND signal

 $L\simeq$ 35 m

evidence for $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations A. Aguilar *et al.*, PRD 64 (2001) 112007

 $87.9 \pm 22.4 \pm 6.0$ excess events $P = (0.264 \pm 0.067 \pm 0.045)\%$ $\sim 3.3\sigma$ away from zero

Oscillation interpretation of LSND

the problem:

 $\Delta m^2 \sim eV^2$ not consistent with solar (8 × 10⁻⁵) and atmospheric (3 × 10⁻³) mass splittings for three neutrinos!

	LSND	MiniBooNE
energy	30 MeV	500 MeV
baseline	30 m	500 m
	same L/E_{ν} value	
channel	$\overline{ u}_{\mu} ightarrow \overline{ u}_{e}$	$ u_{\mu} ightarrow u_{e}$

obs. events minus background:

 $475 < E_{\nu}^{\rm QE} < 1250 \, {\rm MeV}$: $22 \pm 19 \pm 35 \, {\rm events}$ (consistent with zero)

 $300 < E_{\nu}^{\text{QE}} < 475 \text{ MeV}$: $96 \pm 17 \pm 20 \text{ events}$ (excess at 3.6σ)

The MiniBooNE 2-neutrino limit

In the 2-neutrino framework MiniBooNE and LSND are incompatible at the 98% CL Aguilar-Arevalo et al., PRL08

Adding a sterile neutrino

In (3+1) schemes the SBL appearance probability is effectively 2- ν oscillations:

$$P_{\mu e} = \sin^2 2\theta_{\rm SBL} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

with

$$\sin^2 2\theta_{\rm SBL} = 4|U_{e4}|^2|U_{\mu4}|^2$$

LSND / MiniBooNE inconsistency is the same as in the 2-flavour analysis presented by the MiniBooNE collaboration (98% CL)

Appearance vs disappearance in (3+1)

appearance amplitude $\sin^2 2\theta_{\text{SBL}} = 4|U_{e4}|^2|U_{\mu4}|^2$ disappearance experiments bound $|U_{e4}|^2$ and $|U_{\mu4}|^2$

(3+1) global

More sterile neutrinos?

5-neutrino oscillations

Sorel, Conrad, Shaevitz, hep-ph/0305255

(3+2) appearance probability

$$P_{\nu_{\mu} \to \nu_{e}} = 4 |U_{e4}|^{2} |U_{\mu4}|^{2} \sin^{2} \phi_{41} + 4 |U_{e5}|^{2} |U_{\mu5}|^{2} \sin^{2} \phi_{51} + 8 |U_{e4} U_{\mu4} U_{e5} U_{\mu5}| \sin \phi_{41} \sin \phi_{51} \cos(\phi_{54} - \delta)$$

with the definitions

$$\phi_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}, \qquad \delta \equiv \arg \left(U_{e4}^* U_{\mu 4} U_{e5} U_{\mu 5}^* \right) \,.$$

(3+2) osc. include the possibility of CP violation! remember: MiniBooNE: neutrinos, LSND: anti-neutrinos

(3+2) appearance data

best fit point spectra:

MiniBooNE

Perfect fit to appearance data: w/o MB low energy excess: $\chi^2_{min} = 16.9/(29-5)$ with MB low energy excess: $\chi^2_{min} = 18.5/(31-5)$

T. Schwetz, Southampton, 15 April 2008 - p.47

LSND

(3+2) disappearance data

what about the disappearance data?

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = 1 - 4 \left(1 - \sum_{i=4,5} |U_{\alpha i}|^2 \right) \sum_{i=4,5} |U_{\alpha i}|^2 \sin^2 \phi_{i1}$$
$$- 4 |U_{\alpha 4}|^2 |U_{\alpha 5}|^2 \sin^2 \phi_{54}$$

 \Rightarrow bound $|U_{ei}|$ and $|U_{\mu i}|$ (i = 4, 5), similar as in (3+1) to be reconciled with appearance amplitudes $|U_{ei}U_{\mu i}|$

(3+2) app vs disap

projection

section

(3+2) global

testing consistency of disappearance and appearance data:

$$\chi^2_{\rm PG} = 17.2 \,(4 \, {\rm dof}) \qquad {\rm PG} = 0.18\%$$

(without MB: $\chi^2_{\rm PG} = 17.5$)

inconsistency at about 3.1σ

parameters in common $|U_{e4}U_{\mu4}|, |U_{e5}U_{\mu5}|, \Delta m^2_{41}, \Delta m^2_{51}$

best fit:
$$\Delta m_{41}^2 = 0.9 \text{ eV}^2$$
, $\Delta m_{51}^2 = 6.5 \text{ eV}^2$, $\chi_{\min}^2 = 94.5/(107-7)$

 $\chi^2_{\text{min, global (3+1)}} - \chi^2_{\text{min, global (3+2)}} = 6.1/4 \,\text{dof}$ (81% CL)

the low energy MB excess in the (3+2) fit

the MB low energy excess is not reproduced at the global best fit point:

adding another sterile: (3+3)

(3+3) global fit

MB300

1.84

100.9

0.83

0.46

52%

3.5/4

All these sterile neutrino schemes have problems with cosmology

- sterile states contribute to the relativistic degrees of freedom (CMB, BBN)
- conflict with bound on the sum of neutrino masses from various cosmological data sets (LSS)

SN Ia, LSS (2dF, SDSS), BAO, CMB (WMAP, BOOMERANG)

68%, 95%, 99% CL

Hannestad, Raffelt, astro-ph/0607101

More 'exotic' proposals

- **3-neutrinos and CPT violation** Murayama, Yanagida 01; Barenboim, Borissov, Lykken 02; Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07

- 3-neutrinos, and an anagida 01; Barenboim, B. KamLAND+atmospheric antineutrino data Barenboim, B. KamLAND+atmospheric antineutrino data (Sonzalez-Garcia, Maltoni, Schwetz 03)
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-decay Babu, Pakvasa 02
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07
- **3-Neutrinos, and Amospheric antineutrino data** Barenboim, B. KamLAND+atmospheric antineutrino, ana, ranagida 01; Barenboim, B. KamLAND+2, Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. quantum decoherence Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07

- **3-Neutrinos, and Albertic antineutrino data** Barenboim, Bi KamLAND+atmospheric antineutrino, ana, ranagida 01; Barenboim, Bi KamLAND+2, Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. <u>Guestine spectrum</u>, NuTeV PNCE Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, Mews, 04; Gouvea, Grossman, 06; Katori, Kostelecky, Tayloe, 06
- mass varying neutrinos

Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05

- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07

- **3-Neutrinos, and Amospheric antineutrino data** Barenboim, B. KamLAND+atmospheric antineutrino, ana, ranagida 01; Barenboim, B. KamLAND+2, Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. <u>Guestine spectrum</u>, NuTeV PNCE Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
 Kostelecky, Tayloe, 06
- mass varying neutrinos
 Kaplan, Nelson, Weiner 04; Zurek 04; Barger, Marfatia, Whisnant 05
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07

- **3-Neutrinos, and Amospheric antineutrino data** Barenboim, B. KamLAND+atmospheric antineutrino, ana, ranagida 01; Barenboim, B. KamLAND+2, Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. <u>Guestine spectrum</u>, NuTeV PNCE Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
 Kostelecky, Tayloe, 06
- Mass varying neutrinos
 Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutrinos in extra dimensions Paes, Pakvasa, Weiler 05
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07

- **3-Neutrinos, and Amospheric antineutrino data** Barenboim, B. KamLAND+atmospheric antineutrino, ana, ranagida 01; Barenboim, B. KamLAND+2, Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. <u>Guentine spectrum</u>, NuTeV PNCE Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
 Kostelecky, Tayloe, 06
- Mass varying neutrinos
 Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutring price extra dimensions
 Paes, Pakvasa, We MiniB+KamL+atmospheric?
- 1 decaying sterile neutrino Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07

- **3-Neutrinos, and Amospheric antineutrino data** Barenboim, B. KamLAND+atmospheric antineutrino, ana, ranagida 01; Barenboim, B. KamLAND+2, Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. <u>Guestine spectrum</u>, NuTeV PNCE Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
 Kostelecky, Tayloe, 06
- Mass varying neutrinos
 Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutring price extra dimensions
 Paes, Pakvasa, We MiniB+KamL+atmospheric?
- 1 decaying steril MiniBooNE) Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutrinos and new gauge boson Nelson, Walsh 07

- **3-Neutrinos, and Amospheric antineutrino data** Barenboim, B. KamLAND+atmospheric antineutrino, ana, ranagida 01; Barenboim, B. KamLAND+2, Gonzalez-Garcia, Maltoni, Schwetz 03
- 4-neutrinos and CPT violation Barger, Marfatia, Whisnant 03
- Exotic muon-dec KARMEN, TWIST
- CPT viol. <u>Guestine spectrum</u>, NuTeV PNCE Barenboim, Mavromatos 04
- Lorentz violation Kostelecky, energy dependence, MiniBooNE?
 Kostelecky, Tayloe, 06
- mass varying neutrinos
 Kaplan, Nelson, Wei CDHS+atmospheric data?
- shortcuts of sterile neutring in Paes, Pakvasa, We MiniB+KamL+atmospheric? Extra dimensions
- 1 decaying steril MiniBooNE) Palomares-Riuz, Pascoli, Schwetz 05
- 2 decaying sterile neutrinos with CPV
- sterile neutringinos+atmospheric? ge boson Nelson, Walsh 07

An exotic sterile neutrino with energy dependent mass or mixing

TS, 0710.2985

Energy dependent sterile neutrino

Experiment	Channel	$\langle E_{\nu} \rangle$	
Bugey	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	4 MeV	e.g., assume a 4th
Chooz	$\bar{\nu}_e \rightarrow \bar{\nu}_e$	4 MeV	neutrino with an
Palo Verde	$\bar{\nu}_e ightarrow \bar{\nu}_e$	4 MeV	energy dependent
LSND	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	40 MeV	$(\Sigma \setminus r)$
KARMEN	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	40 MeV	$m_4^2 = m_*^2 \left(\frac{\mathcal{L}_*}{\mathcal{F}} \right)$
MiniBooNE	$\nu_{\mu} \rightarrow \nu_{e}$	700 MeV	$\left(L_{\nu} \right)$
CDHS	$ u_{\mu} ightarrow u_{\mu}$	1 GeV	$(r \ge 0)$
NOMAD	$ u_{\mu} \rightarrow \nu_{e}$	50 GeV	

Energy dependent sterile neutrino

Energy dependent sterile neutrino

Summary LSND

- (3+1): strongly disfavoured
- (3+2): LSND and MiniBooNE are consistent but: severe tension in the global fit
- many exotic "solutions" fail

Summary LSND

- (3+1): strongly disfavoured
- (3+2): LSND and MiniBooNE are consistent but: severe tension in the global fit
- many exotic "solutions" fail

For the rest of this talk I will assume a non-oscillation explanation for the LSND signal and the low-energy MiniBooNE excess, and stick to the three-neutrino oscillation framework.

Future oscillation experiments

Conventional beam experiments:

Reactor experiments with near and far detectors:

Off-axis superbeams:

MINOS: Fermilab to Soudan mine, 5.4 kt magnetized iron calorimeter

CNGS: CERN to Gran Sasso, ν_{τ} appearance **OPERA**: 1.65 kt emulsion cloud chamber

D-Chooz: new experiment at Chooz site (50 000 events) Daya Bay: "big" reactor experiment in China (500 000 ev)

Label	L	$\langle E_{\nu} \rangle$	mass	channel		
Conventional beam experiments:						
MINOS	$735\mathrm{km}$	$3{ m GeV}$	$5.4\mathrm{kt}$	$ u_{\mu} ightarrow u_{\mu}, u_{e}$		
OPERA	$732\mathrm{km}$	$17{ m GeV}$	$1.65\mathrm{kt}$	$ u_{\mu} \rightarrow v_{e}, \nu_{\mu}, \nu_{ au}$		
Reactor experiments with near and far detectors:						
D-Chooz	$1.05\mathrm{km}$	$\sim 4{ m MeV}$	$\sim 10\mathrm{t}$	$\bar{\nu}_e ightarrow \bar{\nu}_e$		
Daya Bay	$2./1.6\mathrm{km}$	$\sim 4{\rm MeV}$	$\sim 80\mathrm{t}$	$\bar{\nu}_e \to \bar{\nu}_e$		
Off-axis superbeams:						
T2K	$295\mathrm{km}$	$0.76{ m GeV}$	$22.5\mathrm{kt}$	$ u_{\mu} ightarrow u_{e}, u_{\mu}$		
ΝΟνΑ	$812{ m km}$	$2.22{ m GeV}$	$20\mathrm{kt}$	$\dot{ u_{\mu}} ightarrow u_{e}, u_{\mu}$		

T2K: Tokai (JPARC) to Kamioka (SK) 22.5 kt water Cherenkov NO ν A: TASD detector, off-axis angle of 0.72°

LBL experiments beyond ten years

• superbeam upgardes $(\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}) + (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \bar{\nu}_{\mu})$ T2HK: beam 0.77 \rightarrow 4 MW, SK (22.5 kt) \rightarrow HK (500 kt) T2KK: second detector in Korea NO ν A: proton driver, second detector WBB: wideband beam, $E_{\nu} \sim \text{GeV}, L \gtrsim 1000 \text{ km}$ CNGS-upgrades (beam upgrade, liquid Ar detector) SPL: CERN to \sim Mt water Cerenkov at Frejus (130 km)

LBL experiments beyond ten years

- superbeam upgardes $(\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}) + (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \bar{\nu}_{\mu})$ T2HK: beam 0.77 \rightarrow 4 MW, SK (22.5 kt) \rightarrow HK (500 kt) T2KK: second detector in Korea NO ν A: proton driver, second detector WBB: wideband beam, $E_{\nu} \sim \text{GeV}, L \gtrsim 1000 \text{ km}$ CNGS-upgrades (beam upgrade, liquid Ar detector) SPL: CERN to ~Mt water Cerenkov at Frejus (130 km)
- beta beams (βB) (ν_e → ν_μ) + (ν
 _e → ν
 _μ)
 low γ βB z.B. CERN-Frejus (E_ν ~ 0.4 GeV) or
 high γ βB (longer BL), mono-energetic βB

LBL experiments beyond ten years

- superbeam upgardes $(\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}) + (\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \bar{\nu}_{\mu})$ T2HK: beam 0.77 \rightarrow 4 MW, SK (22.5 kt) \rightarrow HK (500 kt) T2KK: second detector in Korea NO ν A: proton driver, second detector WBB: wideband beam, $E_{\nu} \sim \text{GeV}, L \gtrsim 1000 \text{ km}$ CNGS-upgrades (beam upgrade, liquid Ar detector) SPL: CERN to ~Mt water Cerenkov at Frejus (130 km)
- beta beams (βB) (ν_e → ν_µ) + (ν
 _e → ν
 _µ)
 low γ βB z.B. CERN-Frejus (E_ν ~ 0.4 GeV) or
 high γ βB (longer BL), mono-energetic βB
- neutrino factory (NuFact) $(\nu_e, \nu_\mu \to \nu_\mu) + (\bar{\nu}_e, \bar{\nu}_\mu \to \bar{\nu}_\mu)$ $E_{\nu} \sim 20 - 50 \,\text{GeV}, \, 1000 \,\text{km} \lesssim L \lesssim 7000 \,\text{km}$

LBL oscillation probability

LBL oscillation probability

What is the value of θ_{13} ?

What is the value of θ_{13} ?

- naively one would expect $\theta_{12} \sim \theta_{23} \sim \theta_{13}$ $\rightarrow \theta_{13}$ around the corner
- $\theta_{13} \ll 1$ hint for some symmetry

What is the value of θ_{13} ?

- naively one would expect $\theta_{12} \sim \theta_{23} \sim \theta_{13}$ $\rightarrow \theta_{13}$ around the corner
- $\theta_{13} \ll 1$ hint for some symmetry
- relatively large θ_{13} opens the possibility to observe generic 3-flavour effects (CP-violation)

- $\bar{\nu}_e \rightarrow \bar{\nu}_e$ disappearance reactor experiments with near and far detectors: **D-Chooz**, **Daya Bay**
- LBL $\nu_{\mu} \rightarrow \nu_{e}$ appearance experiments (MINOS, CNGS) T2K, NO ν A

Measuring θ_{13} *by* $\nu_{\mu} \rightarrow \nu_{e}$ *at beams*

The measurement of θ_{13} with the $\nu_{\mu} \rightarrow \nu_{e}$ appearance channel suffers from correlations and degeneracies:

G.L. Fogli, E. Lisi, Phys. Rev. D54 (1996) 3667
J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301
H. Minakata, H. Nunokawa, JHEP 10 (2001) 001
V.Barger, D.Marfatia, K.Whisnant, Phys. Rev. D65 (2002) 073023; D66 (2002) 053007
P.Huber, M.Lindner, W.Winter, Nucl. Phys. B645 (2002) 3; Nucl. Phys. B654 (2003) 3 and many more

Not $\sin^2 2\theta_{13}$, but only a specific parameter combination is measured very accurately

The LBL appearance oscillation probability

$$P_{\mu e} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2 (1-A)\Delta}{(1-A)^2} + \sin 2\theta_{13} \hat{\alpha} \sin 2\theta_{23} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\Delta + \delta_{\rm CP}) + \hat{\alpha}^2 \cos^2 \theta_{23} \frac{\sin^2 A\Delta}{A^2}$$

with

$$\Delta \equiv \frac{\Delta m_{31}^2 L}{4E_{\nu}} , \quad \hat{\alpha} \equiv \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \sin 2\theta_{12} , \quad A \equiv \frac{2E_{\nu}V}{\Delta m_{31}^2}$$

anti- ν : $\delta_{\rm CP} \rightarrow -\delta_{\rm CP}$, $A \rightarrow -A$, $P_{e\mu}$: $\delta_{\rm CP} \rightarrow -\delta_{\rm CP}$ other hierarchy: $\Delta \rightarrow -\Delta$, $A \rightarrow -A$, $\hat{\alpha} \rightarrow -\hat{\alpha}$

T. Schwetz, Southampton, 15 April 2008 - p.69

Measuring θ_{13} *by* $\nu_{\mu} \rightarrow \nu_{e}$ *at beams*

Huber, Lindner, Rolinec, TS, Winter, 2004

Measuring $\sin^2 2\theta_{13}$ *at reactors*

"Clean" measurement of $\sin^2 2\theta_{13}$:

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \, \sin^2 \frac{\Delta m_{31}^2 L}{4E_{\nu}} + \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right)^2 \cos^4 \theta_{13} \sin^2 2\theta_{12}$$

last term negligible for $\frac{\Delta m_{31}^2 L}{4E_{\nu}} \sim \pi/2$ and $\sin^2 2\theta_{13} \gtrsim 10^{-3}$

determination of θ_{13} is free of correlations and degeneracies

Minakata, Sugiyama, Yasuda, Inoue, Suekane, hep-ph/0211111 Huber, Lindner, TS, Winter, hep-ph/0303232

Measuring $\sin^2 2\theta_{13}$ *at beams or reactors*

assume
$$\sin^2 2\theta_{13} = 0.1$$

$\sin^2 2\theta_{13}$ discovery reach evolution

plot by W. Winter from Albrow et al., hep-ex/0509019

$$\begin{split} \Delta m^2_{31} = +2.5\times 10^{-3} \; \mathrm{eV^2} \\ \sin^2 2\theta_{23} = 1 \end{split}$$

LBL exps.: neutrinos only

$\sin^2 2\theta_{13}$ discovery reach evolution

plot by W. Winter from Albrow et al., hep-ex/0509019

$$\begin{split} \Delta m^2_{31} &= +2.5\times 10^{-3} \; \mathrm{eV^2} \\ \sin^2 2\theta_{23} &= 1 \end{split}$$

LBL exps.: neutrinos only

Going beyond the next generation of experiments

The ultimate goals:

- measure the value of $\delta_{\rm CP}$ establish CP violation
- determine the neutrino mass hierarchy $\rightarrow {\rm sgn}(\Delta m_{31}^2)$
CPV, mass hierarchy sensitivities

The ISS Physics Working Group report arxiv:0710.4947

CP violation

CP violation

In theory: measure $P_{\nu_{\alpha} \to \nu_{\beta}}$ and $P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}}$

In theory: measure $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}$ and $P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}}$

In practice:

- cross section and fluxes are different for ν and $\bar{\nu}$
- matter effect is CP violating

In theory: measure $P_{\nu_{\alpha} \rightarrow \nu_{\beta}}$ and $P_{\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}}$

In practice:

- cross section and fluxes are different for ν and $\bar{\nu}$
- matter effect is CP violating

Assume standard 3-flavour oscillations perform a parametric fit to δ

CP violation

Campagne, Maltoni, Mezzetto, Schwetz, hep-ph/0603172

T. Schwetz, Southampton, 15 April 2008 – p.78

Systematics in superbeam experiments

Uncertainties on fluxes and cross sections have a big impact on the sensitivity to CP violation:

Huber, Mezzetto, Schwetz, arXiv:0711.2950

the vacuum oscillation probability is invariant under

$$\Delta m_{31}^2 \to -\Delta m_{31}^2 \qquad \delta_{\rm CP} \to \pi - \delta_{\rm CP}$$

 \rightarrow the key to resolve the hierarchy degeneracy is the matter effect

the vacuum oscillation probability is invariant under

$$\Delta m_{31}^2 \to -\Delta m_{31}^2 \qquad \delta_{\rm CP} \to \pi - \delta_{\rm CP}$$

 \rightarrow the key to resolve the hierarchy degeneracy is the matter effect

resonance condition for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations:

$$\pm \frac{2EV}{\Delta m_{31}^2} = \cos 2\theta_{13} \approx 1$$

can be fulfilled for neutrinos if $\Delta m_{31}^2 > 0$ (normal hierarchy) anti-neutrinos if $\Delta m_{31}^2 < 0$ (inverted hierarchy)

• LBL experiments need very long BL: $\gtrsim 1000$ km wideband beam seems to be a very appealing option: sensitivities somewhat below $\sin^2 2\theta_{13} = 10^{-2}$ (WBB FNL to DUSEL, 1290 km, or T2KK, 1050 km)

- LBL experiments need very long BL: $\gtrsim 1000$ km wideband beam seems to be a very appealing option: sensitivities somewhat below $\sin^2 2\theta_{13} = 10^{-2}$ (WBB FNL to DUSEL, 1290 km, or T2KK, 1050 km)
- If $\sin^2 2\theta_{13} \gtrsim 2 \times 10^{-2}$:
 - Atmospheric neutrinos: Mt WC atm+LBL combination
 Huber, Maltoni, Schwetz, 05, Campagne, Maltoni, Mezzetto, Schwetz, 06
 magnetized detector (μ only) Petcov, Schwetz, hep-ph/0511277

- LBL experiments need very long BL: $\gtrsim 1000$ km wideband beam seems to be a very appealing option: sensitivities somewhat below $\sin^2 2\theta_{13} = 10^{-2}$ (WBB FNL to DUSEL, 1290 km, or T2KK, 1050 km)
- If $\sin^2 2\theta_{13} \gtrsim 2 \times 10^{-2}$:
 - Atmospheric neutrinos: Mt WC atm+LBL combination
 Huber, Maltoni, Schwetz, 05, Campagne, Maltoni, Mezzetto, Schwetz, 06
 magnetized detector (μ only) Petcov, Schwetz, hep-ph/0511277
 - Combination of superbeam and beta beam works even at relatively short baselines (130 km) Schwetz, hep-ph/0703279

- LBL experiments need very long BL: $\gtrsim 1000$ km wideband beam seems to be a very appealing option: sensitivities somewhat below $\sin^2 2\theta_{13} = 10^{-2}$ (WBB FNL to DUSEL, 1290 km, or T2KK, 1050 km)
- If $\sin^2 2\theta_{13} \gtrsim 2 \times 10^{-2}$:
 - Atmospheric neutrinos: Mt WC atm+LBL combination
 Huber, Maltoni, Schwetz, 05, Campagne, Maltoni, Mezzetto, Schwetz, 06
 magnetized detector (μ only) Petcov, Schwetz, hep-ph/0511277
 - Combination of superbeam and beta beam works even at relatively short baselines (130 km) Schwetz, hep-ph/0703279
- if $\sin^2 2\theta_{13} \ll 10^{-2}$ probably only a NuFact can determine the hierarchy (L > several 1000 km, e.g., 3000 & 7000)

Determination of θ_{13} , δ_{CP} , sgn(Δm_{31}^2) or the problem of Degeneracies

G.L. Fogli, E. Lisi, Phys. Rev. D54 (1996) 3667; J. Burguet-Castell et al., Nucl. Phys. B608 (2001) 301; H. Minakata, H. Nunokawa, JHEP 10 (2001) 001; V.Barger, D.Marfatia, K.Whisnant, Phys. Rev. D65 (2002) 073023; D66 (2002) 053007; P.Huber, M.Lindner, W.Winter, Nucl. Phys. B645 (2002) 3; Nucl. Phys. B654 (2003) 3; J. Burguet-Castell et al., Nucl.Phys. B646 (2002) 301; O. Yasuda, New J. Phys. 6 (2004) 83; A.Donini, D.Meloni, S.Rigolin, JHEP 0406 (2004) 011

and many more

The eight-fold degeneracy

Barger, Marfatia, Whisnant, Phys. Rev. D65 (2002) 073023

several possibilities to resolve the degeneracies are known:

- combining information from detectors at different baselines
- "Magic baseline" ~ 7000 km (NuFact)
- using additional oscillation channels ($\nu_e \rightarrow \nu_{\tau}$)
- spectral information (wide band beam)
- adding information on θ_{13} from a reactor experiment
- adding information from (Mt scale) atmospheric neutrino experiments

To conclude...

prestent status $\{\Delta m_{21}^{2}, \Delta m_{31}^{2}\} [eV^{2}]$ 10^{-3 ⊦} Atmospheric+LBL Solar+KamLAND 10⁻⁴ \bigcirc 0.25 0.5 0.75 0 1 $\{\sin^2\theta_{12}, \sin^2\theta_{23}\}$

To conclude...

2030

To conclude...

Thanks for your attention!