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Abstract

In this work we show that the physics reach of a long-baseline (LBL) neutrino oscil-
lation experiment based on a superbeam and a megaton water Cherenkov detector can
be significantly increased if the LBL data are combined with data from atmospheric
neutrinos (ATM) provided by the same detector. ATM data are sensitive to the octant
of θ23 and to the type of the neutrino mass hierarchy, mainly through three-flavor effects
in e-like events. This allows to resolve the so-called θ23- and sign(∆m2

31)-parameter
degeneracies in LBL data. As a consequence it becomes possible to distinguish the nor-
mal from the inverted neutrino mass ordering at 2σ CL from a combined LBL+ATM
analysis if sin2 2θ13 & 0.02. The potential to identify the true values of sin2 2θ13 and
the CP-phase δCP is significantly increased through the lifting of the degeneracies.
These claims are supported by a detailed simulation of the T2K (phase II) LBL exper-
iment combined with a full three-flavor analysis of ATM data in the HyperKamiokande
detector.
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1 Introduction

Thanks to the out-standing developments in recent neutrino physics a rather clear picture of
neutrino oscillation parameters is emerging. We know that there are two large angles in the
lepton mixing matrix, θ12 and θ23, and one small angle θ13, and the mass-squared differences
∆m2

21 and |∆m2
31| are well determined by the global data from solar [1] atmospheric [2], reac-

tor [3], and accelerator [4] neutrino experiments. A recent global analysis of world neutrino
oscillation data can be found e.g. in Ref. [5]. Despite these enormous achievements there are
still important open questions related to neutrino physics, which have to be addressed by
future neutrino oscillation experiments:

1. What is the value of the mixing angle θ13?

2. What is the value of the complex phase δCP in the mixing matrix?

3. Is the neutrino mass ordering normal (m1 < m2 < m3) or inverted (m3 < m1 < m2),
i.e., what is the sign of ∆m2

31?

In contrast to the “discovery phase”, which was dominated by natural neutrino sources
such as the sun or the atmosphere, the subsequent generation of oscillation experiments
will be mainly based on man-made neutrinos, where the neutrino source is well under con-
trol. Among the future projects are conventional beam experiments [6], new reactor exper-
iments [7], superbeam experiments [8, 9], and eventually experiments based on a neutrino
factory or a beta-beam [10].

A characteristic feature in the analysis of future long-baseline (LBL) experiments is the
presence of so-called parameter degeneracies, see e.g., Refs. [11–17]. Due to the inherent
three-flavor structure of the oscillation probabilities, for a given experiment in general several
disconnected regions in the multi-dimensional space of oscillation parameters will be present.
Traditionally these degeneracies are referred to in the following way:

• The intrinsic or (δCP, θ13)-degeneracy [18, 19]: For a measurement based on the νµ →
νe oscillation probability for neutrinos and anti-neutrinos two disconnected solutions
appear in the (δCP, θ13) plane.

• The hierarchy or sign(∆m2
31)-degeneracy [20]: The two solutions corresponding to the

two signs of ∆m2
31 appear in general at different values of δCP and θ13.

• The octant or θ23-degeneracy [21]: Since LBL experiments are sensitive mainly to
sin2 2θ23 it is difficult to distinguish the two octants θ23 < π/4 and θ23 > π/4. Again,
the solutions corresponding to θ23 and π/2 − θ23 appear in general at different values
of δCP and θ13.

This leads to an eight-fold ambiguity in the determination of θ13 and δCP [11], and hence
degeneracies provide a serious limitation in the ability to answer the questions 1 and 2
above. Moreover, the fact that one speaks of a “sign(∆m2

31)-degeneracy” illustrates that
answering question 3 is difficult: determining the neutrino mass ordering is equivalent to
resolving the sign(∆m2

31)-degeneracy. Several methods to resolve these degeneracies have
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been proposed, among them the combination of experiments at various baselines and/or
(L/E)-values [11, 20, 22–25], the use of spectral information [12, 26], the combination of
νe → νµ and νe → ντ oscillation channels [27], and the combination of LBL and reactor
experiments [28–32].

In the present work we discuss a new possibility to resolve the LBL parameter degenera-
cies, based on the data from atmospheric neutrinos. It is known that atmospheric neutrinos
are in principle sensitive to θ13 and the neutrino mass hierarchy due to earth matter ef-
fects [33] in the e-like events [34–40]. These effects are most pronounced in the multi-GeV
energy range and for large zenith angles, corresponding to neutrino trajectories crossing the
earth mantle or the mantle and the core. In addition effects from the solar parameters θ12

and ∆m2
21 on e-like events in the sub-GeV energy range provide sensitivity to the octant of

θ23 [41–43], and in principle even on δCP [44]. For a recent discussion of sub-leading effects
in atmospheric neutrino oscillations see Ref. [45]. It turns out, however, that atmospheric
(ATM) data on its own can never compete with LBL in many respects, such as the determi-
nation of θ13, δCP, |∆m2

31|, or sin2 2θ23. One reason is that they are limited by systematical
uncertainties, e.g. from the neutrino fluxes. However, as we will show in the following, due
to the effects mentioned above ATM data can break the sign(∆m2

31)- and θ23-degeneracies in
LBL data, and hence the combined analysis of LBL and ATM leads to significant synergies.

An important part of the future neutrino program are gigantic water Cherenkov detectors
at the megaton scale. Apart from serving as detector for LBL experiments such a facility
will provide unprecedented opportunities for proton decay, solar and atmospheric neutrino
experiments, as well as for the detection of supernova and other astrophysical neutrinos. The
projects under discussion are UNO [46] in the US, a megaton detector in the Frejus labora-
tory [47] in Europe, and the HyperKamiokande project [9,40] in Japan. If a LBL experiment
with such a detector will be built atmospheric neutrino data come for free. Therefore, our
method provides a very efficient possibility to resolve the parameter degeneracies from LBL
data, in contrast to the previously discussed methods, which in general are based on the
combination of two or more expensive experiments.

In the following we will illustrate how the LBL+ATM combination works by considering
the phase II of the T2K experiment (T2K-II) [9], assuming a 4 MW superbeam produced
at the J-PARC accelerator, and the 1 Mt HyperKamiokande (HK) detector serving as the
far detector for the LBL experiment as well as providing the high statistics atmospheric
neutrino data. Let us note that similar results are expected also for the other megaton
detector proposals. Furthermore, if huge magnetized iron detectors are available one expects
similar synergies between LBL and ATM data. For these type of detectors the ability to
distinguish between neutrinos and anti-neutrinos will increase the potential of ATM data
even further [48]. In the present work we stick to the HK water Cherenkov detector, the
potential of magnetized detectors will be considered elsewhere.

The outline of the paper is as follows. In Section 2 we give some technical details of our
simulation of the T2K-II experiment (Section 2.1) and of the atmospheric neutrino analysis
(Section 2.2), and we describe the statistical methods used in the following (Section 2.3). In
Section 3 we illustrate the LBL/ATM complementarity by discussing the effects of parameter
degeneracies for the LBL data (Section 3.1), whereas in Sections 3.2 and 3.3 we consider the
effects in ATM data which allow to resolve the octant and the sign(∆m2

31) degeneracies,
respectively. In Section 4 we investigate in detail the ability to exclude degenerate solutions

3



The T2K-II LBL experiment The HK ATM experiment (9 Mt yrs)
ν (2 Mt yrs) ν̄ (6 Mt yrs) ν ν̄

νµ → νe signal 21 300 16 000 e-like sub-GeV 239 000 58 000
νµ → νe background 2 140 3 260 e-like multi-GeV 52 700 18 100
νµ → νµ signal 73 200 75 600 µ-like sub-GeV 232 000 66 200
νµ → νµ background 340 320 µ-like multi-GeV 108 000 49 100

upward going µ 127 000 65 400

Table 1: Number of events in the LBL and ATM experiments considered in our work for the oscillation

parameters sin2 2θ13 = 0.05, sin2 θ23 = 0.5, sin2 θ12 = 0.3, δCP = 0, ∆m2
21 = 8.1 × 10−5 eV2, and ∆m2

31 =

2.2 × 10−3 eV2.

with LBL+ATM data by performing a systematic scan of the parameter space of θ13, θ23

and δCP. In Section 5 we discuss the potential to identify the neutrino mass ordering, for
the special case θ23 = π/4 (Section 5.1) as well as for the general case (Section 5.2). In
Section 6 we show how the sensitivity to θ13 is improved by resolving the θ23-degeneracy by
ATM data, and we summarize our results in Section 7.

2 Description of the experiments and statistical analysis

2.1 The T2K-II long-baseline experiment

In the following the label “LBL” refers to the phase II of the T2K experiment (T2K-II) [9]. We
are assuming a high luminosity superbeam with mean neutrino energy of 0.76 GeV, produced
with a target power of 4 MW at the J-PARC accelerator. The neutrinos are detected at a
1 Mt water Cherenkov detector, HyperKamiokande (HK), at a baseline of 295 km and an
off-axis angle of 2◦. We consider 2 years running time with a neutrino beam, and 6 years
with anti-neutrinos, such that comparable event numbers are obtained for neutrinos and
anti-neutrinos.

Our simulation of the T2K-II experiment is performed by using the GLoBES software
package [49]. We take into account realistic neutrino fluxes, detection cross sections, energy
resolution, and efficiencies [9]. This experimental information is folded with the three-flavor
oscillation probability, fully taking into account the earth matter effect. We consider all
available information, from νµ → νe appearance, as well as νµ disappearance channels. The
signal events are given by νe and νµ charged current (CC) interactions, respectively. We
divide the signal into the total event rate, where the full CC cross section is used, and into
the energy spectrum with free normalization, where only events from quasi-elastic scattering
are used, since non-quasi-elastic events do not allow to reconstruct the neutrino energy.
Various backgrounds such as a νe contamination of the beam, νµ neutral current events,
and misidentification of muon neutrinos as electron neutrinos are taken into account, using
information given in Ref. [9]. We list the numbers of signal and background events expected
in T2K-II for typical oscillation parameters in Table 1. More details of our T2K-II analysis
can be found in Ref. [13].
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2.2 The HK atmospheric neutrino experiment

To simulate atmospheric neutrino data in the HK detector we follow closely Ref. [43]. A
crucial element of the analysis is to take into account the full three-flavor oscillation prob-
ability, including earth matter effects, as well as oscillations induced by the “solar” mass
splitting ∆m2

21 (for other three-flavor analyses see Refs. [50–53]). In our analysis we consider
charged current data, divided into sub-GeV and multi-GeV e-like and µ-like contained event
samples (each grouped into 10 bins in zenith angle), as well as stopping (5 angular bins) and
through-going (10 angular bins) up-going muon events.

Details of our statistical analysis can be found in the Appendix of Ref. [54]. Together
with the statistical errors, we consider theoretical as well as systematical uncertainties, where
theoretical uncertainties are uncertainties in the original atmospheric neutrino fluxes and in
the cross-sections. We are using the atmospheric neutrino fluxes from Ref. [55], and flux un-
certainties include total normalization errors (20%) allowing for an independent fluctuation
of neutrino and anti-neutrino fluxes (5%) as well as νµ and νe fluxes (5%), spectral uncer-
tainty of the fluxes (“tilt” factor), and an uncertainty on the zenith angle dependence which
induces an error in the up/down asymmetry of events (5%). We also include independent
normalization errors for the different contributions to the interaction cross section: quasi-
elastic scattering (15%), single pion production (15%), and deep inelastic scattering (15% for
contained events and 10% for upward-going muons). Moreover, we include as systematical
errors experimental uncertainties associated with the simulation of the hadronic interactions,
the particle identification procedure, the ring-counting procedure, the fiducial volume deter-
mination, the energy calibration, the relative normalization between partially-contained and
fully-contained events, the track reconstruction of up-going muons, the detection efficiency
of up-going muons, and the stopping/through-going separation.1

The current atmospheric neutrino data sample from SuperKamiokande (SK-I) consists
of 1489 days of data (contained events) with a detector mass of 22.5 kt, which gives roughly
90 kt yrs of data. In this work we are considering a data taking period for the LBL experiment
of 8 years. We assume that the 1 Mt HK detector will be finished one year before the T2K-II

beam, and hence 9 Mt yrs of atmospheric neutrino data will be available. For the atmospheric
data sample used in our analysis, which we will denote in the following by the label “ATM”,
we scale the present SK-I sample (1489 days contained events, 1657 days of stopping, and
1678 days of through-going muons) by a factor 100. Event numbers for various ATM data
samples for typical oscillation parameters are given in Table 1.

2.3 Details of the statistical analysis

In order to investigate the potential of the experiments described in the previous sub-sections
we adopt the standard method for analyzing future experiments. First, artificial “data” is
simulated by calculating event numbers for LBL and ATM for some “true values” θ

true for
the oscillation parameters θ = (θ13, θ12, θ23, δCP, ∆m2

21, ∆m2
31). Then a χ2-analysis of these

“data” is performed to extract allowed regions for the oscillation parameters. It is important
to note that in general the results will depend on the values adopted for θ

true. For all

1The impact of these theoretical and systematical uncertainties on the performance of future atmospheric
neutrino experiments has been investigated in some detail in Ref. [43]. See also Ref. [45].
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calculations we will use for θtrue
12 , (∆m2

21)
true and (∆m2

31)
true the best fit values obtained in

Ref. [5],

sin2 θ12 = 0.3 , ∆m2
21 = 8.1 × 10−5 eV2 , |∆m2

31| = 2.2 × 10−3 eV2 . (1)

We do not expect any significant changes of our results if these parameters are varied within
the present allowed ranges [5]. However, we adopt various values for θtrue

13 , θtrue
23 , δtrue

CP , and
sign(∆m2

31), and show our results as a function of these parameters. Furthermore, since
neither LBL nor ATM data allow an accurate determination of θ12 and ∆m2

21 we assume
that these two parameters are known with an uncertainty of 10% from solar and reactor
neutrino experiments.

If one is interested in the allowed range for a certain parameter ξ ∈ θ for a given choice
of θ

true, the function χ2(θtrue; θ) has to be minimized with respect to all other parameters
θ except ξ to take into account the correlations and degeneracies between parameters. This
minimization is performed by using the GLoBES software package [49], which has been
generalized in order to include the atmospheric neutrino code. Let us stress that for both
data samples, LBL as well as ATM, a full three-flavor analysis including matter effects is
performed. The only approximation is to neglect the (very weak) dependence on θ12. Since
LBL depends in leading order only on the product sin 2θ12∆m2

21 fixing θ12 does not introduce
any error, as long as the dependence on ∆m2

21 is properly taken into account, and for ATM
varying θ12 in the allowed range is expected to have a very small impact. Apart from this
simplification the full parameter dependence of both data sets has been taken into account.
However, we assume that LBL and ATM data are statistically independent. This might
not be completely correct since both data sets are based on the same detector, and hence,
uncertainties related to the detection process can introduce correlations between LBL and
ATM data. Although such effects will have to be included eventually in the analysis of real

data, we expect that such correlations introduce only very minor corrections to our present
results.

3 Complementarity between LBL and ATM data

3.1 Parameter degeneracies and the T2K-II experiment

In this section we discuss the problem of parameter degeneracies for the T2K-II experiment.
First we note that for this particular experiment the (δCP, θ13)-degeneracy does not occur.
It is known that for experiments operating at the oscillation maximum of ∆m2

31 the sec-
ond solution in the (δCP, θ13) plane can be disfavored efficiently [11, 13]. Moreover, spectral
information is important, since δCP-dependent and δCP-independent terms in the oscilla-
tion probability show a different energy dependence (compare Eq. (3) later in this section).
Thus it is difficult to leave the spectrum unchanged when δCP is varied, and the (δCP, θ13)-
degenerate solution, which implies a different value of δCP, is disfavored. An illustration of
the relevance of spectral information for the (δCP, θ13)-degeneracy in the T2K-II experiment
can be found in Figure 5 of Ref. [13].

Therefore, in the case of T2K-II we are confronted only with the sign(∆m2
31)- and θ23-

degeneracies. Apart from the incapacity to determine the neutrino mass ordering and the
octant of θ23 this leads to a four-fold ambiguity in the determination of θ13 and δCP. The
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Figure 1: Allowed regions in the (sin2 2θ13, δCP) plane at 2σ, 99%, and 3σ CL (2 dof) of the true and

all degenerate solutions for sin2 2θtrue
13 = 0.03, δtrue

CP
= −0.85π, and sin2 θtrue

23 = 0.4 (left) and sin2 θtrue
23 = 0.6

(right). The solid curves correspond to LBL data only, and the shaded regions correspond to LBL+ATM

data. The true best fit point is marked with a star, the best fit points of the degenerate solutions are marked

with dots, and the corresponding ∆χ2-values of LBL+ATM data are given in the figure. The true mass

ordering is the normal hierarchy.

impact of the degeneracies can be appreciated in Figure 1, where the solid curves show the
allowed regions from LBL data in the (sin2 2θ13, δCP) plane for an example-point with the
true values sin2 2θ13 = 0.03, δCP = −0.85π, and non-maximal values of θtrue

23 . Apart from
the true solution, three degenerate regions are present, corresponding to the wrong octant
of θ23, the wrong sign of ∆m2

31, and the wrong octant as well as the wrong hierarchy. Let us
introduce the following abbreviations to denote these four solutions:

(Otr, Htr) true solution
(Otr, Hwr) true octant of θ23 and wrong hierarchy
(Owr, Htr) wrong octant of θ23 and true hierarchy
(Owr, Hwr) wrong octant of θ23 and wrong hierarchy

(2)

A qualitative understanding of the degenerate solutions can be obtained from the ap-
proximate formula for the νµ → νe appearance probability in vacuum [24]

Pνµ→νe
≃ sin2 2θ13 sin2 θ23 sin2 ∆

+ α sin 2θ13 sin 2θ12 sin 2θ23 ∆ sin ∆ cos(∆ ± δCP) (3)

+ α2 cos2 θ23 sin2 2θ12 ∆2

with ∆ ≡ ∆m2
31L/(4Eν) and α ≡ ∆m2

21/∆m2
31. The sign in the second term is ‘+’ for

neutrinos and ‘−’ for anti-neutrinos. Since in the T2K-II experiment matter effects are small
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this expression for the probability suffices to obtain a qualitative understanding of most of
the effects in LBL data presented throughout this work.

Following Ref. [11] the location of the θ23-degenerate solution (Owr, Htr) can be estimated
from Eq. (3) in the following way. Since the T2K-II experiment operates close to the oscil-
lation maximum it is a good approximation to use ∆ ≈ π/2. Furthermore, for values of
sin2 2θ13 & 0.01 the α2 term can be neglected. Under these approximation solving the two
equations

Pνµ→νe
(θ13, δCP, θ23) = Pνµ→νe

(θ′13, δ
′

CP, π/2 − θ23)

Pν̄µ→ν̄e
(θ13, δCP, θ23) = Pν̄µ→ν̄e

(θ′13, δ
′

CP, π/2 − θ23) (4)

leads to

sin2 2θ′13 ≈ sin2 2θ13 tan2 θ23 (5)

sin δ′CP ≈ sin δCP tan θ23 (6)

for the parameter values of the wrong-θ23 solution. For the example shown in Figure 1
Eq. (5) gives sin2 2θ′13 = 0.02 for sin2 θtrue

23 = 0.4, and sin2 2θ′13 = 0.045 for sin2 θtrue
23 =

0.6. Furthermore, Eq. (6) gives δ′CP = −0.81π for sin2 θtrue
23 = 0.4, and δ′CP = 0.88π for

sin2 θtrue
23 = 0.6. These numbers are in good agreement with the actual fit shown in Figure 1.

One observes that the θ23-degeneracy has a strong impact on the measurement of sin2 2θ13,
however, it hardly affects the determination of δCP [11, 13]; the (Owr, Htr)-solution occurs
practically at the same value of δCP as the true one.

This is in contrast to the sign(∆m2
31)-degeneracy, which in general leads to a severe

ambiguity for δCP, whereas the sin2 2θ13 measurement is essentially unaffected. Following
Ref. [20] we observe from Eq. (3) that only the term in the second line is affected by changing
the sign of ∆m2

31. This term transforms as

α ∆ sin ∆ cos(∆ ± δCP) → −α ∆ sin ∆ cos(−∆ ± δCP) (7)

under ∆m2
31 → −∆m2

31. Therefore, the full probability stays invariant under this transfor-
mation if δCP is adjusted such that cos(−∆± δCP) = − cos(∆± δ′CP), which can be achieved
for

δ′CP = π − δCP . (8)

According to this reasoning we would obtain in the example plotted in Figure 1 the value
δ′CP = 1.85π =̂ − 0.15π. Although in this case the accuracy is not excellent, Eq. (8) still
provides a rough method to estimate the location of the (Otr, Hwr)-solution in δCP (for more
refined methods see e.g. Refs. [14,56]). Finally, the values of sin2 2θ13 and δCP corresponding
to the combined θ23 and sign(∆m2

31)-degeneracy (Owr, Hwr) can be estimated by applying
simultaneously Eqs. (5) and (8).

This four-fold degeneracy can be lifted to large extent if LBL data is combined with
data from atmospheric neutrinos. We observe from Figure 1 that the degenerate solutions
corresponding to the wrong octant of θ23 are highly disfavored by the inclusion of ATM
data, at the level of ∆χ2 & 20. Furthermore, also the solution with the wrong mass ordering
gets disfavored in the combined analysis, although in this case the ability to resolve the
degeneracy is more subtle. In the following subsections we discuss the relevant features of
ATM data to resolve the degeneracies in LBL data.
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3.2 The sensitivity of ATM data to the octant of θ23

The T2K-II experiment will provide a very precise determination of sin2 2θ23 thanks to the
large statistics data from the νµ disappearance channel (compare Table 1). The relative
accuracy at 2σ is expected to be better than 1%. Despite this impressive performance on
sin2 2θ23 there are some subtleties related to the measurement of sin2 θ23 (see, e.g., Refs. [57,
58]). Especially, if θ23 deviates from π/4 it will be impossible to distinguish between the two
solutions at θ23 and π/2 − θ23.

2 Although the determination of sin2 2θ23 from atmospheric
data is significantly less precise than from LBL they provide the very interesting ability to
distinguish between the two octants of θ23.

The sensitivity of atmospheric data to the deviation of θ23 from π/4 follows mainly from
effects of the solar mass splitting ∆m2

21 for e-like events in the sub-GeV region, see e.g.

Refs. [41–44]. The excess of e-like events can be written as

ǫsub
e ≡

Ne

N0
e

− 1 ≈
(

r cos2 θ23 − 1
)

〈P 2ν
21 〉 . (9)

Here Ne (N0
e ) is the number of e-like events with (without) oscillations, 〈P 2ν

21 〉 is the averaged
two neutrino oscillation probability given by the solar parameters ∆m2

21 and θ12 including
the (weighted) contributions from neutrinos and anti-neutrinos, and r ≡ F 0

µ/F 0
e is the ratio

of the initial muon and electron neutrino fluxes. Since for sub-GeV energies r ≈ 2 the effect
is suppressed for θ23 ≈ π/4, however it provides a sensitive measure for deviations from
maximal mixing. Given the present LMA parameters, for | sin2 θ23 − 0.5| ≈ 0.1 one expects
ǫsub
e values of a few percent (see e.g. Fig. 8 of Ref. [44]). In contrast to LBL data, which

is essentially sensitive only to sin2 2θ23, this effect depends on cos2 θ23, and therefore the
discrimination between θ23 > π/4 and θ23 < π/4 becomes possible.

Building upon the results of Ref. [43] we show in Figure 2 the difference in χ2 between
the true solution (with χ2 = 0) and the χ2-minimum in the wrong octant of θ23 ((Owr, Htr)-
solution). It is clear form this figure that LBL data alone have no sensitivity at all to the
octant of θ23, whereas ATM can reject the fake solution efficiently. Taking the combination
of LBL+ATM data improves the sensitivity slightly, due to the more precise determination
of other oscillation parameters by the LBL data. Using the combined LBL+ATM data the
wrong octant can be rejected at 3σ if | sin2 θ23−0.5| > 0.1. Let us note that the results shown
in Figure 2 do hardly depend on our choice for the true neutrino mass ordering, thanks to
θtrue
13 = 0. Non-zero values for θtrue

13 will be considered in Section 4.

3.3 The sensitivity of ATM data to the mass hierarchy

The determination of the ordering of the neutrino mass states is one of the most challenging
tasks of future neutrino experiments. In long-baseline experiments the effects of θ13, δCP

and the sign of ∆m2
31 are highly entangled, and the determination of sign(∆m2

31) is probably
only possible through the matter effect induced in an experiment with a very long baseline
plus additional information from other LBL or reactor experiments [13, 20, 22, 23, 30, 60–

2For theoretical expectations for the deviations of θ23 from the maximal value see e.g. Refs. [57, 59] and
references therein.
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Figure 2: ∆χ2 of the solution in the wrong octant of θ23 as a function of the true value of sin2 θ23 for

LBL data only, for ATM data only, and for the LBL+ATM combination. Furthermore, we take θtrue
13 = 0.

62].3 Therefore, the combined analysis of LBL and ATM data as offered from an oscillation
experiment with a Mt water Cherenkov detector provides a very interesting possibility to
answer the question of the neutrino mass hierarchy.

The sensitivity of atmospheric neutrino data to the neutrino mass hierarchy comes mainly
from the modification of e-like multi-GeV events by earth matter effects for not too small
values of sin2 2θ13 [34–40]. Similar as in Eq. (9), one finds for the θ13 induced excess of e-like
multi-GeV events

ǫmulti
e ≡

Ne

N0
e

− 1 ≈
(

r sin2 θ23 − 1
)

〈P 2ν
31 〉 . (10)

Now 〈P 2ν
31 〉 is an effective two-flavor probability governed by ∆m2

31 and θ13, appropriately
averaged and including the (weighted) contributions from neutrinos and anti-neutrinos. The
effect is most pronounced for zenith angles corresponding to neutrino trajectories crossing the
earth mantle, or earth mantle and core, where sin2 2θ13-effects can be resonantly enhanced
due to matter effects [33–35]. In the relevant zenith angle bins ǫmulti

e can reach values of
the order of 10% (see e.g. Fig. 5 of Ref. [39]). Qualitatively ǫmulti

e shows the following
behavior [39]:

• ǫmulti
e vanishes for sin2 2θ13 = 0 and increases monotonically with sin2 2θ13.

• For the normal hierarchy the resonant matter enhancement occurs for neutrinos, whereas
for the inverted hierarchy it occurs for anti-neutrinos. Since the event numbers in water
Cherenkov detectors are dominated by neutrinos because of larger cross sections (see
Table 1), ǫmulti

e is larger by a factor of 1.5 − 2 for the normal hierarchy than for the
inverted one.

3Another possibility to identify the neutrino mass hierarchy could come from the observation of neutrinos
emitted by a galactic supernova, see e.g. Ref. [63] for a recent analysis.
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• Since in the multi-GeV range we have r ≃ 2.6−4.5, the factor (r sin2 θ23−1) in Eq. (10)
suppresses the excess of e-like events for small values sin2 θ23 . 0.4, whereas larger
values of sin2 θ23 increase ǫmulti

e . In particular, the effect is enhanced for θ23 > π/4.

Therefore, if the true hierarchy is normal and θ23 < π/4 there is only a small excess of e-like
multi-GeV events, which can be accommodated to some extent with the inverted hierarchy.
For the example point with sin2 θtrue

23 = 0.4 chosen in the left panel of Figure 1 the wrong
hierarchy can be disfavored only with a ∆χ2 = 5.0. In contrast, for θ23 > π/4 the excess of
e-like events is enhanced by the flux-factor (r sin2 θ23−1). Therefore, a true normal hierarchy
(resonant enhancement for neutrinos) plus the flux-factor enhancement leads to large values
of ǫmulti

e , which cannot be fitted with the inverted hierarchy (resonant enhancement for the
smaller anti-neutrino sample). This explains the strong rejection of the wrong hierarchy
solution in the right panel of Figure 1, with a ∆χ2 = 18.6. We will discuss the mechanisms
relevant for the rejection of the wrong hierarchy in more detail in Sections 4 and 5.

Finally we note that in addition to ∆m2
21-effects of Eq. (9) and θ13-effects of Eq. (10)

also an interference term between the two contributions is present [44] (see also Ref. [53]).
It is proportional to (r sin θ13 sin 2θ23) and depends on the CP-phase δCP. Because of the
different dependence on the flux ratio r the interference term may become important in cases
where the effects governed by Eqs. (9) and (10) are suppressed.

4 Resolving the degeneracies

The examples shown in Figure 1 suggest that the LBL+ATM combination offers an efficient
method to reject the degenerate solutions. To investigate this more systematically we have
performed a scan over the true values for θ13 and θ23 and various values for δtrue

CP . For a
given point in the space of sin2 2θtrue

13 , sin2 θtrue
23 and δtrue

CP we test the ability to rule out each
of the three degenerate solutions (Owr, Htr), (Otr, Hwr), and (Owr, Hwr). This is done by
minimizing χ2

LBL+ATM with respect to all fit parameters, constraining the octant of θ23 and
the sign of ∆m2

31 corresponding to the fake solution which we want to test. The results of
this analysis are shown in Figure 3, which represents one of the main results of this work.

The solid curves in Figure 3 show that the (Owr, Htr)-solution corresponding to the θ23-
degeneracy can be excluded at high confidence level if θ23 is far enough from π/4. (Note
that if θ23 is close to π/4 this degeneracy disappears anyway.) For small values of sin2 2θtrue

13

this follows mainly from the atmospheric sub-GeV e-like events, as discussed in Section 3.2.
Moreover, if the true hierarchy is normal (left panels of Figure 3) we find an improvement
of the octant sensitivity for sin2 2θ13 & 0.04. This effect comes from the multi-GeV e-like
events, where resonant enhancement occurs for sufficiently large sin2 2θ13, and therefore an
additional dependence on sin2 θ23 appears according to Eq. (10). This can be seen from
Figure 4, where we show the ability to reject the fake solutions using only sub-GeV (left)
and multi-GeV (right) ATM data. The improvement for large sin2 2θ13 is also visible for
the inverted mass ordering (right panels of Figure 3), however, in that case the effect is
much smaller, since the resonance occurs for anti-neutrinos in the inverted hierarchy, which
contribute less to the total ATM data, and hence the significance of the effect is smaller than
in the normal hierarchy, where the resonance occurs for neutrinos.

The wrong hierarchy solution (Otr, Hwr) can be excluded to the right of the dashed curves
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Figure 3: Rejection of the fake solutions from LBL+ATM data as a function of the true values of sin2 2θ13

and sin2 θ23 for various δtrue

CP
if the true hierarchy is normal (left) or inverted (right). Solid curves correspond

to the solution with the wrong octant and the right hierarchy (Owr, Htr), dashed curves to the right octant

and the wrong hierarchy (Otr, Hwr), and shaded regions to the wrong octant and the wrong hierarchy

(Owr, Hwr). We show the contours of ∆χ2 = 1, 4, 9 between the fake and the true solution, corresponding

to a rejection of the fake solution at the 1σ, 2σ, and 3σ CL (from light to dark shading) for 1 dof.
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Figure 4: Rejection of the fake solutions from LBL data combined with sub-GeV (left) and multi-GeV

(right) e-like and µ-like ATM data as a function of the true values of sin2 2θ13 and sin2 θ23 for δtrue

CP
= 0

(upper) and δtrue

CP
= −π/2 (lower) and true normal hierarchy. Solid curves correspond to the solution with the

wrong octant and the right hierarchy (Owr, Htr), dashed curves to the right octant and the wrong hierarchy

(Otr, Hwr), and shaded regions to the wrong octant and the wrong hierarchy (Owr, Hwr). We show the

contours of ∆χ2 = 1, 4, 9 between the fake and the true solution, corresponding to a rejection of the fake

solution at the 1σ, 2σ, and 3σ CL (from light to dark shading) for 1 dof.

in Figure 3. We observe that the ability to reject this solution increases with sin2 θ23. As
discussed in Section 3.3 this follows from the fact that the excess of e-like multi-GeV events
is enhanced for large sin2 θ23. In particular, for sin2 θ23 > 0.5 the sensitivity is completely
dominated by multi-GeV data (compare Figure 4), and we observe a very small dependence
on the true value of δCP and on the true hierarchy. For sin2 θ23 < 0.5 the situation becomes
more complicated, and the sensitivity depends on the true value of δCP. In that region also
sub-GeV data can contribute significantly, as visible in Figure 4. For low values of sin2 θ23 the
effect of multi-GeV data becomes suppressed by the flux factor (r sin2 θ23−1) in Eq. (10), and
the contribution of sub-GeV data from Eq. (9) can become of comparable size. Moreover,
as discussed in Ref. [44] for certain parameter values an interference term between the two
contributions may become relevant, which depends on δCP. Therefore, the final sensitivity
emerges from a rather involved interplay of various effects and ATM data samples.

Finally, moving to the (Owr, Hwr)-solution, we find that in most cases this “double”
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degenerate solution can be excluded if either the (Owr, Htr)- or the (Otr, Hwr)-solution is
ruled out. However, for certain parameter configurations an interesting degeneracy between
the octant and the mass ordering appears, such that the (Owr, Hwr)-solution cannot be
excluded, although the (Owr, Htr)- and the (Otr, Hwr)-solutions are not allowed. We find
from Figure 3 that it is difficult to distinguish a normal mass hierarchy and sin2 θ23 ≃ 0.45,
δCP ≃ 0 from an inverted hierarchy and sin2 θ23 ≃ 0.55, δCP ≃ π. We observe from the
upper panels of Figure 4 that for these particular parameters sub-GeV as well as multi-GeV
data cannot exclude the (Owr, Hwr)-solution. However, the appearance of this remaining
degeneracy strongly depends on the true value of δCP. For example, from the lower panels
of Figure 4 it becomes clear that it does not occur for δCP = −π/2. The dependence on δCP

indicates that again the interference term between ∆m2
21- and θ13-effects is important.

5 Determining the neutrino mass hierarchy

In this section we discuss in detail the possibility to identify the type of the neutrino mass
ordering from a combined LBL+ATM analysis. To this aim we simulate data for the T2K-II

LBL experiment as well as for atmospheric neutrino data assuming a “true” neutrino mass
ordering. Then we fit these data with the “wrong” hierarchy and search for the minimum
χ2-value in the full 6-dimensional space of oscillation parameters, taking into account both
θ23-degenerate solutions (Otr, Hwr) and (Owr, Hwr). If this minimum is larger than a certain
value the wrong hierarchy can be excluded at the corresponding CL.

5.1 Sensitivity to the mass hierarchy for maximal θ23 mixing

Before considering the general case we will first adopt the choice θtrue
23 = π/4, such that

the θ23-degeneracy is absent, and we are left only with the two-fold ambiguity related to
sign(∆m2

31). We show the sensitivity to the hierarchy in Figure 5 as a function of the true
values of sin2 2θ13 and δCP. First we observe from this figure that the sensitivity of LBL
data alone strongly depends on the true value of δCP. For certain values of δCP the ability
to distinguish normal and inverted hierarchy is even lost for sin2 2θ13 = 0.1. The main
reason for the difficulties of LBL alone to determine the mass hierarchy, is that for T2K-II

the matter effect is very small. ATM data on their own allow to identify the normal mass
hierarchy at 2σ CL for sin2 2θtrue

13 & 0.04 (see left panel of Figure 5), whereas there is rather
poor sensitivity to the inverted hierarchy (right panel of Figure 5). However, the sensitivity
is significantly increased by combining the two data sets: For LBL+ATM data the wrong
hierarchy can be excluded at 2σ CL for sin2 2θtrue

13 & 0.02, with a rather small dependence
on the true value of δCP or the true type of the hierarchy.

These results can be understood qualitatively from the discussion given in Section 3.3.
To achieve the same value of ǫmulti

e as implied by the (true) normal hierarchy and a given
sin2 2θtrue

13 with the inverted hierarchy, one has to adopt values of sin2 2θ13 larger than
sin2 2θtrue

13 to increase the effect for the inverted hierarchy. Conversely, if the true hierar-
chy is inverted and one wants to fit ǫmulti

e with the normal ordering, sin2 2θ13 has to be
smaller than sin2 2θtrue

13 . This expectation is confirmed in Figure 6, where the allowed regions
in the (sin2 2θ13, δCP) plane from ATM data are shown as dashed curves for the true values
sin2 2θ13 = 0.03 and δCP = −0.85π. The left panel shows that the normal hierarchy can be

14



0 0.02 0.04 0.06 0.08 0.1

True value of sin
2
2θ

13

-π

-π/2

0

π/2

π

T
ru

e 
va

lu
e 

of
 δ

C
P

0 0.02 0.04 0.06 0.08 0.1

True hierarchy: normal True hierarchy: inverted

1σ

2σ

3σ

1σ 2σ
3σ

1σ

1σ

2σ

3σ

2σ

3σ

1σ
2σ

3σ

Figure 5: Sensitivity to the mass hierarchy as a function of the true values of sin2 2θ13 and δCP for

θtrue
23 = π/4, if the true hierarchy is normal (left) or inverted (right). We show the contours of ∆χ2 = 1, 4, 9

between the wrong and the true hierarchy, corresponding to a rejection of the wrong hierarchy at the 1σ,

2σ, and 3σ CL (from light to dark shading) for 1 dof. The shaded regions correspond to LBL+ATM data

combined, solid curves correspond to LBL-only, and dashed curves to ATM-only.

fitted with the inverted one for rather large values of sin2 2θ13, whereas the opposite situation
is visible for the inverted hierarchy in the right panel.

This behavior explains also the ATM-only results shown in Figure 5. The reasonable
sensitivity of ATM data to the normal hierarchy visible in the left panel is given by the fact,
that a fit with the inverted hierarchy would be only possible for very large values of sin2 2θ13.
This is disfavored by data, first because the values of sin2 2θ13 required to fit the data start
to get in conflict with the CHOOZ bound, and hence are disfavored, and second because
such large values of sin2 2θ13 start to be excluded from ATM data on their own. On the
other hand the reason for the poor sensitivity to the inverted hierarchy shown in the right
panel of Figure 5 is that in general small values of ǫmulti

e are expected, which can be easily
fitted with the normal hierarchy but smaller sin2 2θ13 (compare right panel of Figure 6), well
below the sensitivity of ATM data.

Let us now discuss the effect of the sign(∆m2
31)-degeneracy for LBL data. In agreement

with the discussion of Section 3.1 we observe from Figure 6 that the sign(∆m2
31) degeneracy

affects mainly the determination of δCP, whereas the value of sin2 2θ13 of the wrong-sign
solution practically coincides with the true one. According to Eq. (8) we expect for the fake
solution the value δ′CP = −0.15π, which is in good agreement with the values obtained in
the actual fit: δ′CP = −0.25(−0.05)π for true hierarchy normal (inverted). The deviations
from the value of δ′CP given by Eq. (8) are due to the matter effect, which is not included in
the probability Eq. (3) and to some extent also to spectral information, which in general is
difficult to include in the analytical discussion. Note that because of the choice θtrue

23 = π/4
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the (Otr, Hwr)- and (Owr, Hwr)-solutions coincide, and we are left only with the two-fold
ambiguity implied by the sign(∆m2

31)-degeneracy, as visible in Figure 6.

From Figure 6 also the reason for the significant improvement of the sensitivity to the
hierarchy for the LBL+ATM combination becomes clear. Although for LBL data alone the
degenerate solution is present at a wrong value of δCP even at 1σ CL, the value of sin2 2θ13

has to be very similar to the true one. This makes it impossible to accommodate ATM data
with the wrong hierarchy, since either values sin2 2θ13 significantly larger or smaller than the
true one are necessary to obtain the correct value for ǫmulti

e with the wrong hierarchy. The
location in the (sin2 2θ13, δCP) plane required by the degenerate solution of LBL gives for
ATM data a χ2 corresponding to 2−3σ CL. Therefore the combined data lead to the rather
good sensitivity implied by the ∆χ2-values given in Figure 6.

To summarize, the example shown in Figure 6 demonstrates how the combination of LBL
and ATM data leads to a sensitivity to the mass hierarchy at the 3σ level, although each
data set on its own cannot distinguish normal from inverted mass ordering for this particular
choice of parameter values. The sensitivity of ATM data alone suffers from the fact that
the wrong hierarchy can be accommodated by adjusting θ13, but also the parameters θ23,
∆m2

31, and δCP are important. To benefit from the earth matter effects in e-like events from
atmospheric neutrinos for the hierarchy determination the rather precise measurement of the
oscillation parameters from LBL data is mandatory. In particular, it is necessary to know
θ23 and ∆m2

31 at the 1% level, and a reasonable constraint on sin2 2θ13 is required. Finally,
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the determination of the correct mass hierarchy through the LBL+ATM combination allows
to resolve the ambiguity in δCP from the sign(∆m2

31)-degeneracy, and hence the potential to
measure δCP is significantly increased. For the example shown in Figure 6 the correct value
of δCP can be identified at 2σ CL.

5.2 Sensitivity to the mass hierarchy for non-maximal θ23 mixing

Now we generalize the discussion of the previous subsection to non-maximal values of θtrue
23 ,

such that in general all four solutions of Eq. (2) are present. To identify the correct mass
hierarchy the (Otr, Hwr)- as well as the (Owr, Hwr)-solution has to be excluded. In Figure 7
we show the sensitivity to the mass hierarchy as a function of the true values of sin2 2θ13

and sin2 θ23 for LBL, ATM, and LBL+ATM data. First we note that the results for LBL
data-only strongly depend on the true value of δCP, as observed already in Figure 5. ATM
data on their own provide only a reasonable sensitivity to the mass hierarchy if the true
hierarchy is normal and sin2 θtrue

23 > 0.5. This is the region of large excess of e-like multi-GeV
events (see discussion in Section 3.3), which cannot be achieved for any configuration in the
inverted hierarchy.

The sensitivity to the hierarchy for the LBL+ATM combination can be inferred from
Figure 3 by considering the intersection of the shaded region ((Owr, Hwr)-solution), with
the region to the right of the dashed curves ((Otr, Hwr)-solution). The shaded regions in
Figure 7 give an explicit example for δtrue

CP = 0. For the true inverted hierarchy (right
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13 = 0.04, δtrue
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= 0.

panel) the sensitivity to determine the mass hierarchy is given by the ability to exclude the
(Otr, Hwr)-solution. As discussed in Section 3 the worsening of the sensitivity for low values
of sin2 θ23 can be understood from the flux factor (r sin2 θ23−1) in the multi-GeV e-like event
excess. If the true hierarchy is normal (left panel) the (Otr, Hwr)- as well as the (Owr, Hwr)-
solutions have to be taken into account. The “spike” visible in Figure 7 at sin2 θtrue

23 ∼ 0.45
comes from the fact that the double degenerate solution (Owr, Hwr) cannot be excluded.

We illustrate this behavior in Figure 8, where we show the location of the best fit point
for the wrong hierarchy as a function of the true value of sin2 θ23. We observe from panel (c)
that for sin2 θtrue

23 > 0.5 the minimum for LBL+ATM follows the true value of sin2 θ23, i.e.,
it corresponds to the (Otr, Hwr)-solution. As discussed in Section 3 this implies in turn
that sin2 2θ13 has to be close to the true value, as can be seen from panel (b). However,
in that case the large values of ǫmulti

e from the normal hierarchy cannot be obtained in the
inverted hierarchy, which leads to the large χ2 values, i.e. good sensitivity, in that region. For
0.4 < sin2 θtrue

23 < 0.5 one observes from Figure 8 that the best fit moves to the (Owr, Hwr)-
solution, characterized by the wrong θ23, see panel (c), and a value of sin2 2θ13 given by
Eq. (5), see panel (b). As mentioned in Section 4 the occurrence of this degeneracy strongly
depends on the true value of δCP, and follows from a delicate interplay of effects in sub-
and multi-GeV data. In the region of sin2 θtrue

23 < 0.4 the best fit returns again to the
(Otr, Hwr)-solution, characterized by the true θ23 and a value of sin2 2θ13 close to the true
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Figure 9: Sensitivity to the mass hierarchy as a function of the true values of sin2 2θ13 and δCP for

sin2 θtrue
23 = 0.3 (left) and sin2 θtrue

23 = 0.7 (right). The true hierarchy is normal. We show the contours of

∆χ2 = 1, 4, 9 between the wrong and the true hierarchy, corresponding to a rejection of the wrong hierarchy

at the 1σ, 2σ, and 3σ CL (from light to dark shading). The shaded regions correspond to LBL+ATM data

combined, solid curves correspond to LBL-only, and dashed curves to ATM-only.

one. From Figure 8 we find that the fit of LBL-only, as well as ATM-only chooses best
fit values of θ23 and sin2 2θ13 close to the true ones. This suggests that in that region the
sensitivity comes from effects related to ∆m2

31, ∆m2
21, and δCP. As mentioned in Section 4

here the main sensitivity comes from the ATM sub-GeV data sample (compare Figure 4) and
the interference term between ∆m2

21- and ∆m2
31-effects [44] can become important, which

introduces the dependence on δCP.

The strong dependence of the sensitivity on δCP for small sin2 θ23 is visible in the left panel
of Figure 9, where we show the sensitivity to the hierarchy as a function of sin2 2θtrue

13 and
δtrue
CP for sin2 θtrue

23 = 0.3. The rich structure visible for the LBL+ATM combination indicates
a complicated interplay and/or cancellations of various effects. On the other hand, from
the right panel we observe that for large values of sin2 θtrue

23 the sensitivity to the hierarchy
becomes practically independent of the true value of δCP. In this range multi-GeV ∆m2

31-
effects are enhanced by the flux factor and dominate over ∆m2

21-effects and the interference
term. Also ATM data alone provide quite a good sensitivity, thanks to the big effect in
multi-GeV e-like events.

6 The θ23-degeneracy and the sensitivity to sin2 2θ13

As discussed in Section 3, the presence of the octant degeneracy leads to severe complications
in the determination of sin2 2θ13. In this section we consider the specific case θtrue

13 = 0,

19



0.3 0.4 0.5 0.6 0.7
0.0

0.005

0.01

0.015

Se
ns

iti
vi

ty
 to

  s
in

2 2θ
13

right octant of θ
23

wrong octant of θ
23

combined(a)

0.3 0.4 0.5 0.6 0.7

True value of  sin
2θ23

(b)

0.3 0.4 0.5 0.6 0.7

(c)

1σ

2σ
3σ

1σ

2σ
3σ

1σ

2σ

3σ

2σ
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corresponding to θtrue
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and we investigate how the upper bound on sin2 2θ13 (“sensitivity to sin2 2θ13”) can be
improved by the combined LBL+ATM analysis. The fact that the θ23-degeneracy affects
the sin2 2θ13-sensitivity is well-known, see e.g., Refs. [11, 13, 14, 16]. The choice θtrue

13 =
0 essentially eliminates the differences between normal and inverted hierarchies, i.e. the
degeneracy is perfect, and the fact that it cannot be resolved introduces only very small
ambiguities for other parameters. Hence the (Owr, Htr)- and (Owr, Hwr)-solutions coincide
within good accuracy. Moreover, the analysis is independent of the true value of δCP, since
the phase becomes unphysical for θ13 = 0. We define the sensitivity to sin2 2θ13 as the largest
value of sin2 2θ13 which fits the data generated for a true value sin2 2θtrue

13 = 0 at a given CL
(see Appendix C of Ref. [31] for a detailed discussion).

Let us first assume that the true octant of θ23 was known. In that case one expects from
Eq. (3) that the sensitivity for sin2 2θ13 becomes better for increasing sin2 θ23, since for large
sin2 θ23 the first term in Eq. (3), which is proportional to sin2 2θ13, is enhanced. Moreover,
the α2 term gets suppressed for small cos2 θ23, which reduces the effect of multi-parameter
correlations induced by ∆m2

21. This expectation is confirmed in panel (a) of Figure 10, where
the sensitivity to sin2 2θ13 is shown as a function of the true value of sin2 θ23, assuming that
the octant is known. However, if the octant of θ23 is not known, the degenerate solution
prevents the smaller sin2 2θ13-limits implied by sin2 θtrue

23 > 0.5. In that case the data can be
fitted by relatively large values of sin2 2θ13, since exchanging sin2 θ23 and cos2 θ23 reduces the
effect of sin2 2θ13 and increases the α2 term in Eq. (3). This effect is shown by the curves
corresponding to LBL data in panel (c) of Figure 10. We observe that the sensitivity to
sin2 2θ13 gets worse for non-maximal values of θtrue

23 in both octants because of the presence
of the degenerate solution.

Since the octant-degeneracy can be efficiently resolved by atmospheric data one expects a
significant improvement of the sin2 2θ13-sensitivity for the combined LBL+ATM analysis. In
panel (b) of Figure 10 we show the sin2 2θ13-limit constraining the fit to the wrong octant of
θ23. As expected from Figure 2 there are no solutions for LBL+ATM data if θ23 is sufficiently
far from maximal, since the wrong solution is disfavored by ATM data. Consequently, we

20



find that the final result shown in panel (c) for LBL+ATM is very close to the situation in
panel (a), where only the true solution for θ23 has been used. Hence, the sin2 2θ13-sensitivity
is significantly increased for θ23 > π/4 through the exclusion of the wrong octant solution by
ATM data. There is no relevant improvement for θ23 < π/4, since in that case the sensitivity
to sin2 2θ13 suffers for the true θ23 solution because of the sin2 2θ13-suppression implied by
the small values of sin2 θ23.

7 Conclusions

In this work we have performed a combined analysis of future long-baseline (LBL) and atmo-
spheric (ATM) neutrino data. As a specific example we have considered the phase II of the
T2K experiment, consisting of a 4 MW superbeam produced at the J-PARC facility. The
1 Mt HyperKamiokande water Cherenkov detector will serve as detector for the LBL exper-
iment and simultaneously provide high statistics ATM neutrino data. We have shown that
the combined LBL+ATM analysis offers a very appealing possibility to resolve parameter
degeneracies in the LBL data. In particular, the ambiguities implied by the sign(∆m2

31)- and
the θ23-degeneracies can be lifted to a large extent. This becomes possible through three-
flavor effects in ATM data related to θ13 and ∆m2

21. A systematic scan of the parameter
space has been performed to investigate the ability to determine the type of the neutrino
mass ordering. Let us summarize our main findings:

• For true values of sin2 θ23 > 0.5 the correct mass hierarchy can be identified at 2σ CL
if sin2 2θ13 & 0.015, rather independent of the true value of δCP or the type of the true
hierarchy. In this region the sensitivity is dominated by multi-GeV e-like events in
ATM data.

• For true values of sin2 θ23 < 0.5 the correct mass hierarchy can be identified at 2σ CL if
sin2 2θ13 & 0.03, where here the actual sensitivity depends on the true value of δCP and
the true hierarchy. The final sensitivity emerges from an interplay of various effects in
the different ATM data samples.

• The solution with the wrong octant of θ23 can be excluded at 3σ CL if | sin2 θ23−0.5| &

0.1, independent of the true values of θ13, δCP, and the hierarchy. This follows mainly
from ∆m2

21-effects in e-like sub-GeV ATM data. If sin2 2θ13 & 0.03 and the true
hierarchy is normal the octant sensitivity at 3σ CL improves to | sin2 θ23 − 0.5| & 0.05
due to θ13-effects in the multi-GeV ATM data.

• The lifting of the degeneracies by ATM data significantly increases the performance
of the LBL experiment for the measurement of sin2 2θ13 and δCP, since fake solutions
implied by the degeneracies can be ruled out. Generically, the determination of the
correct octant of θ23 removes an ambiguity in the measurement of sin2 2θ13, whereas
lifting the sign(∆m2

31)-degeneracy allows the identification of the correct value of δCP.

• If no finite value for θ13 is found the upper limit on sin2 2θ13 is significantly improved
by resolving the θ23-degeneracy by ATM data if θ23 > π/4.

Let us stress that these results follow from the complementarity of the two data sets; neither
LBL data alone nor ATM data alone can provide a comparable physics reach. The LBL data
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allow a very precise determination of |∆m2
31| and sin2 2θ23, and although θ13 and δCP suffer

from ambiguities related to the degeneracies they are constrained to rather specific values.
However, there is very poor sensitivity to the mass hierarchy and to the octant of θ23 for
LBL data alone. For ATM data alone only for sin2 θtrue

23 & 0.6 and a true normal hierarchy
a reasonable sensitivity exists for the mass ordering, since in this case a big excess of e-like
multi-GeV events is predicted, which cannot be achieved by any configuration within the
inverted hierarchy. For all other regions in the parameter space the sensitivity of ATM-
only is rather poor, since the data can be fitted with the wrong hierarchy by adjusting the
oscillation parameters. To benefit from the hierarchy sensitivity offered by θ13-earth matter
effects in ATM data the precise measurement of the oscillation parameters from LBL data
is mandatory. In particular, it is necessary to know θ23 and |∆m2

31| at the 1% level, and a
reasonable constraint on sin2 2θ13 is required. Hence, only the combination of LBL and ATM
data makes it possible to obtain a good sensitivity to the neutrino mass hierarchy. Let us
add that to benefit from the LBL+ATM combination indeed a few Mt yrs of ATM data are
necessary. In particular we have checked that for exposures below 1 Mt yrs the sensitivity to
the hierarchy is essentially lost.

Finally, let us remark that the methods to resolve parameter degeneracies discussed pre-
viously in general involve the combination of two or more (expensive) experiments, e.g. at
different baselines or using different oscillation channels. In contrast, once a LBL experiment
with a megaton Cherenkov detector is built, ATM data come for free. Therefore, in addi-
tion to the interesting physics, the synergies between LBL and ATM data offer a relatively
economical way of resolving parameter degeneracies.
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